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Abstract: One essential step in radiotherapy treatment planning is the organ at risk of segmentation
in Computed Tomography (CT). Many recent studies have focused on several organs such as the
lung, heart, esophagus, trachea, liver, aorta, kidney, and prostate. However, among the above
organs, the esophagus is one of the most difficult organs to segment because of its small size,
ambiguous boundary, and very low contrast in CT images. To address these challenges, we propose
a fully automated framework for the esophagus segmentation from CT images. The proposed
method is based on the processing of slice images from the original three-dimensional (3D) image so
that our method does not require large computational resources. We employ the spatial attention
mechanism with the atrous spatial pyramid pooling module to locate the esophagus effectively,
which enhances the segmentation performance. To optimize our model, we use group normalization
because the computation is independent of batch sizes, and its performance is stable. We also
used the simultaneous truth and performance level estimation (STAPLE) algorithm to reach robust
results for segmentation. Firstly, our model was trained by k-fold cross-validation. And then, the
candidate labels generated by each fold were combined by using the STAPLE algorithm. And as
a result, Dice and Hausdorff Distance scores have an improvement when applying this algorithm
to our segmentation results. Our method was evaluated on SegTHOR and StructSeg 2019 datasets,
and the experiment shows that our method outperforms the state-of-the-art methods in esophagus
segmentation. Our approach shows a promising result in esophagus segmentation, which is still
challenging in medical analyses.

Keywords: esophagus segmentation; deep learning; spatial attention module

1. Introduction

Cancer is not only one of the critical worldwide public health problems but also a
leading reason for millions of deaths every year. Nowadays, cancer types are becoming
much more popular with the rapidly increasing number of patients. The treatment is split
into multiple stages, where radiotherapy treatment is one of the essential steps. During
radiotherapy, the organs near the tumor can be damaged, which are called organs-at-risk
(OARs). Thus, protecting the OARs raises an important concern. One way to avoid OARs
injury is segmentation of OARs from CT images in the treatment planning [1,2]. Therefore,
OARs segmentation remains an active area of research. In previous clinical practices,
OARs segmentation can be done manually by doctors and radiologists. However, this is
time-consuming because of considerable slices in CT scans and the requirement of high
accuracy. For those reasons, nowadays, the automated segmentation system is receiving
more interest from researchers.
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The esophagus is very difficult to segment in CT scans [3], and it is one of the most
important OARs in radiotherapy due to its radiosensitive mucosa, so precise segmentation
is indispensable. The boundary between the esophagus and the other organs is often
unclear. Because of the low contrast and small size of the esophagus in the human body,
it is hard for doctors or oncologists to accurately locate the position of the esophagus in
the CT images. It is complicated to distinguish the esophagus on medical images, even
for specialists. The proposed method aims to support the specialist or the medical doctors
in radiotherapy treatment planning. In recent years there has been quite a lot of research
focusing on the field of esophagus segmentation [4-8]. However, most of these methods
ignore the spatial information from organs. Additionally, they usually evaluate only one
dataset. We proposed a method based on the combination of the deep learning approach
and conventional algorithm. The model is built from a variant of U-Net structure, attention
mechanism, and atrous spatial pyramid pooling module [9] to capture the larger receptive
field. Thus, our method can learn spatial information and focus on the meaningful area
better than other methods. Several studies employ group normalization [10] (GN) to opti-
mize their segmentation models [11-13]. A biomedical semantic segmentation model [11]
shows that when they used GN, they achieved higher accuracy results than using other
kinds of normalization. Also, a lightweight deep convolutional neural network [12] using
GN shows that this model has high performance in the biomedical image segmentation
field. Recently, an end-to-end segmentation network [13] called Dilated Multi-ResUNet
also presents the effectiveness of GN in reducing the adverse impact brought by the small
batch size. From the advantages of GN in the segmentation area, we employ it in our
approach to optimize the model.

In summary, the contributions of this work can be summarized as:

1. We proposed an automated framework for segmentation of esophagus with high
accuracy. The segmentation framework also can be applied to other types of organs.
The ablation study showed that it achieved competitive results compared to the
state-of-the-art ones.

2. The proposed model takes advantage of the spatial information from the attention
module. With a larger receptive field from the atrous spatial pyramid pooling module,
the feature of the esophagus is better captured. Also, we employ GN in our model to
get high performance and stable results.

3. We construct the segmented image into two-dimensional (2D) and 3D images. Thus,
they can assist doctors or specialists better than only shown in one kind of 2D or 3D.

4. Experimental results from two public datasets SegTHOR and StructSeg, demonstrate
our results in segmentation of esophagus outperformed the state-of-the-art methods.

The rest of the paper is organized as follows. Section 2 introduces the related works
addressing the thoracic organs at risk segmentation and esophagus segmentation. The
details of our method, such as the spatial attention module, our segmentation model, and
the post-processing step, are presented in Section 3. The achieved experimental results of
our approach in SegTHOR and StructSeg datasets are reported in Section 4. Finally, the
conclusions section is given in Section 5.

2. Related Works
2.1. Thoracic Organs at Risk Segmentation

To human perception, several earlier systems were developed on the traditional ap-
proaches, including techniques such as atlas-based and statistical-based methods [14-21]. The
methods mentioned above have been holding the leading role for a long time. However, they
are not without limitations, one of which is the requirement of hand-crafted features, and
the other is that complicated cases cannot be handled effectively. Nowadays, deep learning
is well-known as a superb way to solve these problems. It shows exceedingly outstanding
accomplishment in many tasks such as classification, object detection, and especially segmen-
tation. This framework demonstrates an end-to-end learning approach. Instead of making
hand-crafted features via convolution, pooling layers, and activation functions, the network
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can extract the features from which patterns are recognized via the backward propagation
of errors process. Deep convolutional neural networks (DCNN) are widely applied in seg-
mentation models and achieved significant accomplishments in various fields. The medical
research area also had large benefits from DCNN.

Segmentation can be considered an extension of classification where the network predicts
the category (organs, background, etc.) of each pixel of the input image. A fully Convolutional
Network (FCN) was first introduced by Long et al. [22] for semantic segmentation. In this
network, there is a slight difference compared to the classification network. More formally,
the last fully connected layers are removed and replaced by fully convolution layers. The
higher resolution feature maps are concatenated with upsampled lower resolution and then
passed to the next fully convolution layers to achieve better accuracy. FCN is widely used for
multi-organ segmentation by various approaches: 2D [23,24], 2.5D [25] and 3D [26,27].

In 2015, Ronneberger et al. proposed U-Net [28] built upon the idea of FCN and using
the concepts of deconvolution introduced by [29]. The contracting path, well known as
the encoder path, consists of multiple stages to extract the contexture of the object. In the
expansion path, well known as the decoder path, the feature map from the contracting path is
upsampled to match the feature size from previous decoders and concatenated together. This
technique enables the network to capture both context and location information of the object.

Several novel architectures have appeared to show significant success in medical
segmentation [30,31]. A framework employs 3D-U-Net to detect vascular boundaries [32].
The pix2pix model [33] is suitable for image-to-image translation tasks, where an input
image is adjusted and generates a corresponding output image. The method is valuable
at synthesizing images from ground truth, colorizing images, image segmentation. This
framework shows a promising result for many image-to-image translation challenges,
especially highly structured graphical outputs. A 3D framework called V-Net [34] is
proposed for 3D image segmentation. This network trained end-to-end on MRI volumes
reproducing prostate, and this net learns to predict segmentation for the whole volume at
once. The approach directly uses 3D convolutions instead of employing the input volumes
in a 2D slice-by-slice. Besides, a practical loss function explicitly designed for medical
image segmentation is utilized for the training phase.

The SegNet [35] framework represents a deep convolutional neural network archi-
tecture for semantic pixel-wise segmentation. This network consists of an encoder path,
a corresponding decoder path followed by a pixel-wise classification layer. The critical
point of SegNet is the decoder path which includes a hierarchy of decoders corresponding
to each encoder. A network architecture is based on employing dilated convolutions [36]
to capture features at multi-scale images and densely connecting all feature maps. This
framework can achieve accurate results while the model is easier to implement, train, and
apply in practice and automatically adapts to different problems.

A novel Convolutional Neural Network (CNN), called USE-Net [37], integrated Squeeze-
and-Excitation blocks [38] into U-Net to exploit adaptive channel-wise feature recalibration
to boost the generalization performance. This framework achieves accurate prostate zonal
segmentation results when trained on multi-institutional datasets. The approach is a valuable
solution in medical imaging applications related to multi-institutional settings. Another
deep learning framework for segmentation is presented by Rundo et al. [39] to automatically
delineate the Central Gland and Peripheral Zone in the prostate gland. This study evaluates
the generalization ability of CNN on two multi-centric MRI prostate datasets. The critical
point in this study is that significant performance improvement through fine-tuning may
require a massive dataset for pretraining.

A framework based on U-Net, with skip connections between contracting and expand-
ing paths, is used for OARs segmentation [40]. In this model, the pixel shuffle is employed
during the decoder as an upsampling operator. A novel multitask framework is proposed
for OARs segmentation [41]. This framework includes a coarse segmentation network used
to obtain the regions of interest (ROIs) localization. After that, multi-level ROIs are cropped
from the encoder part to form a decoder for detail-preserving segmentation. Additionally,
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a deep learning framework for OARs segmentation in CT images is introduced in [42].
This method is based on a two-stage approach for the segmentation task. A 3D U-shape
network is employed to get the localization of four organs at first. Then the output result is
put into the same network again to achieve better segmentation results.

An approach that employs dilated convolutions and aggregated residual connections
in the bottleneck of the U-Net variant is used to segment the OARs [43]. The model
utilizes global context and dense information necessary to recognize boundaries between
adjacent organs effectively. A 3D Enhanced Multi-scale Network (EMSN) [44] is proposed
to segment the OARs. This framework is based on a variant of the 3D FCN network. The
method uses a concatenation between preliminary prediction maps with the CT images
to refine the prediction maps. Besides, this network adopts 3D dilated convolution and
residual connections to enlarge the receptive field kernel of convolution without loss of
resolution and avoids gradient degradation during back-propagation, respectively.

Another multitask framework for OARs segmentation is proposed in [45]. In this
model, there are two tasks which are the main and the auxiliary tasks. In the main task,
the model tries to segment OARs, while the auxiliary task is the multi-label classification
of organs in CT images. A new loss function called weighted mean Cross-Entropy loss
function is introduced to optimize the learning process during training the model. A
multi-resolution 3D V-Net network is presented in [46] to segment thoracic OARs in CT
images. The model employs two resolutions from images for the learning process. A
variant of the V-Net model called VB-Net is proposed for training both resolutions. In the
coarse resolution case, the model can robustly localize the organs, while the fine resolution
can help accurately refine each boundary of the organ.

Additionally, a two-stage network for multiple organs at risk in the head and neck
area segmentation is proposed in [47]. In the first stage, a coarse network on size-reduced
medical images was employed to find the organs of interest. After that, a fine network
for segmentation on full-resolution images was applied to get the final segmented maps.
The approach shows good performance for the segmentation of structures in the neck and
head area.

Besides the deep learning approaches, several methods regarding OARs segmentation
are related to machine learning [48,49]. A semi-automatic method for Epicardial Fat Volume
(EFV) segmentation and quantification is proposed by [48]. The key point in this approach
is that it does not require any initial training or modeling phase to set up the system,
unlike other supervised machine learning approaches. The EFV quantification and analysis
method is a valuable tool to assist experts in diagnosis and therapy. Also, a method for
heart segmentation based on watershed and active contour models was proposed in [49].
In this approach, at the first stage, the bilateral filtering technique is used to reduce the
noise of the cardiac CT images. In the next stage, initial seed contours are determined by
the watershed segmentation method. Finally, precise segmentation boundaries for whole
heart CT images are obtained by the active contour model.

Although these approaches demonstrate potential in medical segmentation, the 3D
model consumes colossal computational resources. Also, most of the methods do not focus
on spatial information of the organs. Therefore, building an efficient 2D model with spatial
attention is an attractive way for researchers.

2.2. Esophagus Segmentation

Several studies focus on solving the problem of esophagus segmentation [4-8]. A
model FCN [4] is used for segmentation of esophagus. This model employs low-level
features with high-level information, effectively combining local and global information
to improve segmentation accuracy. A method based on a 2D model called U-Net Plus [5]
is proposed to segment the esophagus from the 2D CT slice. This architecture enhances
the feature extraction performance of complex abstract information thanks to two special
blocks. According to the authors, their method is evaluated on a database that contains
15 CT images totalizing more than two thousand slices. Their results achieved an average
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Dice value of 0.79. Although the performance of this method looks good, they used a small
size dataset of only 15 exams.

The Channel Attention mechanism is employed inside the method [6] to distinguish
the esophagus and surrounding area by emphasizing and inhibiting channel features.
This method integrated a Channel Attention Module (CAM) and Cross-level Feature
Fusion Module (CFFM) into a deep learning model to strengthen the generalization ability
of the network by employing high-level features to low-level features. An atlas-based
deep learning approach [7] is used to segment the esophagus. This method includes five
main steps proposed for esophagus segmentation for better planning of radiotherapy in
CT. These steps are image acquisition, volumes of interest segmentation, preprocessing,
esophagus segmentation, and segmentation refinement.

U-Net neural network combined with several variations of backbones [8] is proposed
for esophagus segmentation. This is a semi-automatic labeling method with detection and
execution components to solve the labeling challenge. The detection phase aims to identify
the category to which each slice belongs. Several backbones are employed as the encoder
of the U-Net network to extract features. The difficulties in esophagus segmentation, even
by a specialist, take so much time and is susceptible to human error [3]. This framework
employs a CNN and an active contour model (ACM). The outputs from CNN and ACM are
applied to a random walker algorithm. According to the authors, this method is evaluated
on a dataset of 50 patients. Their Dice coefficient result achieves 0.76.

A probabilistic method for segmentation of esophagus [50] is proposed to segment
the esophagus automatically. They detect the ROI first by finding salient anatomical
landmarks. After that, prior knowledge about the esophagus region is used to infer the
approximate boundary of the esophagus by finding the largest value of the posterior
estimate. Two different ways of describing and inferring form information are contrasted:
A “detect and connect” method which uses a combination of the Markov chain model
and a particle filter. Finally, the non-rigid surface that emerges from this approach is
deformed to better conform to the limitations of the organ. A skeleton-shape model
to guide the segmentation [51] is proposed to segment in thoracic CT scans of the 3D
esophagus. Although the method is automatic, it depends on generating a skeleton model
based on the specialist marking.

Again, the difficulty in esophagus segmentation is presented by Trullo et al. [4]. This
paper proposed a fully automatic method consisting of only two steps. The first step is
that a convolutional neural network estimates the location of the esophagus. And then,
the area calculated in the previous step is cropped and put into the same network. This
method needs a crop in the esophagus location. Although this is the automated method, if
the first network ignores the position of the esophagus or marks it in the wrong area, the
second network meets the problem of segmenting it. A deep learning approach for various
organ segmentation is introduced in [52]. In this method, the au-thors crop the area of each
organ based on its previous location. Finally, the segmented results of each organ are joined
to create the final multi-organ segmentation. This framework is evaluated on a dataset
that consists of 36 CT images, and it has an average Dice value of 0.72 in segmentation
of esophagus.

As can be seen in the literature, most studies show two problems when they research
esophagus segmentation. Firstly, the esophagus is very difficult to segment, even for
doctors and specialists. The difference between the contrast of the esophagus boundary
with the other organs in most slices is usually unclear. Secondly, the works often find
the position of the esophagus based either on probabilistic models, at atlases, or other
locations of the organs to decrease the region of interest. Therefore, the final segmented
result usually depends on the previous preprocessing steps.

In this paper, we propose a variant of the U-Net network for esophagus segmentation.
This model can also be applied in other organ segmentation. The network leverages pre-
trained models from ImageNet to extract precise context features. We design a decoder
with the spatial attention module to refine the object location accurately in the expansion
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path. We also employ the STAPLE [53] algorithm to boost the final performance. The
experiments show the effectiveness and robustness of our network by achieving high
results on esophagus segmentation on StructSeg2019 and SegTHOR datasets.

3. Materials and Methods

In this section, we firstly review the concepts of spatial attention. After that, the
proposed architecture for segmentation of esophagus is presented.

3.1. Spatial Attention Module

To human perception, attention holds an important role [54-56]. It is a fact that
humans are often impressed by salient parts from the whole scene and then focus on
them to capture and understand visual structure. Inspired by this concept, there were
many attempts in trying to bring attention to deep learning networks. Most of them share
the same approach. In this paper, a spatial attention module was employed to utilize
the spatial relationship of features. The spatial attention answers the question “where”
valuable parts are. Firstly, the average pooling and max pooling operations are applied
along the channel axis, and then the outputs are concatenated to create a useful feature.
The highlighting informative regions are exploited by using pooling operations along
the channel axis [57]. The concatenated feature above is fed into a convolution layer to
create the spatial attention map representing emphasized or suppressed areas. Given the
feature map F, the attention mechanism is to procedure the attention map A(F), which
indicates the most important features. We also used the combination of max pooling and
averaged pooling S to summarize feature information. It can be supported by the original
feature information. Refined feature map Fyefiyeq is computed as: Fefines = F & A(F)
where & denotes element-wise multiplication. We employed a spatial attention module
(SAM), which is called As. It is used for exploiting inter-spatial relationships. The attention
operation is described as follows:

Fsupported = F® S(F) (1)

Frs = Fsupported ® As (Fsupported) ()

where F € REXHXW g(F) ¢ REXIxX1 - A (Fsupported) € RVHIXW [ W, C are height,
width, and the number of channels of feature map F. The supported features, refined
spatial features after applying pooling and spatial attention module denoted by S and Fis,
respectively. The details of the spatial attention module show in Figure 1.



Sensors 2021, 21, 4556

7 of 18

¢: Channel
w: Width

h: Height

\id

ex1Ix1
AVG exIxt - exix Ixwxh
Pooling 2xwxh
h
‘[ MAX Cony F
"| Pooling MAX -
Pooling ¢
exX1x1 1xwxh
[ [Ixwxh

Figure 1. The proposed spatial attention module.

3.2. The Proposed Method

We present the proposed method based on a model with spatial attention, as in Figure 2.
With simple problems, a single label for training is enough for a good result. However,
multiple labels are better for training for complex problems than a single label [58]. The esoph-
agus is one of the most challenging organs to segment because of its small size, ambiguous
boundary, and very low contrast in CT images. Thanks to the multi-label strategy, meaningful
spatial relationships are utilized for distinguishing the esophagus from others. U-Net has the
capability to train with a small dataset. Especially, the medical dataset is relatively rare and
small due to the fact that not so many datasets were published or available to the public. In
addition, it is clear that the popular models require a large-scale dataset (up to million images)
to be generalized and avoid overfitting. Therefore, it is not a good idea to train a typical
U-Net from scratch with initialized random weights. It is well known that the pre-trained
models on ImageNet are widely used for transfer learning and achieve significant success
on many tasks. Thus, we use pre-trained models (Resnet34 [59] and SEResNext50 [38]) as
the encoder. For the ResNet family, there are major blocks. Each block consists of several
convolutions, pooling layers, and activation functions. The first block is called stem layers,
including 2D convolution, GN [10], and ReLU. The rest of the four blocks share a similar
structure, including bottleneck and basic blocks. Note that GN divides the channels into
groups and calculates the variance and mean for normalization within each group. Therefore,
the computation is independent of batch sizes, and its performance is stable in a wide range
of batch sizes. We take each block corresponding to the encoder stage in the same sequence as
the original model. The output feature map is not only used for feeding the next block but also
for skip connection. We denote <I>£-<p,i = {0,1,2,3,4} as the encoder operation. The encoder

®i takes a feature map having k channels as the input then produces the output feature map
having p channels. Similarly, Qi.‘p,i = {0,1,2,3,4} denotes for the decoder operation. The
encoder is described as following;:
1o mo 1 My m3
<I>Om[J — q>1m1 — <I>2m2 — q>3m3 — <I>4m4 3)
where 1y = 3, which is the number of channels of CT slice images. The feature map

channels of encoders: (mg, my, my, m3, my) are (64, 64, 128, 256, 512) for Resnet34 and (64,
256, 512, 1024, 2048) for SEResNext50.
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The decoder operations are:
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The feature map channels of decoders: (m(, m}, m), m}, m}) are (256, 128, 64, 32,
16) for both of backbones. The decoder consists of two branches. The first branch
includes 2 x [Conv — Groupnorm — ReLu]. Each convolution layer has kernel size 3 x 3,
padding and stride are 1 x 1. We employ spatial attention modules following con-
volution blocks to refine the feature map after that. The second branch has only one
block [Conv — Groupnorm] with 1 x 1 convolution to reduce the dimension of the feature
map. This branch is inspired by the Inception [60] and downsampling of ResNet [59] archi-
tecture. Finally, two feature maps produced by two branches are merged by element-wise
addition. Figure 2 shows our proposed model.

3.3. Post Processing Step with STAPLE Algorithm

A deep learning-based method for fully automatic segmentation of multiple closely
spaced brachytherapy catheters in intraoperative MRI presented in [61] is used in the
post-processing step to robust their segmented results. In the training phase, the model
was trained using 5-fold cross-validation. Then, the candidate labels generated by each fold
were fused by using a majority voting algorithm. However, the STAPLE algorithm proved
better than major voting [62], and an improvement of the accuracy was also observed
when applying the STAPLE algorithm to automatic segmentation results [63]. Thus, our
approach employed STAPLE to robust the segmented results. STAPLE is an expectation-
maximization algorithm for simultaneous truth and performance level estimation. This
method considers a collection of segmentations and calculates a probabilistic estimate
of the true segmentation and a measure of the performance level represented by each
segmentation. The probabilistic estimate of the final output segmentation is formed by
estimating an optimal combination of the segmentations, weighting each segmentation
result depending upon the estimated performance level, and employing a prior model
for the spatial distribution of structures being segmented as well as spatial homogeneity
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constraints. In the SegTHOR dataset, we employ 4-fold cross-validation. That means we
have four checkpoints from the four times training model. While the typical approach uses
the mean or max operator based on the output from four times testing, this paper uses the
STAPLE algorithm to combine four results from our four checkpoints. We convert each
segmented image of multiple organs into multiple segmented images for each separate
organ to apply the STAPLE algorithm. We then used the STAPLE technique for different
results of each weight from k-fold training on each organ. After that, we get results
of multiple 2-class segmented maps for each kind of organ. Finally, we refactor these
2-class segmented maps into a completely segmented image with multiple segmented
organs in one image. The experiments show the effectiveness and robustness of our
network combined with the STAPLE algorithm by achieving high results on esophagus
segmentation on the SegTHOR dataset. We present the overall architecture of our method
in Figure 3. Weight ; is the weight from training in fold 1. The Weight ,, Weight 3 and
Weight , are similar. Output ; is the segmented map result when we use Weight ; for the
predicted result. The Output ,, Output ; and Output , are similar. The Output 4, is the
segmented result which gets from combining four segmented maps from four weights by
STAPLE algorithm. Figure 4 shows a 3D visualization of esophagus segmentation results
from patient 49th in the test set of the SegTHOR dataset.

P L L U

Training Set D Validation Set

Training Phase v Testing Phase s

Ml—) Output; >

Weight,

Welghty o () touty >,

Weight,

—> Outputy,q

STAPLE

Weights

Weighty ——=—4 Output; >

Weight Output; >

. Test Set

Figure 3. The overall architecture of our method.

(b) (<) (d)

Figure 4. 3D visualization of esophagus segmentation results from patient 49th in the test set of SegTHOR dataset. The

number indicates the Dice score, which was obtained from the organizer of the challenge. (a) Result from the weight of
fold-1-trained; (b) Result from the weight of fold-2-trained. (c) Result from the weight of fold-3-trained. (d) Result from the
weight of fold-4-trained. (e) Result from our method.
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4. Experimental Results
4.1. Dataset

We used StrucSeg 2019 and SegTHOR datasets to evaluate the performance of our
proposed network. All images are 3D CT scans. We extract all the slices from 3D volume
to 2D images in each patient. The Houndsfield Unit (HU) values are normalized into the

range of [0,1] as follows:
1= I-A (5)
B-A
where B; A are the upper and lower boundary of HU. We select B = 400, A = —1000 in our
experiments on StructSeg 2019 dataset. With the SegTHOR dataset, we choose B = 400,

A = —400 in our experiments.

4.1.1. StructSeg 2019 Dataset

We used the StrugSeg dataset to evaluate the performance of our proposed network.
The dataset has CT scans of 50 lung cancer patients for training and ten patients for testing.
Each scan is annotated by one expert and verified by another one. There are six annotated
OARs: left lung, right lung, spinal cord, esophagus, heart, and trachea. We split the 50 3D
images into file groups for 5-fold cross-validation. Image intensity values were truncated
from —1000 to 400 HU to omit irrelevant information. The example of OARs from the
StructSeg 2019 dataset is shown in Figure 5. The green region is the left lung, the red region
is the right lung, the pink region is the spinal cord, the turquoise is the trachea, the blue
region is the heart, and the yellow region is the esophagus.

(a)

Figure 5. Example of OARs from StructSeg 2019 dataset. (a) 2D image; (b) 3D image. Each OAR is
shown in a different color. The green region is the left lung; the red region is the right lung; the pink
region is the spinal cord; the turquoise is the trachea; the blue region is the heart, and the yellow
region is the esophagus.

4.1.2. SegTHOR Dataset

This dataset comes from the ISBI 2019 SegTHOR challenge. There are 40 labeled scans
with four thoracic organs, including the esophagus, heart, trachea, and aorta, in the dataset.
We split the 40 CT images into four groups for applying 4-fold cross-validation. Image
intensity values were truncated from —400 to 400 HU to omit irrelevant information. The
example of OARs from the SegTHOR 2019 dataset is shown in Figure 6. The green region
is the heart, the red region is the esophagus, the blue region is the trachea, and the yellow
region is the aorta.



Sensors 2021, 21, 4556

11 of 18

(a) (b)

Figure 6. Example of OARs from SegTHOR ISBI 2019 dataset. (a) 2D image; (b) 3D image. Each OAR
is shown in a different color. The green region is the heart; the yellow region is the esophagus; the
blue region is the trachea; the red region is the aorta.

4.2. Evaluation Metrics

We use the Dice score for measuring the overlapped volume ratio between predicted
segmentation map T and ground truth N.
2x|TN N|
DSC(T,N) = =~ +—— (6)
IT|+ NI
Hausdorff Distance (HD) is the maximum distance between the boundary of predicted
segmentation T and ground truth N, which is defined as:

HD(T,N) = max{dist(T,N),dist(N,T)} (7)
where
dist(T,N) = sup inf d(x,y) 8)
x€T yeN
and
dist(N,T) = sup inf d(x,y) )
xeN yeT

sup and inf are supremum and infimum of each set correspondingly. 95% HD (HD95)
based on calculating the 95th percentile of the distances between T and N. This evaluation
metric eliminates the impact of the outliers. In this paper, the value of HD is computed in
millimeters (mm).

4.3. Training Model
4.3.1. With StructSeg Dataset

We address the problem as seven classes segmentation task. There are six OARs and a
background. Because of one pixel for one class, we select the Softmax function to handle
this task. Our method is evaluated in the Dice and HD metrics. We employ a combination
of Dice loss and Cross-Entropy loss as follows:

Lcombination = 6 x Diceloss(f,t) + o x CEloss(f,t) (10)

where 6 is the weight of Dice loss and ¢ is the weights of Cross-Entropy loss. f is a
segmented mask, and t is the ground truth.
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Diceloss(t,t) is Dice loss for multi-classes segmentation and this loss is presented

as follows:
Diceloss(f,t) = 1y (1- iDicescore(f' t)) = LR (1- i 21t
P - inti)) =73 s

i

) (11)

The weighted Cross-Entropy loss is CEloss(%,t), and this is defined as an equation

as follows: p
CEloss(f,t) = — Y o;t;log(F;) (12)

i=1

where @; is the weight of each class and P presented the number of classes. We choose
8 =0.9 and ¢ = 0.1. The values of ¢; are 0.1, 0.2, 0.2, 0.3, 0.4, 0.4, 0.4 for background, right
lung, left lung, spinal cord, heart, esophagus, and trachea, respectively. Our model is
implemented using the Pytorch framework. We use Adam optimizer [64] and train our
model in 30 epochs. We employ horizontal flip, elastic transform, and rotate augmentations.
The model is trained following the K-Fold cross-validation scheme with K = 5. The model
is done after 20 h using only GTX 2080Ti—11GB and takes only 20 s for the inference of a

patient approximately.

4.3.2. With SegTHOR Dataset

We address the problem as five classes segmentation task. There are four OARs and a
background. Because of one pixel for one class, we select the Softmax function to handle
this task. Our method is evaluated in the Dice and HD metrics. A combination of Dice
loss and Cross-Entropy loss is the same as with the case of the StructSeg dataset. A small
difference is that the ¢; are: 0.2, 0.5, 0.5, 0.5, 0.5 for background, heart, esophagus, trachea,
and aorta, respectively. Our model is implemented using the Pytorch framework. We
use Adam optimizer [64] and train in our model in 30 epochs. We employ horizontal flip,
elastic transform, and rotate augmentations. The model is trained following the K-Fold
cross-validation scheme with K = 4. The model is done after 16 h using only GTX 2080Ti-11
GB and takes only 20 s for the inference of a patient approximately.

4.4. Performance
4.4.1. With SegTHOR Dataset

In this section, the performance of various methods on the test set is presented. Table 1
shows the Dice score and HD score of esophagus segmentation comparison between our
proposed method with others in the test set of the SegTHOR dataset. Our results got the
best scores in both Dice and HD metrics. All values are computed by the online website
https:/ /competitions.codalab.org/competitions /21145 (accessed 28 May 2021). Figure 7
presents average Dice scores in esophagus segmentation of our method compared to using a
separate weight from the test set.
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Table 1. Dice score and HD score of esophagus segmentation comparison between our proposed
method with others in the test set of SegTHOR dataset. All values are computed by the online website
https://competitions.codalab.org/competitions /21145 (accessed 28 May 2021).

Method Dice HD
Lachinov et al. (2019) [40] 0.8303 -
Zhang et al. (2019) [41] 0.7732 1.6774
Chen et al. (2019) [42] 0.8166 0.4914
Vesal et al. (2019) [43] 0.8580 0.3310
Wang et al. (2019) [44] 0.8597 0.2883
He et al. (2020) [45] 0.8594 0.2743
Han et al. (2019) [46] 0.8651 0.2590
U-Net-scse-seresnext50 0.8479 0.3414
U-Net-no_att-resnet34 0.8381 0.3754
U-Net-no_att-se_resnext50 0.8469 0.3652
Ours 0.8690 0.2527
0.875
0.87 0.8690
0.865
0.8598
0.86 0.8587
0.8565
0.8547
0.855
0.85
0.845
Result from Result from Result from Result from Ours

weight fold 1 weight fold 2 weight fold 3 weight fold 4

Figure 7. This graph shows the average Dice score value in esophagus segmentation of our method
compared to using a separate weight. The performance got from the test set of SegTHOR ISBI
2019 challenge.

4.4.2. With StructSeg Dataset

This section presents the performance of various methods on the whole dataset. Table 2
shows the results of K-Fold results on the training set. At first, we experimented with some
variant U-Net networks combined with two types of backbone. We select res-net34 and
SEResNext50 pre-trained on ImageNet for comparison. Resnet34 is lightweight enough,
and SEResNext50 is deep enough for our computing resource. Besides, different attention
mechanisms are also involved in evaluating. Secondly, we analyze the efficiency of using the
attention mechanism in the decoder. In our experiments, we implemented spatial and channel
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squeeze and excitation (SCSE) [65] block and integrated it into the decoder block as the same
as convolutional block attention module (CBAM) [66] and our spatial attention. Table 2 shows
the effectiveness in the Dice metric of our proposed spatial attention mechanism compared to
other kinds of attention mechanisms in evaluating the training set. Our approach got Dice,
and HD scores in esophagus segmentation outperform different methods. Figure 8 introduces
the visualization of esophagus segmentation results from the validation set.

Table 2. Dice score and HD95 score of esophagus segmentation comparison between our proposed
method with others in StructSeg 2019 training set.

Method Dice HD95
MTL-WMCE [45] 0.6055 28.96
U-Net-cbam-resnet34 0.7490 17.68
U-Net-cbam-seresnext50 0.7590 17.97
U-Net-scse-resnet34 0.7606 19.90
U-Net-scse-seresnext50 0.7762 11.31
U-Net-no_att-resnet34 0.7575 12.43
U-Net-no_att-se_resnext50 0.7705 14.39
Ours 0.7784 11.28

T C L (b) (©)
(d) (e) 0)
@ (h) @)

Figure 8. Visualization of esophagus segmentation results from validation set. The yellow area indicates the segmented
region. (a) Small 2D patch; (b) Result of U-Net-cbam-resnet34; (c) Result of U-Net-cbam-seresnext50; (d) Result of U-Net-scse-
resnet34; (e) Result of U-Net-scse-seresnext50; (f) Result of U-Net-no_att-resnet34; (g) Result of U-Net-no_att-se_resnext50;
(h) Result of our method; (i) Ground Truth.

4.4.3. Discussions

While most previous studies evaluate their results on a single data set, we evaluated
our method on two datasets to demonstrate the effectiveness of our model. With additional
experiments, we tried to evaluate whether the previous methods work for both datasets
equally. We selected some methods and applied them to both datasets of StructSeg and
SegTHOR. The results in Tables 1 and 2 show that previous methods are a bit overfit to one
dataset, while our approach turned out to be effective for both datasets. These experiments
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demonstrate that our method is effective on multiple datasets and is not overfit to only one
dataset like the other methods. Table 3 shows how results in the test set of the SegTHOR
challenge are different between batch normalization (BN) [67] and GN in our model. Note
that GN helps our approach to generate results with higher performance in both Dice and
HD metrics.

Table 3. The comparison of Dice score and HD score in esophagus segmentation between using BN
and GN in our proposed method. All values are computed from the test set of SegTHOR challenge
by online website https://competitions.codalab.org/competitions /21145 (accessed 28 May 2021).

Normalization Technique Dice HD
BN 0.8667 0.2748
GN 0.8690 0.2527

5. Conclusions

We proposed a novel U-Net with an attention mechanism combined with using the
STAPLE algorithm method as a post-processing step to address esophagus segmentation
from chest CT scan challenge. The network leverages a pre-trained model from ImageNet
for the encoder part to better extract the CT scan context. By using the spatial attention
module, the decoder understands the location of organs better than other attention methods.
Our network used 2D images for training to save a massive amount of computing resources
compared to 3D volumes. The experiments show the effectiveness and stability of the
approach. Our method employed SegTHOR and StructSeg 2019 datasets for evaluation, and
the experimental results show that our method achieved promising results in esophagus
segmentation. While most previous studies evaluate their approaches on a single data
set, we assess our method on two datasets containing the esophagus to demonstrate the
effectiveness of our model. The results prove that our method is suitable for esophagus
segmentation. Our esophagus segmentation results outperform others in both Dice and
HD scores in both SegTHOR and StructSeg 2019 datasets, which presents the stability of
our model. The development of the proposed method brings valuable information for
physicians and specialist doctors during radiotherapy treatment on the esophagus problem.
Although the primary purpose of our method is for esophagus segmentation, we believe
that our approach can extend to other organ segmentation with promising results.
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