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A B S T R A C T   

Bioactive peptides are short amino acid chains possessing biological activity and exerting physiological effects 
relevant to human health. Despite their therapeutic value, their identification remains a major problem, as it 
mainly relies on time-consuming in vitro tests. While bioinformatic tools for the identification of bioactive 
peptides are available, they are focused on specific functional classes and have not been systematically tested on 
realistic settings. To tackle this problem, bioactive peptide sequences and functions were here gathered from a 
variety of databases to generate a unified collection of bioactive peptides from microbial fermentation. This 
collection was organized into nine functional classes including some previously studied and some unexplored 
such as immunomodulatory, opioid and cardiovascular peptides. Upon assessing their sequence properties, four 
alternative encoding methods were tested in combination with a multitude of machine learning algorithms, from 
basic classifiers like logistic regression to advanced algorithms like BERT. Tests on a total of 171 models showed 
that, while some functions are intrinsically easier to detect, no single combination of classifiers and encoders 
worked universally well for all classes. For this reason, we unified all the best individual models for each class 
and generated CICERON (Classification of bIoaCtive pEptides fRom micrObial fermeNtation), a classification tool 
for the functional classification of peptides. State-of-the-art classifiers were found to underperform on our 
realistic benchmark dataset compared to the models included in CICERON. Altogether, our work provides a tool 
for real-world peptide classification and can serve as a benchmark for future model development.   

1. Introduction 

Bioactive peptides (BPs) are short chains of 2 to 50 amino acids with 
a molecular weight of less than 10 kDa exerting biological effects on 
unicellular and multicellular organisms [1,2]. BPs can have several 
beneficial functions and act as anti-inflammatory, antihypertensive and 
antidiabetic molecules [1]. Additionally, they can possess antibacterial, 
antiviral, and antifungal properties that are comparable to, or even 
surpass, those of antibiotics in terms of efficacy [3,4]. Their biological 
properties make them useful to complement or even replace conven
tional medication in the treatment of pathologies. At present, they are 
used in many applications to treat cardiovascular diseases, cancer, 
obesity, and neurodegenerative disorders [5–7]. Due to their importance 
in many therapeutic areas, they have received great recognition for their 
specialized and precise activities on target tissues and their limited 

bioavailability compared to traditional drugs [8]. Moreover, due to their 
structure, they can be easily modified to fine-tune their therapeutic 
potential. In the food industry, they have been studied as toxicity-free 
additives and can increase the nutritional value of both human and 
animal food products [9]. 

There are three main methods to obtain bioactive peptides: chemical 
and physical hydrolysis, microbial fermentation and enzymatic hydro
lysis [8]. In the former, proteins are placed in acidic or basic environ
ments at different temperatures or are subjected to microwave 
irradiation or ultrasonic treatment to break down amino acid chains 
[10]. In the latter, single or multiple peptidases from animal or plant 
sources are added to the substrate to obtain BPs [11,12]. In substrates 
fermented by bacteria and fungi, microbial peptidases hydrolyze amino 
acid chains [13,14]. After converting the protein matrix into smaller 
peptides, the sequence of the BPs can be determined through 
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chromatographic purification and mass spectrometry. BPs can derive 
from proteolysis where the primary sources are proteins derived from 
plants, animals, and even marine species [15]. The most extensively 
studied sources of precursor proteins are those used for human nutrition, 
including milk and other dairy products, soybean and green leafy veg
etables [16,17]. By-products derived from agrifood processes are being 
considered as an additional source of BPs; their use is of particular in
terest because extraction of high-value biomolecules can open up a new 
way for the recycling of waste products, such as animal skin and 
feathers, or fruit peel [18,19]. Subsequently, the functional activity of 
BPs must be verified and quantified. A series of steps, including purifi
cation, synthesis of the peptide and in vitro testing, must be performed. 
These procedures are time consuming and expensive, presenting sig
nificant challenges that can hinder progress in the drug discovery pro
cess. Therefore, there is a need for the development of more efficient and 
cost-effective methods for these processes. 

Given the importance of BPs, there have been several attempts to 
create in-silico approaches to perform a preliminary assignment of the 
potential functional properties and facilitate the subsequent discovery 
and testing process in vitro [20–25]. These methods rely on several 
databases where peptides from various experiments have been collected 
and classified according to the BPs functional classes. For instance, 
BIOPEP-UWM currently lists 62 different functional classes, which can 
include a single peptide up to hundreds of individual molecules [26]. 
Using the sequence properties of the peptides, such as amino acid 
composition, or the presence of sequence patterns of interest, peptides 
can be assigned to a functional class depending on the type of classifier 
used. Tools include similarity-based classification using available se
quences from databases [26,27] and prediction of physicochemical 
properties [28]. There have also been several attempts to use machine 
learning techniques to aid in the detection of BPs and their functional 
classification [20–25]. The proposed methods used Logistic Regression 
[29], Support Vector Machines [30] and Random Forests [31] to predict 
BPs’ functional role. In recent years, neural networks [23,32,33] and 
algorithms based on Natural Language Processing (NLP) have also been 
employed for the same purpose. These studies tend to focus solely on a 
single method for classification and in most cases they do not compare 
the performance of the model with other algorithms in settings repre
sentative of real use cases. While the intrinsic characteristics of bioactive 
peptides require the use of different techniques for classification, there 
exist no universally accepted benchmark settings for testing this type of 
problem. Moreover, in order to use these different classification 
methods, peptide sequences need to be transformed into appropriate 
signals that can be processed by the algorithm of choice. Various 
encoding techniques have been developed to take into account different 
properties [34,35]. For instance, amino acids can be encoded by 
assigning them a number based on the order of the 20 conventional 
amino acids, or by calculating their frequency in one sequence. Other 
methods use the physicochemical parameters or secondary structures of 
BPs. While these techniques have been proven to be useful in trans
ferring information from the sequence to the machine learning algo
rithm, they sometimes fail to convey important details, such as physical 
or chemical properties or relationships occurring among amino acids. 
This leads to predictors that are highly condition-specific and that 
cannot be generalized to problems other than the ones they were 
developed for [36]. 

The aim of this study was to bridge the existing gap between clas
sification method development and the practical applicability of 
developed tools. To this goal, we generated a set of classifiers for the 
identification of peptide functions, with a particular focus on BPs 
derived from microbial fermentation. There are several reasons why 
microbial fermentation is preferable to enzymatic or physicochemical 
methods of extraction. First and foremost, utilizing microbial species is 
far cheaper than traditional methods and does not require solvents or 
exogenous enzymes, making it a green and sustainable alternative. 
Moreover, the high number of species and the variability in the enzyme 

portfolio produce a higher number of bioactive peptides of different 
sizes. As far as the authors are aware, there are no studies focusing 
specifically on BPs from microbial sources with the exception of the 
formation of specific databases focused on fermented food peptides. For 
this reason, we propose CICERON, a tool to classify the functions of BPs 
specifically derived from microbial fermentation. 

Different machine learning and encoding methods were systemati
cally evaluated across nine functional classes, for a total of 171 distinct 
classifiers. This approach allowed us to highlight the differences in the 
techniques employed and their performance in evaluating the individual 
classes. The various encodings and machine learning techniques were 
tested to provide a benchmark for future studies focusing on peptides 
derived from microbial fermentation. For each considered functional 
class, the most accurate predictor has been selected to suit the intrinsic 
characteristics of each function. The final result, CICERON, consists of 
nine different binary classifiers capable of identifying the products of 
microbial fermentation-derived BPs. The database of microbial peptides 
used in this study and the best model for each functional class can be 
found at https://github.com/BizzoTL/CICERON/. 

2. Methods 

2.1. Dataset preparation 

Peptide data from BIOPEP-UWM [26], the Milk Bioactive Peptide 
Database [37], BioPepDB [38] and FermFoodDB [27] were downloaded 
and merged into a unified database. Data collected from these databases 
are represented only by food proteins derived from microbial fermen
tation. BPs that were present more than once due to overlaps in the 
database content were clustered together to remove redundancy. Pep
tides with identical sequences but different functional class assignments 
were removed to avoid introducing potential biases in classifier training. 
Additionally, sequences that had more than 90 % similarity were also 
clustered together if the corresponding peptide belonged to the same 
functional class, otherwise they were excluded from the analysis. Pep
tides longer than 100 amino acids, shorter than three and those con
taining unconventional amino acids or symbols were also removed. 

Functional classes were then homogenized by grouping together 
those with the same or overlapping biological functions, as follows. 
“Antihypertensive”, ”ACE-inhibitory” and “Renin-inhibitory” were set 
as “Antihypertensive” as angiotensin-converting enzymes and renin are 
the two main regulators of blood pressure in humans [39,40]. “DPP-IV 
inhibitors” and “alpha-glucosidase inhibitors” were grouped into 
“Antidiabetic” due to their inhibiting action against type 2 diabetes by 
reducing blood glucose [41,42]. “Antimicrobial”, “antifungal”, “anti
bacterial” and “anticancer” were all defined as “Antimicrobial”, incor
porating all the peptides with disruptive properties against either 
bacteria or fungi [43,44]. Anticancer peptides were also included ac
cording to their ability to kill bacterial cells [45,46]. “Antithrombotic”, 
and “CaMKII Inhibitor” were set as “Cardiovascular” as antithrombotic 
peptides have positive effects on vascular circulation [47], while CaMKII 
inhibitors prevent cardiomyopathies and arrhythmogenesis [48]. 
“Antiamnestic”, “anxiolytic-like”, “AChE inhibitors”, “PEP-inhibitory” 
and “neuropeptides” were grouped into “Neuropeptides”. While having 
effects on different neural pathways, these peptides all positively 
contribute to neurological processes [49–52]. 

Among all the considered functional classes, BPs associated with 
celiac disease are the only ones that determine a toxicity-inducing effect 
due to their allergenic properties; on the contrary, all the others have a 
positive effect on human health. Such a distinction is expected not to be 
linked to classification performance differences as only BP sequence is 
taken into consideration for the analysis and every functional class is 
treated independently of the others. Finally, classes with fewer than 100 
peptides were removed. 
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2.2. Functional class characterization 

Amino acid, dipeptide and tripeptide frequencies were calculated to 
infer possible relationships between functional classes and amino acid 
composition. MERCI [53] was used with default settings to discover 
sequence motifs unique for each class. Binomial tests with false dis
covery rate correction from the Scipy python package[54] were carried 
out to infer the statistical significance of the results, in order to ascertain 
whether the most frequent dipeptide or tripeptide sequences were more 
prevalent in one class compared to others. For each sequence of interest, 
the probability of finding any specific motif was calculated across all 
samples and compared to the distribution of the same motif within the 
class of interest. Amino acid, dipeptide, and tripeptide motifs that were 
statistically significant (adjusted p-value lower than 0.05) are reported 
in Supplementary Table 2. 

2.3. Encoding methods 

BPs were encoded into appropriate inputs for different machine- 
learning algorithms (Fig. 1). Four different encoding methods were 
devised for Support Vector Machine (SVM), Random Forest (RF), K- 
Nearest Neighbor (KNN) and Logistic Regression (LR) models. In the 
"sparse" encoding method, each peptide was transformed into a vector of 
length 100, representing the maximum possible sequence length in the 
database. Using a list of the 20 conventional amino acids and an addi
tional element representing empty positions, each amino acid in the 
sequence was encoded as a 21-element vector. The position of the amino 

acid in the list was assigned a value of "1," while the remaining 20 ele
ments were set to "0." Thus, for each position in the vector of length 100, 
there was a corresponding vector of length 21. The "dense" encoding 
method also utilized a vector of length 100. However, instead of one-hot 
encoding for each position, the indices from 1 to 20 representing the 20 
conventional amino acids were used, along with an element indicating 
an empty position. The third encoding method, “BLOMAP” [55], used 
the BLOSUM62 substitution matrix to encode each amino acid as the 
vector of the substitution probability with other amino acids. The 
additional character indicating a missing amino acid was given a − 100 
% probability of substitution with the other 20 amino acids. The last 
encoding method, "threemers", uses a sliding window of three amino 
acids to count all the three-mers in the peptide. These counts were then 
stored in a dictionary encompassing all possible combinations of the 20 
common amino acids. The Neural Network (NN) models used “sparse” 
and “threemers” encodings to map the input for the first convolutional 
layer. The encoding for the BERT protein learning model, ProtBERT 
[56], consisted in separating each sequence into single amino acids and 
treating them as a single element, as follows. The maximum length of the 
encoded vector was set to 102 elements. The first element in the vector 
was a special character that indicates the start of the peptide, followed 
by the tokenized amino acids, and ending with the special character 
indicating the end of the sequence. Any remaining positions were 
padded to ensure uniform vector lengths of 102. The entire peptide 
sequence is treated as an entire phrase in the language model. All the BPs 
were encoded with the methods described above and a t-SNE [57] 
representation was used to infer information on the sequence 

Fig. 1. Example of classification of a bioactive peptide sequence. 1) The sequence was first transformed into the appropriate vectors according to the encoding. 2) 
The encoded sequence was then used in the classification by different algorithms. 3) The best generated model for each class is selected to be compared against 
SOTA classifiers. 
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distribution of functional groups (Supplementary Figure 1). 

2.4. Classifiers 

For every functional prediction, the samples belonging to the specific 
functional group under investigation were labeled as "0", while the 
remaining samples were labeled as "1". In this classification scheme, the 
positive samples for each class are exclusively those that pertain to the 
specific function under consideration. Conversely, the negative samples 
comprise all samples from the remaining classes, excluding the one 
currently under examination. This strategic selection of the negative 
dataset aims to capture a representative distribution of microbial 
fermentation peptides, enabling the models to more effectively distin
guish the positive class from the rest of experimentally obtainable ex
amples. LR, SVM, RF and KNN were implemented using the Scikit-learn 
Python Package version 1.1.3 [58]. Convolutional NNs were imple
mented using the Keras framework version 2.11.0 [59]. The architecture 
consists of two convolutional layers, each followed by two max pooling 
operations. This was then followed by a dropout layer and a flattening 
operation. Two dense layers were added, with the last one being the 
output layer. A callback function was implemented to stop the model 
training if the loss increases, in order to avoid overfitting. 

2.5. Model evaluation and parameter optimization 

Each of the functional classes in the database was modeled using a 
binary classifier for each machine learning algorithm previously 
described. Due to the significant imbalance in the number of BPs present 
in the different classes, accuracy alone cannot adequately describe the 
performance of the models. The metrics used in the classification were 
therefore the Area Under the Receiver Operating Characteristic curve 
(AUROC) and Matthew’s Correlation Coefficient (MCC). For both 
traditional classifiers and NN the dataset was split into training, vali
dation, and test sets in a ratio of 70:20:10. The number of epochs was set 
to 50, and the batch size was set to 20. The encoding methods tested for 
the CNN models were "sparse" and "threemers". The protein learning 
model, based on the ProtBERT pre-trained model, was implemented 
using the HugginFace Transformers framework version 4.26.0 [60]. 
Each binary classifier was trained using an 80:20 training test split for 20 
epochs. After each epoch, the trained classifier was tested on the vali
dation set and the resulting metrics were recorded. Among all the ma
chine learning methods tested, the model with the best MCC obtained 
from the test set was selected as the representative for each class. 

The following parameters were selected in order to optimize the 
performance of the model: “C”, “penalty”, “solver” for LR; “criterion”, 
“max_features”, “n_estimators” for RF; “algorithm”, “leaf_size”, 
“n_neighbors”, “weights” for KNN; “C”, “class_weight”, “gamma”, 
“kernel” for SVM. A grid search was performed to select the best pa
rameters for each model, followed by cross-validation, using the Grid
SearchCV module from scikit-learn. The best parameters obtained for 
each model, based on the highest MCC value obtained, are described in 
Supplementary Table 1. For NN models, a genetic algorithm was 
developed using the DEAP Python library [61]. The weights of the 
positive and negative classes, learning rates, and kernel size were 
encoded as a vector and used as individuals in the genetic algorithm. The 
MCC obtained from the test set served as the fitness value for the in
dividuals. After each generation, the top 5 individuals with the highest 
fitness were selected as parents for producing offspring in the next 
generation. A randomly selected individual from the pool of the best 
individuals had a 25 % chance of changing each hyperparameter using a 
random value. The allowed intervals for the class weights ranged from 1 
to 10 (float values), for the learning rates it ranged from 0.0001 to 0.1, 
and for the kernel size it ranged from 5 to 500 (integer values). For the 
first 10 generations, the number of offspring was set to 15, while the 
remaining 5 individuals were randomly generated within the set of 
possible intervals, in order to explore more the search space and avoid 

local optima. After the 10th generation, all 20 individuals were gener
ated as offspring from the best individuals of the previous generations. 
In order to select the best hyperparameters for the singular classes, the 
genetic algorithm consisted of 20 generations of 20 individuals each for 
every functional class. The vector used to obtain the best neural network 
model for each class is described in Supplementary Table 1. The metrics 
obtained from the best individual of the 20 generations were further 
evaluated using five-fold cross-validation to obtain the final metric 
values. 

2.6. CICERON implementation 

CICERON consists of a Python script that takes one or more FASTA 
files as input and returns one or more functional predictions for every 
peptide reported in the file. The first step consists of checking that the 
input sequence is present in the database of bioactive peptides and if the 
match is identical then the associated function is reported in the final 
table. The second step consists of the search for motifs: if the sequence 
contains one of the class-specific motifs previously found using MERCI, 
the corresponding functional class is reported. In each step, if multiple 
associations are confirmed, they are all included. Finally, the best clas
sifier model for each functional class predicts the probability of the 
peptide belonging to that group or not. The results are collected in a tab- 
separated file for each file in input. 

3. Results and discussion 

3.1. Exploration of sequence characteristics across functional classes 

In our starting dataset, a total of 13,123 peptides divided into 56 
functional groups were obtained from different online databases. After 
filtering the sequences, and merging functionally overlapping or related 
classes, the final database consisted of 3990 BPs divided into nine 
different functional groups (Table 1). Such classes present substantial 
differences both in terms of number of peptides and sequence charac
teristics. The number of BPs per class ranges between 107 for “immu
nomodulatory” to 1386 for “antihypertensive”. The difference in the 
number and the length of BPs for each class reflects the difficulty in 
performing certain essays for the identification of functions in vitro and 
the higher interest in certain functions over others. It is also possible that 
some biological functions can be performed only by a very limited 
number of AA sequences, thus intrinsically limiting the number of BP in 
the class. Moreover, after the production of the digested substrates, 
peptides are filtered from other molecules based on the molecular 
weight, prioritizing shorter peptides over longer ones and thus reducing 
the number of BPs that are usually longer, such as antimicrobial BPs. 
While the average peptide length is 9.5 amino acids, the length distri
bution is quite different between functional classes. For antidiabetic and 
immunomodulatory classes the peptide length is shorter than the global 
average, while for antimicrobial the peptides are significantly longer 

Table 1 
Average sequence length, number of peptides and range of peptide length from 
the shortest to the longest sequence for each functional class.  

Peptide class Average peptide 
length 

Number of 
peptides 

Peptide length 
variation 

Antidiabetic 6.94 ± 3.16  263 3–21 
Antihypertensive 7.03 ± 4.11  1386 3–54 
Antimicrobial 22.19 ± 14.75  540 3–94 
Antioxidant 6.69 ± 5.18  1001 3–57 
Cardiovascular 11.58 ± 11.75  148 3–84 
Celiac disease 11.74 ± 4.39  240 4–34 
Immunomodulatory 7.56 ± 4.39  107 3–20 
Neuropeptides 9.67 ± 4.09  165 3–47 
Opioid 7.22 ± 5.93  140 3–31 
All classes 9.57 ± 3.88  3990 3–94  

E. Bizzotto et al.                                                                                                                                                                                                                                



Computational and Structural Biotechnology Journal 23 (2024) 2442–2452

2446

than the mean, more than double in comparison to other functional 
groups (Supplementary Figure 2). In the t-SNE representations [57] 
(Supplementary Figure 1), the different classes are not clustered 
together, with the exception of celiac disease peptides in “sparse” and 
“threemers” encodings, where the majority of these samples are clus
tered in a unique group. 

To compare the amino acid usage in the functional classes, single 
amino acid, dipeptide, and tripeptide frequencies were plotted (Fig. 2). 
The amino acid frequency plot in Fig. 2A reveals that some BP classes 
have distinct characteristics. For example, celiac disease BPs have the 
highest frequency of proline and glutamine, opioid peptides are 
enriched in tyrosine and glycine, while cardiovascular BPs have slightly 

higher frequencies of alanine and the highest frequency of the negatively 
charged amino acids aspartic acid and glutamic acid. 

Distinct patterns are also visible in the frequency of dipeptides 
(Fig. 2B), with high-frequency dipeptides mainly localized in celiac 
disease-associated and opioid BPs, immediately followed by antidia
betics. This trend is further confirmed by the tripeptide distribution 
(Fig. 2C), where celiac disease and opioid peptides have nine and five 
amino acid triplets, respectively, occurring at higher frequencies. Other 
highly frequent tripeptides belong to the neuropeptides class (FLR, LRF 
and NFL) and the immunomodulatory class (RKP). PIP and PGP are 
tripeptides that have a high frequency in multiple classes. A binomial 
test also identified that many other sequences were present with a higher 

Fig. 2. Amino acid composition of peptides for each functional class: A) Mean amino acid frequencies for single amino acids, B) Mean dipeptide frequencies of the 20 
most abundant dipeptides, C) Mean tripeptide frequencies for the 20 most abundant tripeptides. 
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frequency in certain classes, providing additional insights and potential 
patterns that can be exploited for classification (Supplementary 
Table 2). 

Further analysis using MERCI [53] revealed unique motifs for some 
functional classes. For celiac disease, the QPF triplet was found 67 times 
in the 240 samples and 9 other motifs were found in at least 10 % of the 
sequences. Glutamine and proline were prominent in these motifs, 
occurring at least once per motif. All the discovered motifs from MERCI 
are distinct for each class and are not found in samples that belong to a 
different function. Although unique motifs can be used to positively 
identify classes, they should not be solely relied upon for functional 
classification. For example, in the work of Tomer et al. [62], the QPQ 
triplet was described as highly conserved in celiac disease; however, in 
the database produced in this work, this motif was found in 21 
non-celiac disease peptides. Thus, the presence of a motif alone does not 
unequivocally determine the functional class of a peptide. Another 
possible option is that these 21 peptides have multiple functions, 
including also celiac toxicity. The distribution of amino acid frequencies, 
along with specific substructures, can provide insights and aid in the 
identification and classification of bioactive peptides, but they should 
not be the sole method of peptide functional classification. All the motifs 
found for each class are reported in Supplementary Table 2. 

3.2. Benchmark model evaluation across functional classes 

In order to establish a benchmark for the classification of BPs, 
combinations of several sequence encoding and machine learning 
techniques were tested across the nine functional classes (Fig. 1, see 
2.3). To address the class imbalance in the dataset, MCC was used as the 
evaluation metric for comparing the performance of different classifiers, 
as shown in Fig. 3. The obtained AUROC was also reported in Supple
mentary Figure 2, and the performance metrics obtained during training 
and testing are reported in Supplementary Table 1. 

The Support Vector Machine (SVM), Random Forest (RF), K-Nearest 
Neighbor (KNN) and Logistic Regression (LR) algorithms were assessed 
in conjunction with “sparse”, “dense”, “BLOMAP” and “threemers” 
encoding methods. In general, each classifier exhibited varying levels of 
performance when coupled with the different encoding methods and no 
single encoding method outperformed the others, as evidenced by the 
findings presented in Fig. 3. For example, the “threemers” encoding 
exhibited exceptional effectiveness in the classification of cardiovascu
lar, immunomodulatory, and antioxidant classes, likely due to the 
presence of specific tripeptides that augmented the classification power. 
On the other hand, the "dense" and "BLOMAP" encodings yielded the 
most favorable MCC values for neuropeptides and antihypertensives, 
respectively. Despite such a heterogeneity, the "sparse" and "threemers" 
encoding methods yielded the highest number of classifiers with MCC 
values exceeding 0.5, and consequently they were selected as the 
encoding methods for NN models to reduce the training time. Again, a 
highly variable performance was observed depending on the considered 
functional class. Overall, the variability in the optimal encoding method 
across all classes underscores the necessity for a robust benchmark 
encompassing a wide range of encoding strategies to ensure the 
comprehensive capture of relevant features in BPs classification. 

When comparing classification model types, while no single machine 
learning method consistently excelled across all classes, RF demon
strated superior models for five out of nine classes, indicating its effec
tiveness in discovering relevant features within the dataset. KNN, on the 
other hand, displayed less favorable overall performance, with the 
exception of the antidiabetic class. However, the performance for this 
class, the one only under 0.5 MCC, is the lowest among all classes, 
indicating that the considered encoding methods are not sufficient to 
capture enough information to correctly classify these peptides. 
Notably, LR emerged as the optimal classification method for the celiac 
disease class, achieving the highest MCC value among all the classifiers 
at 0.923 with the “threemers” encoding. This excellent performance can 

be attributed to the high fraction of distinctive motifs in the class, which 
facilitates effective separation based on the presence of specific tripep
tides, a characteristic more prevalent within this class (Fig. 2 and Sup
plementary Table 2). Along with celiac disease BPs, opioids and 
antimicrobials display the highest scores on average, with MCC values of 
0.783 and 0.724, respectively, achieved by NN in conjunction with the 
“sparse” feature encoding. This enhanced performance for antimicro
bials was likely due to the significantly longer peptide sequences in 
antimicrobial peptides, averaging over 22 amino acids, four times the 
overall average length of all BPs. For the opioid class, the high perfor
mance is likely due to the presence of specific motifs, as it is the second 
class with the most frequent tripeptide motifs, after celiac disease, as 
seen in Fig. 2. Moreover, we verified that the NLP-based ProtBERT 
model, pre-trained on a vast corpus of sequences, does not provide 
improved performances in the present tasks except for antimicrobial 
peptides, where ProtBERT exhibited a slight performance improvement 
over NN, achieving an MCC of 0.731. The length of antimicrobial pep
tides makes them more likely to be classified using the BERT-derived 
algorithm. However, it is worth noting that the use of the native Prot
BERT tokenizer as an encoding method for such a model might have 
limited its performance in certain cases. 

As for the classes with lower performance, several reasons can be 
attributed to the cases of erroneous classification. For the antidiabetic 
and immunomodulatory classes, the low number of available peptide 
sequences likely impacts the classification performance. Increasing the 
number of sequences in the positive class could help the detection of 
patterns associated with these functional classes. Antioxidant BPs are 
among the classes with the most sequences, but a consistent fraction is 
shorter than six AA residues. This might prevent the identification of 
meaningful patterns but rather act as a confounding factor for this class. 
Moreover, antioxidants generally constitute a functionally broad bio
logical class, and they could be divided into subclasses, for example 
taking into account their oxidative action, to carefully capture intra- 
class diversity. While these reasons could contribute to the low classi
fication performance for these classes, the implementation of different 
encoding or machine learning methods could partially compensate for 
the limitations in the data. 

Such a systematic evaluation unveiled a high heterogeneity across 
functional classes, both in terms of distinctive sequence characteristics 
and model power. No single classification algorithm or encoding method 
is capable of systematically outperforming others, highlighting the need 
for robust benchmark testing with multiple techniques to better eluci
date the differences in class-specific features. Ultimately, the best- 
performing encoding and classification method for each class was 
selected and subsequently incorporated into the CICERON tool. 

3.3. Comparison between CICERON and state-of-the-art classifiers 

To evaluate the practical effectiveness of current BP classification 
methods, CICERON was tested against state-of-the-art (SOTA) classifiers 
specific to the various peptide functional classes, which were selected 
upon careful literature inspection [62–67]. The main characteristics of 
SOTA models and their development dataset are summarized in Table 2. 
It is worth noting that certain functional classes, such as opioid, 
immunomodulatory, and cardiovascular peptides, could not be included 
in our comparative analysis due to the absence of available classifiers for 
these specific categories. Additionally, for the antihypertensive and 
neuropeptides classes, the tools described in relevant literature were not 
accessible for utilization. For the antimicrobial class, it is important to 
mention that the web server version of the tool allowed the submission 
of only one sequence at a time, while the source code version lacked 
comprehensive installation and usage guidance for the package. For the 
other three classes, namely antidiabetic, antioxidative, and celiac dis
ease, the database of peptides generated in this study was used to 
compare the performance of these purpose-specific tools against 
CICERON. 
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Fig. 3. Matthews Correlation Coefficient value on the test set for every single classifier and encoding method. Each plot describes the performance of a different 
machine learning method: A) Random Forest, B) Support Vector Machine, C)Logistic Regression, D) K-Nearest Neighbor, E) Neural Network, F) ProtBERT. 

E. Bizzotto et al.                                                                                                                                                                                                                                



Computational and Structural Biotechnology Journal 23 (2024) 2442–2452

2449

Classification results on the test set reveal that CICERON out
performed SOTA models across all the three comparable classes. Spe
cifically, CICERON exhibited MCC values that were consistently 
30–50 % higher than those of the benchmarked SOTA models. The 
notable difference observed in the antidiabetic classifier’s performance 
can be attributed to the relatively constrained dataset employed, char
acterized by a limited number of samples for both positive and negative 
classes, thereby restricting the model’s classification capabilities. In 
contrast, the lower MCC values observed for the celiac disease and 
antioxidative classes primarily stem from an increased number of false 
negatives in the predictions. It is worth mentioning that a portion of the 
positive samples for these classes was collected from the same databases 
utilized for data generation in this study. Consequently, it is the negative 
dataset that fundamentally contributes to the different performance of 
the tools. 

Most of the SOTA class-specific classifiers are trained on a large 
dataset of positive examples and a random dataset of negative examples. 
While this ratio favors the classification of the positive class, it does not 

take into account that in a real-life scenario of a microbial fermentation 
the peptide that is generated that does not belong to the positive class is 
not random but is more dependent on the substrate utilized. For 
example, if the substrate to be used is from a protein matrix derived from 
grains, the amount of celiac disease peptides would be much higher than 
the rest of the other classes. For this reason, in the case of microbial 
fermentation, the choice of the positive/negative dataset plays an 
important role in order to get closer to the real-life scenario, as the 
resulting products are not limited to only one functional class. CICERON 
adopts a distinct strategy since it considers peptides from other func
tional classes as negative datasets, thus enhancing its ability to discern 
both positive and negative sample characteristics. 

An additional distinction lies in the peptide length criteria, where 
each class has predefined minimum and maximum sequence length 
constraints (Table 2), thereby restricting the classification to peptides 
within those specific ranges for SOTA classifiers. If enzymatic proteol
ysis or physicochemical proteolysis are also compared, the length of the 
peptides obtained is different than in the case of microbial fermentation, 

Table 2 
Comparison of state-of-the-art classifier and CICERON for each functional class. Opioid, immunomodulatory and cardiovascular classifiers were included despite the 
absence of previously available classifiers, to provide a comprehensive overview of the information produced in this work. The characteristics that were considered are 
the following: model, encoding, type of tool and dataset used; MCC on test dataset, limitations of the tool.  

Functional Class Tools Model Encoding Type of 
tool 

Dataset MCC on 
test set 

Limitations Ref 

Antidiabetic AntiDMPpred Random 
Forest 

Multiple 
encodings were 
merged 

Web tool 236 antidiabetic and 236 
non-antidiabetic peptides 

0.133 Validated on peptides 
between 5 and 50 AA 

[63] 

CICERON KNN Sparse (One hot 
encoding) 

Python 
package 

263 antidiabetic and 
3727 non-antidiabetic 
peptides 

0.432 No limitations This 
work 

Celiac disease CDpred ExtraTree 
classifier 

Amino Acid 
Composition 
(AAC). 

Web tool 503 celiac disease and 
503 non-celiac disease 
peptides 

0.47 No limitations [62] 

CICERON Logistic 
Regression 

Threemers 
(Tripeptide 
composition) 

Python 
package 

240 celiac disease and 
3750 non-celiac disease 
peptides 

0.923 No limitations This 
work 

Antioxidant AnOxPP BiLSTM 
Neural 
Network 

22 Amino Acids 
Descriptors 
(AADs). 

Web tool 1060 antioxidant and 
1060 non-antioxidant 
peptides 

-0.005 Applicable on peptide 
sequences between 2 and 19 
AA 

[64] 

CICERON Random 
Forest 

Threemers 
(Tripeptide 
composition) 

Python 
package 

1001 antioxidant and 
2989 non-antioxidant 
peptides 

0.513 No limitations This 
work 

Neuropeptides Target-ensC_NP Ensemble of 
ETC, LGBM, 
SVM, XGB, 
and ADA 

One-hot 
encoding of 
single AA 

Python 
package 

2435 neuropeptides and 
2435 non-neuropeptides 

MCC not 
available 

Tool not available for use [65] 

CICERON Random 
Forest 

Dense (One hot 
encoding) 

Python 
package 

165 neuropeptides and 
3825 non-neuropeptides 

0.736 No limitations This 
work 

Antihypertensive Ensemble- 
AHTPpred 

Ensemble of 
RF, SVM and 
XGB 

431 numerical 
features 

Web tool 913 antihypertensive and 
913 non hypertensive 
peptides 

MCC not 
available 

Tool not available for use [67] 

CICERON Random 
Forest 

BLOMAP Python 
package 

1386 antihypertensive 
and 2604 non 
hypertensive peptides 

0.665 No limitations This 
work 

Antimicrobial Antimicrobial- 
peptide- 
generation 

SeqGAN and 
BERT 

BERT 
tokenization 

Web tool 
and 
Python 
package 

4134 AMPs and 4134 
non-AMPs 

MCC not 
available 

Validated on peptides 
between 11 and 30 AA; web 
tool only accepting one 
sequence at once; python 
package lacking a guide for 
utilization and requiring 
retraining the model 

[66] 

CICERON ProtBERT BERT 
tokenization 

Python 
package 

540 AMPs and 3450 non- 
AMPs 

0.731 No limitations This 
work 

Opioid CICERON Random 
Forest 

Threemers 
(Tripeptide 
composition) 

Python 
package 

140 opioid and 3858 non 
opioid peptides 

0.745 No limitations This 
work 

Cardiovascular CICERON Random 
Forest 

Threemers 
(Tripeptide 
composition) 

Python 
package 

156 cardiovascular and 
3842 non cardiovascular 
peptides 

0.919 No limitations This 
work 

Immunomodulatory CICERON Random 
Forest 

Threemers 
(Tripeptide 
composition) 

Python 
package 

107 immunomodulatory 
and 3891 non 
immunomodulatory 
peptides 

0.586 No limitations This 
work  
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where only certain microbial enzymes are present and thus the digested 
proteins produce longer peptides. This highlights the need to have 
separate datasets for each proposed proteolysis method in order to 
obtain more accurate predictions similar to a real experiment. Upon a 
comprehensive review of all SOTA classifiers, it emerges there is not a 
common encoding or classification methodology shared among these 
models. If the objective is to obtain a specific class of peptide, i.e. 
antimicrobial peptides are needed from fermentation, a class-specific 
classifier can in principle be more suited to the case. However, it 
cannot be excluded that a function-specific classifier is not able to see if 
the peptide has more than one function. In one extreme case, if the 
peptide is antihypertensive but at the same time it is associated with 
celiac disease, it could cause problems for a patient suffering from the 
disease. A preliminary screening with CICERON could help identify 
these cases very early in the screening process, eliminating the need for 
costly and time-consuming tests. 

4. Conclusions 

To the best of the authors’ knowledge, this is the first systematic 
benchmark specifically focusing on the functional classification of BPs 
by utilizing a comprehensive dataset of peptides derived from food 
fermentation. In the context of generating bioactive molecules from 
fermentation, CICERON can aid in the discovery of products in the final 
phases of the analysis, reducing the need for costly and time consuming 
in vitro experiments for the characterization of the functional role of the 
peptides generated. In this study, we successfully established new ma
chine learning classifiers for previously unaddressed functional classes, 
including opioids, cardiovascular peptides, and immunomodulatory 
peptides. Furthermore, classifiers for antidiabetic, celiac disease and 
antioxidative peptides demonstrated superior performance on a test 
close to a real-case scenario compared to previously developed models. 
Nevertheless, certain classes, such as antidiabetic and immunomodula
tory peptides, still present challenges in terms of classification perfor
mance, highlighting the importance of expanding the number of 
sequences in these groups. Our comprehensive analysis, encompassing 
diverse encoding techniques and classification methodologies, unveiled 
the unique requirements of each functional class for accurate functional 
identification. Obviously, there is no one-size-fits-all solution for all 
classes. In general, combining a multitude of encoding and machine 
learning techniques within the same task could increase classification 
performance, while a robust feature selection could help to obtain more 
powerful classifiers by removing unnecessary features [68]. The most 
relevant ones can then be analyzed to determine whether they 
contribute positively or negatively to the classification [68]. Moreover, 
the examination of amino acid composition revealed distinctive pref
erences within certain groups, enabling discrimination based on specific 
sequence motifs. While these attributes do not exclusively determine 
functional group affiliation, they can significantly enhance the classifi
cation efficacy of the classifiers. From the present study, it clearly 
emerges that conventional methods such as LR can be effectively 
employed in classification tasks and that more advanced algorithms 
such as NN do not necessarily provide better results. Another important 
aspect resulting from the comparison of the models generated in this 
study with SOTA classifiers is the fact that CICERON is a standalone 
application comprising nine different classifiers targeting as many 
functional classes, which do not require separate installation, providing 
a simplified framework for multi-class analysis. In addition, there are no 
limitations in terms of minimum or maximum peptide length and total 
number of peptides that can be analyzed at once. In conclusion, while 
CICERON provides valuable insights into the classification of peptide 
functions, the implications arising from the aforementioned limitations, 
particularly in certain functional classes, warrant careful consideration. 
However, in the context of a microbial fermentation experiment, where 
the goal is to characterize the full spectrum of peptides present within 
the substrate, a versatile tool like CICERON proves to be more efficient 

than SOTA classifiers in identifying multiple functions associated with 
one single peptide, making it a valuable tool for exploratory in
vestigations into peptide functions within complex biological systems. 
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Acetylcholinesterase inhibitors: pharmacology and toxicology. Curr 
Neuropharmacol 2013;11:315–35. https://doi.org/10.2174/ 
1570159×11311030006. 

[50] Ganinа KK, Duginа YL, Zhavbert ES, Ertuzun IA, Epstein OI, Mukhin VN, et al. 
Antiamnesic effects divaza and its component model β-amyloid amnesia]. Zh 
Nevrol Psikhiatr Im S S Korsakova 2016;116:69–74. https://doi.org/10.17116/ 
jnevro20161169169-74. 

[51] Mizushige T. Neuromodulatory peptides: orally active anxiolytic-like and 
antidepressant-like peptides derived from dietary plant proteins. Peptides 2021; 
142:170569. https://doi.org/10.1016/j.peptides.2021.170569. 

[52] Hsieh C-H, Wang T-Y, Hung C-C, Hsieh Y-L, Hsu K-C. Isolation of prolyl 
endopeptidase inhibitory peptides from a sodium caseinate hydrolysate. Food 
Funct 2016;7:565–73. https://doi.org/10.1039/C5FO01262G. 

[53] Vens C, Rosso M-N, Danchin EGJ. Identifying discriminative classification-based 
motifs in biological sequences. Bioinformatics 2011;27:1231–8. https://doi.org/ 
10.1093/bioinformatics/btr110. 

[54] Virtanen P, Gommers R, Oliphant TE, Haberland M, Reddy T, Cournapeau D, et al. 
SciPy 1.0: fundamental algorithms for scientific computing in Python. Nat Methods 
2020;17:261–72. https://doi.org/10.1038/s41592-019-0686-2. 

[55] Maetschke S, Towsey M, Boden M. BLOMAP: an encoding of amino acids which 
improves signal peptide cleavage site prediction. In: Chen Y, Wong L, editors. Proc. 
3rd Asia-Pac. Bioinforma. Conf. Adv. Bioinforma. Comput. Biol. Singapore: 
Imperial College Press; 2005. p. 141–50. 

[56] Brandes N, Ofer D, Peleg Y, Rappoport N, Linial M. ProteinBERT: a universal deep- 
learning model of protein sequence and function. Bioinformatics 2022;38: 
2102–10. https://doi.org/10.1093/bioinformatics/btac020. 

[57] Maaten L, van der, Hinton G. Visualizing data using t-SNE. J Mach Learn Res 2008; 
9:2579–605. 

[58] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit- 
learn: machine learning in python. J Mach Learn Res 2011;12:2825–30. 

[59] Chollet, F. & others. Keras: Deep Learning for humans 2015. 

E. Bizzotto et al.                                                                                                                                                                                                                                

https://doi.org/10.1186/s43014-022-00123-y
https://doi.org/10.1186/s43014-022-00123-y
https://doi.org/10.3390/ijms23031445
http://refhub.elsevier.com/S2001-0370(24)00186-7/sbref9
http://refhub.elsevier.com/S2001-0370(24)00186-7/sbref9
http://refhub.elsevier.com/S2001-0370(24)00186-7/sbref9
https://doi.org/10.1016/j.tifs.2015.07.012
https://doi.org/10.1016/j.tifs.2015.07.012
https://doi.org/10.1016/j.fochms.2021.100047
https://doi.org/10.1016/j.fochms.2021.100047
https://doi.org/10.1016/j.jff.2014.05.003
https://doi.org/10.1016/j.jff.2014.05.003
https://doi.org/10.1016/B978-0-323-90590-9.00015-8
https://doi.org/10.1016/B978-0-323-90590-9.00015-8
http://refhub.elsevier.com/S2001-0370(24)00186-7/sbref14
http://refhub.elsevier.com/S2001-0370(24)00186-7/sbref14
http://refhub.elsevier.com/S2001-0370(24)00186-7/sbref14
https://doi.org/10.3390/md13074006
https://doi.org/10.3390/nu10111738
https://doi.org/10.3390/nu10111738
https://doi.org/10.3390/ijms24032253
https://doi.org/10.1016/j.jff.2011.09.001
https://doi.org/10.1016/j.jff.2011.09.001
https://doi.org/10.1093/bib/bbad135
https://doi.org/10.1093/bib/bbad135
https://doi.org/10.1093/bib/bbac606
https://doi.org/10.1093/bib/bbab422
https://doi.org/10.1093/bib/bbab422
https://doi.org/10.1093/bib/bbab065
https://doi.org/10.1093/bib/bbab065
https://doi.org/10.1093/bib/bbab414
https://doi.org/10.1093/bib/bbab200
https://doi.org/10.1093/bib/bbab200
https://doi.org/10.3390/ijms20235978
https://doi.org/10.3390/ijms20235978
https://doi.org/10.1016/j.heliyon.2021.e06668
https://doi.org/10.1021/acs.jcim.0c01115
https://doi.org/10.1021/acs.jcim.0c01115
http://refhub.elsevier.com/S2001-0370(24)00186-7/sbref28
http://refhub.elsevier.com/S2001-0370(24)00186-7/sbref28
http://refhub.elsevier.com/S2001-0370(24)00186-7/sbref28
http://refhub.elsevier.com/S2001-0370(24)00186-7/sbref29
http://refhub.elsevier.com/S2001-0370(24)00186-7/sbref29
https://doi.org/10.1021/acs.jcim.1c00181
https://doi.org/10.1021/acs.jcim.1c00181
https://doi.org/10.1038/s41467-021-25772-4
https://doi.org/10.1038/s41467-021-25772-4
https://doi.org/10.1093/nargab/lqab039
https://doi.org/10.1186/s13040-019-0196-x
https://doi.org/10.1186/s13040-019-0196-x
https://doi.org/10.1093/bib/bbac343
https://doi.org/10.1016/j.foodchem.2017.04.056
https://doi.org/10.1016/j.foodchem.2017.04.056
https://doi.org/10.1080/09637486.2018.1446916
https://doi.org/10.1007/s11130-023-01085-3
https://doi.org/10.1111/1541-4337.12051
https://doi.org/10.1111/1541-4337.12051
https://doi.org/10.1007/978-3-319-10226-9_7
https://doi.org/10.1007/978-3-319-10226-9_7
https://doi.org/10.2337/diacare.28.1.154
https://doi.org/10.3389/fcimb.2020.00105
https://doi.org/10.3389/fcimb.2020.00105
https://doi.org/10.1007/s10989-019-09946-9
https://doi.org/10.3390/polym16060728
https://doi.org/10.1080/10408398.2018.1524363
https://doi.org/10.1146/annurev-pharmtox-051421-111814
https://doi.org/10.2174/1570159&times;11311030006
https://doi.org/10.2174/1570159&times;11311030006
https://doi.org/10.17116/jnevro20161169169-74
https://doi.org/10.17116/jnevro20161169169-74
https://doi.org/10.1016/j.peptides.2021.170569
https://doi.org/10.1039/C5FO01262G
https://doi.org/10.1093/bioinformatics/btr110
https://doi.org/10.1093/bioinformatics/btr110
https://doi.org/10.1038/s41592-019-0686-2
http://refhub.elsevier.com/S2001-0370(24)00186-7/sbref52
http://refhub.elsevier.com/S2001-0370(24)00186-7/sbref52
http://refhub.elsevier.com/S2001-0370(24)00186-7/sbref52
http://refhub.elsevier.com/S2001-0370(24)00186-7/sbref52
https://doi.org/10.1093/bioinformatics/btac020
http://refhub.elsevier.com/S2001-0370(24)00186-7/sbref54
http://refhub.elsevier.com/S2001-0370(24)00186-7/sbref54
http://refhub.elsevier.com/S2001-0370(24)00186-7/sbref55
http://refhub.elsevier.com/S2001-0370(24)00186-7/sbref55


Computational and Structural Biotechnology Journal 23 (2024) 2442–2452

2452

[60] Wolf T., Debut L., Sanh V., Chaumond J., Delangue C., Moi A., et al. HuggingFace’s 
Transformers: State-of-the-art Natural Language Processing 2020. https://doi.org/ 
10.48550/arXiv.1910.03771. 

[61] De Rainville F.-M., Fortin F.-A., Gardner M.-A., Parizeau M., Gagné C. DEAP: a 
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