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ABSTRACT

Expression of long interspersed element-1 (L1) is up-
regulated in many human malignancies. L1 can in-
troduce genomic instability via insertional mutagen-
esis and DNA double-strand breaks, both of which
may promote cancer. Light exposure at night, a re-
cently recognized carcinogen, is associated with an
increased risk of cancer in shift workers. We report
that melatonin receptor 1 inhibits mobilization of L1
in cultured cells through downregulation of L1 mRNA
and ORF1 protein. The addition of melatonin receptor
antagonists abolishes the MT1 effect on retrotrans-
position in a dose-dependent manner. Furthermore,
melatonin-rich, but not melatonin-poor, human blood
collected at different times during the circadian cycle
suppresses endogenous L1 mRNA during in situ per-
fusion of tissue-isolated xenografts of human cancer.
Supplementation of human blood with exogenous
melatonin or melatonin receptor antagonist during
the in situ perfusion establishes a receptor-mediated
action of melatonin on L1 expression. Combined tis-
sue culture and in vivo data support that environmen-
tal light exposure of the host regulates expression
of L1 elements in tumors. Our data imply that light-
induced suppression of melatonin production in shift
workers may increase L1-induced genomic instabil-
ity in their genomes and suggest a possible connec-
tion between L1 activity and increased incidence of
cancer associated with circadian disruption.

INTRODUCTION

Long interspersed element-1 (L1) is a non-LTR (long termi-
nal repeat) family of retroelements distributed throughout
mammalian genomes (1,2). Both the germline and somatic
human tissues support endogenous L1 expression (3) and de
novo L1 retrotransposition (4,5). L1 mobilization requires
transcription of the full-length L1 mRNA that can generate
functional ORF1 and ORF2 proteins (ORF1p and ORF2p)
(6) followed by the formation of an RNP (ribonucleopro-
tein) complex (7). As a result, a reduction in any one of the
three components (ORF1p, ORF2p or mRNA) is expected
to downregulate L1 mobilization.

L1 ORF1p forms trimers that directly bind to L1 mRNA
(8–10) and has a nucleic acid chaperone activity that is re-
quired for L1 integration (11). L1 ORF2p encodes three
functional domains: endonuclease (EN), reverse transcrip-
tase (RT) and a cysteine-rich domain (Cys) encoding a pu-
tative RNA-binding motif (6,12–15). Retrotransposition is
initiated by the EN domain nicking the host DNA. The RT
domain completes first strand cDNA synthesis, and cellu-
lar factors are likely involved in aiding the completion of
L1 integration [reviewed in (16)]. The ORF2 EN domain
is also responsible for generation of DNA double-strand
breaks (DSBs) that are more abundant than L1 retrotrans-
position events (Figure 1A) (17). Additionally, due to their
high genomic copy number, L1 (500 000 copies) and Alu
(over 1 000 000 copies) are involved in non-allelic homeolo-
gous recombination, resulting in the loss or rearrangement
of genetic information [reviewed in (18)].

Because L1 also provides the retrotransposition machin-
ery for the parasitic Alu and SVA elements, it is the source
of the entire mutagenic burden on the human genome im-
posed by active retrotransposons (6,19,20). All types of L1-
induced genomic instability (de novo insertions, DSBs and
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Figure 1. Melatonin receptor 1 inhibits L1 and Alu retrotransposition in cultured cancer cells. (A) Schematic of L1 and its damage. Pro is an internal
polymerase II promoter present within the L1 5′UTR; ORF1 and ORF2 are L1-encoded proteins. AAA is a polyA tail. L1 expression produces L1 mRNA
and proteins that can cause genomic instability through retrotransposition of L1, Alu and SVA (SINE-VNTR-Alu Element), as well as DNA DSBs, which
depend on the endonuclease function of the L1 ORF2p. Accumulation of repetitive elements in the human genome to high copy number also leads to
non-allelic recombination. (B) L1 and Alu retrotransposition (L1 retro and Alu retro) in HeLa cells transiently transfected with either control or MT1
expression plasmids (for experimental design, see Supplementary Figure S1). (C) L1 toxicity in the presence or absence of MT1 expression in HeLa cells.
The toxicity assay is a colony formation assay using a neomycin expression vector cotransfected with an untagged L1 and control or MT1 expression
plasmids to test the effect of L1 overexpression or any synergistic effect of L1 and MT1 overexpression on cell viability and colony formation (also see
Supplementary Figure S2). (D) Quantitation of the effect of MT1 overexpression on L1 and Alu retrotransposition and L1 toxicity in HeLa cells. L1
and Alu retrotransposition potential (L1 or Alu) in the absence (gray bars) or presence (black bars) of MT1 overexpression. The same colors are used to
represent toxicity from L1 and MT1. (E) Quantitation of the effect of MT1 overexpression on L1 retrotransposition and toxicity in PC3 cells. Error bars
are standard deviation; asterisks indicate statistically significant differences by the t-test.
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non-allelic recombination, Figure 1A) can contribute to
cancer origin or progression (5,16,21–24). L1 expression is
upregulated in the majority of human cancers relative to
normal tissues (3,7), often due to the loss of cellular func-
tions known to suppress L1 expression (25,26). Recent liter-
ature strongly supports that L1 mutagenesis is a likely con-
tributing factor in tumor origin and progression (5,22,23).

Numerous cellular pathways have been shown to con-
trol almost every step of the L1 replication cycle (18).
These pathways range from transcription factors and RNA
processing to DNA repair (27–31). However, very little is
known about regulation of L1 expression in vivo because
most L1 biology is studied in cultured cells lacking multiple
regulatory mechanisms that are unique to living organisms.
One such regulator is the circadian system that synchronizes
the timing of biological processes ranging from metabolism
to DNA damage response (32,33). While circadian oscilla-
tion is autonomous, it can be entrained to the periodicity
of environmental light and darkness over a 24-h cycle. This
entrainment translates into the synchronization of biologi-
cal processes by the receptor-mediated action of nocturnal
melatonin production. There are two major melatonin re-
ceptors in mammals, MT1 and MT2. The G-coupled mela-
tonin receptor 1 (MT1) is widely expressed both within and
outside the central nervous system (34,35). The MT1 recep-
tor expression is increased to varying degrees in many can-
cers of epithelial origin, including breast, pancreatic and
gallbladder cancers (36–39). Similar to melatonin produc-
tion, MT1 receptor expression exhibits circadian variation
(34,40). The pattern of melatonin production during the
dark phase of the circadian cycle is the same in both noc-
turnal and diurnal animals (41), making rodents an effective
model for studying circadian regulation relevant to human
health. Light exposure at night suppresses melatonin pro-
duction in humans (42) and rodents and is associated with
an increased incidence of breast, prostate and other cancers
in shift workers (43,44) and animal models (45,46). In 2007,
the World Health Organization recognized nocturnal light
exposure that entails circadian disruption as a probable car-
cinogen (47).

While the increased risk of cancer in shift workers is
recognized, the molecular basis of this phenomenon is
not known. We discovered that endogenous L1 expression
is regulated by melatonin in a receptor-mediated manner
in vivo. Combined with tissue culture data demonstrating
MT1-induced suppression of L1 and Alu retrotransposi-
tion, this observation suggests that activation of L1-induced
damage in the genomes of shift workers could be one of the
causes underlying increased risk of cancer in this subpopu-
lation.

MATERIALS AND METHODS

Cells

HeLa, PC3, immortalized human fibroblast (GM04429,
Coriell) and NIH 3T3 cells were cultured in modified Ea-
gle’s Medium (MEM) with 10% fetal bovine serum (FBS),
100-mM sodium pyruvate, 1X non-essential amino acids
and 200-mM L-glutamine and Dulbecco’s modified Eagle’s
medium with 10% FBS, respectively.

Plasmids

Plasmids CMV5′UTR L1Neo, �CMVL1Neo, and un-
tagged CMV5′UTR L1 are from (6), untagged CMV5′UTR
L1 ORF1stop is from (48), CMV�5′UTR L1Blast is
from (49), codon optimized human L1 (co hL1) is from
(50) codon-optimized human ORF1 expression plasmid
(ORF1) is from (51), AluNeo is from (19,50), pCDNA,
CMV Fluc, (Promega), 5′UTR Fluc are from (52), MT1 is
from (53), Untagged �CMV L1 was generated by NotI and
SalI digest of JM101 L1.3, followed by gel extraction and
purification of the L1-containing fragment. The purified
L1-containing sequence was cloned into pBluescriptII (SK)
digested with NotI and SalI. ORF1 Ser codon-optimized
sequence was synthesized to contain serine to alanine mu-
tations at amino acid positions 12, 18, 25, 26, 27, 33, 50,
53, 106, 109, 119, 166, 208, 209, 281 and 290 of ORF1p.
ORF1 Ub codon-optimized sequence was synthesized to
contain lysine to alanine mutations at positions 223, 227,
229, 237, 243, 245, 272, 274, 285, 295, 300, 314, 318 and 337
of ORF1p; in addition, an EcoRV site at amino acid 179 was
introduced without changing the amino acid composition.
The synthesized sequences were cloned into pBudCE4.1 ex-
pression plasmid (Invitrogen) using HindIII and BamHI re-
striction sites.

Prediction of putative phosphorylation and ubiquitination
sites

NetPhos 2 and CKSAAP prediction programs were used to
identify putative phosphorylation and ubiquitination sites
in the ORF1p sequence (54,55).

Retrotransposition assay

HeLa cells (500 000) were transfected 18–24 h after seed-
ing by lipofectamine/Plus reagent (Invitrogen) with 0.4 �g
of Neo-tagged L1 expression vector (6) and 0.1 �g of
pCDNA or MT1 expression vectors. To control for MT1-
associated toxicity, HeLa cells were transfected with 0.4 �g
of pCDNA, 0.1 �g of pCDNA or MT1 expression vectors,
and 0.8 �g of pIRES vector.

PC3 cells (1 × 106) were transfected by
lipofectamine/Plus reagent with 0.3 �g of Neo-tagged
L1 expression vector and 0.06 �g of pCDNA or MT1
expression vectors 18–24 h after plating. For toxicity of L1
activity, melatonin receptor antagonist, melatonin receptor
or their combination, L1 notag, or MT1 expression plas-
mids were used with 0.8 �g of pIRES (has Neo-resistance).
Selection with 0.4 (HeLa) or 0.22 (PC3) mg/ml G418
was initiated 24 h after transfection and maintained for
2–3 weeks. Cells were treated with 10−7, 10−6, 10−5 M of
melatonin receptor antagonist S20928 (a generous gift from
the Institute Recherches de Servier, Cerbevoie, France) at
the time of transfection cocktail removal, at the time of
G418 addition 48 h after transfection and the following
day.

Western blot analysis

HeLa, polymerase chain reaction (PCR), NIH 3T3 and im-
mortalized human fibroblasts were seeded and transfected
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with L1 and MT1 expression plasmids as described for
RNA analysis below. Total protein lysates were harvested 24
h after transfection. For analysis of MT1 effect on wild-type
and mutant ORF1p, cells were transfected with 3 and 0.5 �g
of ORF1 and MT1 expression plasmids, respectively. West-
ern blot analysis was preformed as previously described
(51). Briefly, cells were harvested using Triton sodium do-
decyl sulfate lysis buffer, TLB SDS (50-mM Tris, 150-
mM NaCl, 10-mM ethylenediaminetetraacetic acid, 0.5%
sodium dodecyl sulfate, Triton X 0.5%, pH = 7.2) supple-
mented with Halt Protease inhibitors and phosphatase in-
hibitors 2 and 3 (Sigma), for total protein harvest. Samples
were sonicated three times for 10 s at 12 Watt RMS using
3-mm wide Microson ultrasonic cell disruptor XL2000 (Mi-
croson). Total lysates (10–40 �g) were analyzed by western
blotting as described (51). Briefly, membranes were blocked
for 1 h in 5% milk in phosphate buffered saline–Tween
and incubated with hORF1 (custom polyclonal rabbit anti-
bodies, epitope: TGNSKTQSASPPK) or hORF1 201 (cus-
tom polyclonal rabbit antibodies, epitope: QRTPQRYSSR-
RATP).

Animals and tumor generation

Adult inbred male nude rats (Hsd:RH-Foxn1rnu) were im-
planted with PC3 human prostate cancer xenografts in a
tissue-isolated manner as previously described (56,57).

Tumor perfusion

PC3-derived tumors established in nude male rats
(Hsd:RH-Foxn1rnu) were perfused with human blood
as previously described (58). Human blood was collected
from healthy adult male donors and preserved for perfu-
sions as previously described (58). Animal handling and
treatment was done according to the approved Institutional
Animal Care and Use Committee (IACUC) protocol.

RNA analysis

RT-PCR. Total RNA was extracted from tumor sam-
ples or cultured cells by Trizol (Invitrogen) and polyA se-
lected as previously described (30). RNA was quantified
and cDNA was synthesized using the Reverse Transcrip-
tion System kit (Promega) according to manufacturer’s pro-
tocol. For all of the samples in each experimental group,
equal amounts of RNA were used in the reverse transcrip-
tion reaction (Group 1 = 154 ng RNA, Group 2 = 169
ng RNA, Group 3 = 157 ng RNA). Reverse transcription
was primed with random primers. As a negative control,
additional reactions were performed without the RT. Poly-
merase chain reaction (PCR) was performed using 900 ng
of cDNA from each reaction using GoTaq Hot Start mas-
termix (Promega) and 23 thermal cycles of 94◦C for 30 s,
57◦C for 30 s and 72◦C for 10 s. The same cycling condi-
tions were used for primer validation using DNA from rat
or human cells. The 5′UTR region of human L1 was ampli-
fied using primers (5′-GCCAAGATGGCCGAATAGG-3′)
and (5′-TGGCACTCCCTAGTGAGATGAA-3′) and a re-
gion spanning exon 3 and 4 of �-actin was amplified us-
ing primers (5′-ACCTTCTACAATGAGCTGCG-3′) and

(5′-CCTGGATAGCAACGTACATGG-3′). Amplification
products were fractionated by electrophoresis through 1.5%
agarose and digital images recorded (Versa-Doc system;
Bio-Rad).

Northern blot analysis was performed as previously de-
scribed (28). In short, HeLa, PC3 and NIH 3T3 cells seeded
at 2 × 106 per T75 flask, were cotransfected 18–20 h after
plating with 6 �g of the L1 expression plasmid and 0.5 �g
of empty or MT1 expression plasmid (59), 12 �l of Plus
and 24 �l of lipofectamine reagents (Invitrogen). Cells were
harvested for total RNA extraction with Trizol (Invitro-
gen). Following polyA selection, RNA was fractionated by
agarose–formaldehyde gel electrophoresis, transferred onto
nitrocellulose membrane, cross-linked and analyzed with
a strand-specific RNA probe complementary to the first
100 bp of the sense strand of L1 mRNA. To determine L1
mRNA stability, HeLa and NIH 3T3 cells transiently trans-
fected with an L1 expression plasmid were treated 24 h post-
transfection with 75 �g/ml of Actinomycin D for 2, 4 and
8 h. Collected RNA was analyzed by northern blot with a
strand-specific RNA probe complementary to the first 100
bp of the L1 5′UTR as described (28).

Luciferase assay

HeLa cells (100 000) per well (six-well plate) were trans-
fected 18–24 h after plating with 0.2 �g of luciferase ex-
pression plasmids [luciferase expression is driven by either
CMV (pGL3 pCMV, Promega) or L1 5′UTR promoters
(52)], 0.02 �g of the MT1 expression plasmid and 0.02 �l
of the pBIND plasmid (Mammalian two-hybrid system,
Promega), which expresses Renilla luciferase. pGL3-basic
(Promega) was used as a negative control. DNA was trans-
fected using 1 �l of Plus and 1.5 �l of lipofectamine reagents
(Invitrogen). The transfection cocktail was replaced with
regular media 3 h after transfection. Cells were harvested
for luciferase activity analysis 48 h after transfection. Pro-
tein extraction was performed according to the manufac-
turer’s protocol (Promega). Protein concentrations were de-
termined using standard BSA approach. The same amount
of protein for each sample was analyzed using Promega
dual-luciferase detection system.

RESULTS

Transient MT1 expression suppresses L1 and L1-driven Alu
retrotransposition in cultured cells

We utilized L1 and L1-driven Alu retrotransposition assays
in cultured cells (6,19) to investigate whether L1 activity
may be regulated by the host’s circadian system (Supple-
mentary Figure S1). Specifically, we tested the effect of MT1
overexpression on L1 and Alu mobilization in two cell lines,
HeLa and PC3, which represent cancers of an increased
incidence in shift workers (60–62). Melatonin exhibits its
anticancer effect primarily through its MT1 receptor be-
cause it is expressed in the central nervous system and most
if not all peripheral tissues (34,35,40). MT1 receptor ex-
pression is also altered in many human cancers (36–39,63–
65) and it is reported to associate with lower breast tumor
stage and smaller tumor size (66). We performed transient
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transfections of a tagged-L1 expression plasmid [L1Neo,
(6)] with either an empty plasmid or a construct express-
ing human MT1 receptor in HeLa cells (Figure 1B control
and MT1, and Figure 1D gray and black bars, respectively).
Transient expression of MT1 results in significant reduction
in neomycin-resistant colonies (NeoR), which represent de
novo L1 retrotransposition events in HeLa (Figure 1B and
D) and PC3 cells (Figure 1E). Similarly, MT1 overexpres-
sion also suppresses L1-driven de novo Alu retrotranspo-
sition in cultured cells (Figure 1B and D). The activation
of MT1 receptor under this experimental condition occurs
through receptor overexpression and melatonin present in
the serum.

The retrotransposition assay relies on colony formation
that depends on cellular ability to support retrotransposi-
tion and colony growth. Any adverse effect of MT1 or L1
overexpression (17,67) on cell viability may cause a reduc-
tion in NeoR colonies. To test the specificity of MT1’s ef-
fect on retrotransposition, we made use of a toxicity assay
(Supplementary Figure S2) (17). The retrotransposition as-
say produces NeoR colonies only if a de novo L1 or Alu in-
tegration takes place (6,19). In contrast, the NeoR colony
formation in the toxicity assay relies on random integra-
tion of a neomycin expression plasmid (pNeo, Supplemen-
tary Figure S2) into the cellular genome. Any difference in
colony numbers between cells cotransfected with pNeo and
untagged L1, MT1, or both expression vectors would indi-
cate toxicity associated with their expression. No negative
effect of MT1 overexpression on colony formation in HeLa
or PC3 cells was detected supporting that MT1 expression
specifically affects retrotransposition, (Figure 1C, toxicity,
and Figure 1D and E toxicity, black bars).

Melatonin receptor antagonists reverse MT1 suppression of
L1 and Alu mobilization in a dose-dependent manner

To confirm the specificity of MT1 effect on L1 and Alu
retrotransposition, we used melatonin receptor antagonists
(S20928 or luzindole). Treatment with increasing doses of
MT1 antagonists was performed once a day for the first
3 days of the retrotransposition assay starting at the time
of transfection cocktail removal (Figure 2A). This experi-
mental scheme was used because prolonged treatments with
melatonin receptor antagonists are toxic and the bulk of
L1 retrotransposition occurs during the first 2–3 days af-
ter transfection (50). Treatments with increasing doses of
melatonin receptor antagonist S20928 have no effect on
L1 retrotransposition when the Neo-tagged L1 expression
plasmid was cotransfected with an empty control vector
(Figure 2B left panel top row and right panel gray bars).
The same treatments significantly increased L1 retrotrans-
position in HeLa cells in a dose-dependent manner when
the same L1 expression plasmid was cotransfected with the
MT1 expression plasmid (Figure 2B left panel bottom row
and right panel black bars). No toxicity was observed when
the cells were treated with S20928 antagonist alone or in
combination with L1 and MT1 (Figure 2C). Treatment of
L1 and MT1 transfected HeLa cells with another melatonin
receptor antagonist luzindole resulted in a similar dose-
dependent increase in L1 retrotransposition (Figure 2D, left
panel black bars). Again, no adverse effect of melatonin an-

tagonist luzindole treatment was detected by the toxicity as-
say (Figure 2D, right panel black bars).

The same approach was used to test the effect of mela-
tonin receptor antagonist treatment on L1-driven Alu retro-
transposition (Supplementary Figure S3A). Similar to L1,
treatments with luzindole increased L1-driven Alu retro-
transposition in a dose-dependent manner (Supplemen-
tary Figure S3A, black bars) without any adverse effect on
cell viability and colony formation (Supplementary Figure
S3B).

MT1 overexpression reduces L1 mRNA and ORF1 protein in
cultured cells

To understand the mechanism of MT1 downregulation of
L1 retrotransposition, we tested the effect of MT1 over-
expression on the steady-state levels of L1 mRNA and
ORF1p. L1 mRNA was measured in HeLa, PC3 and NIH
3T3 cells cotransfected with the untagged human L1 ex-
pression plasmid and either empty or MT1 expression plas-
mids (Figure 3A). Northern blot analysis with a strand-
specific RNA probe complementary to the first 100 bp of
the L1 5′UTR (28) demonstrated a significant decrease in
L1 mRNA levels in HeLa and PC3 cells overexpressing hu-
man MT1 receptor compared to the control cells trans-
fected with an empty vector (Figure 3A and C). This ef-
fect was less pronounced in NIH 3T3 cells in which full-
length L1 mRNA produced by the transiently transfected
L1 expression plasmid appears to be more stable (Supple-
mentary Figure S4). Parallel analysis of ORF1p expression
in the same cell types using ORF1p-specific antibody (51)
demonstrated significant reduction in the ORF1p levels in
all three cell lines (Figure 3B and C). The same reduction
of steady-state L1 ORF1p in the presence of MT1 receptor
was observed in immortalized human fibroblasts (Supple-
mentary Figure S5).

Reduced levels of L1 mRNA could be due to an effect of
MT1 on the promoter driving L1 expression. The L1 and
CMV promoters drive the L1Neo and untagged L1 con-
structs used in the above-described experiments. Expression
of a Firefly luciferase (Fluc) driven by the L1 (52) or CMV
(Promega) promoters demonstrated that MT1 overexpres-
sion does not have any significant effect on Fluc activity
driven by either promoter (Figure 4A). Furthermore, MT1
overexpression had the same effect on L1 retrotransposi-
tion whether L1 expression was driven by the CMV pro-
moter alone or by the native L1 promoter (Supplementary
Figure S6, CMV/�L1Blast and �CMV/L1Neo). A dose-
dependent increase in L1 retrotransposition in the pres-
ence of MT1 expression and luzindole treatment was ob-
served when L1 expression was driven by its own promoter
(�CMVL1Neo) (Figure 4B, black bars). The same result
was observed when untagged L1 driven by its own promoter
(�CMV L1) was used to support Alu retrotransposition
(Supplementary Figure S7, black bars).

Another plausible mechanism by which MT1 overexpres-
sion may reduce L1 mRNA levels is through the alteration
of L1 mRNA stability in a sequence-dependent manner. To
identify potential cis-acting sequences within the L1 mRNA
that might be responding to MT1, we used a human L1
expression vector lacking L1 5′ and 3′ UTRs and contain-
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Figure 2. MT1 effect on L1 retrotransposition is specific to MT1 function. (A) Experimental approach for treatment with melatonin receptor antagonists.
Treatment with increasing doses of melatonin receptor antagonist was initiated on the day of transfection (Day 0) and was performed two additional times
(Day 1 and 2). G418 selection was initiated on Day 1 and continued for 14 days. (B) Melatonin receptor antagonist S20928 relieves MT1 suppression of
L1 retrotransposition in HeLa cells in a dose-dependent manner. L1 retrotransposition in HeLa cells in the presence of the control plasmid is not affected
by melatonin receptor antagonist treatment (left panel top row and right panel gray bars), but it is increased when the treatment is combined with MT1
expression (left panel bottom row and right panel black bars). Colony numbers obtained for retrotransposition and toxicity without any treatment with
melatonin receptor antagonist are set as 100%. (C) MT1 expression and melatonin receptor antagonist S20928 treatment do not affect cell viability and
colony formation in HeLa cells. (D) Melatonin receptor antagonist luzindole relieves MT1 suppression of L1 retrotransposition in HeLa cells without any
adverse effect on cell viability and colony formation. Error bars are standard deviation; asterisks indicate statistically significant differences by t-test.
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Figure 3. The effect of MT1 overexpression on L1 RNA and ORF1p. (A)
Northern blot analysis of L1 mRNA in HeLa, PC3 and NIH 3T3 cells
transiently transfected with the wild-type human L1 expression plasmid
and the control or MT1 expression plasmids. Northern blot analysis was
carried out with a strand-specific RNA probe complementary to the 100 bp
region in the beginning of the L1 5′UTR (28,30). wt FL1 indicates the full-
length L1 mRNA; processed L1 mRNA indicates prematurely polyadeny-
lated and spliced L1-related mRNAs (28,30). Actin is actin mRNA. (B)
Western blot analysis of L1 ORF1p in HeLa, PC3 and NIH 3T3 cells
transiently transfected with the wild-type human L1 expression plasmid
and the control or MT1 expression plasmids. GAPDH (Glyceraldehyde
3-phosphate dehydrogenase)detection was used as loading control. (C)
Quantitation of L1 mRNA (full-length) and ORF1p in different cell lines.
Asterisks indicate statistical significance between L1 mRNA and ORF1p
detected in the same cell line in the presence or absence of melatonin re-
ceptor expression (t-test, P < 0.05). Actin and GAPDH were used for nor-
malization of the RNA and protein signals, respectively. Error bars are
standard deviation.

ing codon-optimized sequences (50,67) to drive Alu retro-
transposition (Figure 4C). Regardless of the changes intro-
duced to L1, Alu mobilization was downregulated when co-
transfected with MT1, supporting that the effect of MT1
on retrotransposition is independent of the primary L1 se-
quence (Figure 4C, MT1, black bars).

Inactivating mutations of putative phosphorylation and
ubiqutination sites within ORF1 protein abolish MT1 effect

It is established that multiple signaling pathways can influ-
ence cellular protein levels by phosphorylation followed by
degradation (68). NetPhos 2 and CKSAAP prediction pro-
grams were used to identify putative phosphorylation and
ubiquitination sites in the ORF1p sequence (54,55). The
programs identified 20 putative phosphorylation and 32 pu-
tative ubiqutination sites in the L1 ORF1p. Sixteen and 14
of these phosphorylation (serine only) and ubiqutination
sites, respectively, with highest predicted probability values

were mutated to alanines to generate ORF1 Ser and ORF1
Ub mutants (Figure 5A). Western blot analysis of total cell
lysates collected from HeLa cells expressing ORF1, ORF1
Ser and ORF1 Ub proteins in the presence or absence of
MT1 demonstrated that serine to alanine mutations com-
pletely abolished the suppressive effect of MT1 expression
(Figure 5B and C, ORF1 and ORF1 Ser). ORF1 Ub protein
retained minimal sensitivity to MT1 overexpression (Figure
5B and C, ORF1 Ub). Combined these data predict that L1
expression is expected to be suppressed by nocturnal pro-
duction of melatonin and its receptor in vivo.

Melatonin through its receptor regulates endogenous L1
mRNA in a prostate cancer model in vivo

To test circadian regulation of L1 in vivo, we used a tissue-
isolated xenograft model of human prostate cancer orig-
inating from PC3 prostate cancer cells used in above-
described experiments. The tumors were established in nude
male rats housed under normal light conditions (12L:12D)
(69) and perfused in situ as described (57) with human blood
collected from adult male donors either during day time
(DT, low melatonin levels), night time (NT, high melatonin
levels) or night time after exposure to bright light (LEN, low
melatonin levels) (58) (Figure 6A). RT-PCR primers specific
to the human L1 element were used to analyze endogenous
L1 expression in tumors generated in this prostate cancer
model (Supplementary Figure S8A and B). RT-PCR analy-
sis was performed with RT-control for each time point and
each donor. Supplementary Figure S8C shows RT-PCR re-
sults with appropriate controls for one donor. Figure 6B
demonstrates a summary of the results collected from dif-
ferent donors. RT-PCR analysis demonstrated that endoge-
nous L1 mRNA is significantly downregulated in tumors
perfused with melatonin-rich blood (Figure 6B, NT versus
DT, and Supplementary Figure S8C), supporting the above-
formulated hypothesis that L1 expression is suppressed dur-
ing the dark phase of the photoperiod. In contrast to NT
blood, perfusion of tumors with blood collected from the
same donors after 1-h exposure to bright light at night (2800
lx, NT+LEN, which suppresses endogenous melatonin pro-
duction) did not result in the reduction of L1 mRNA (Fig-
ure 6B, NT+LEN).

To confirm that the observed effect is due to the changes
in melatonin levels among the daytime, nighttime and noc-
turnal light exposure (LEN) blood samples, melatonin re-
ceptor antagonist S20928 was added during in situ perfu-
sion to the blood collected at night. The addition of this
antagonist abolished the inhibitory effect of the melatonin-
rich NT blood on L1 mRNA (Figure 6B, NT+A and
Supplementary Figure S7C). Likewise, supplementation of
blood that has very low endogenous melatonin levels with
exogenous melatonin during in situ perfusion suppresses L1
mRNA in a manner similar to the nighttime, melatonin-
rich blood (Figure 6B, NT, NT+LEN, and LEN+MLT and
Supplementary Figure S7C). No endogenous ORF1p sig-
nal was detected in any of the samples analyzed for RNA
expression using our ORF1p-specific antibodies.
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Figure 4. MT1-induced suppression of retrotransposition is independent of the L1 promoter. (A) Fluc activity was assessed in HeLa cells transiently
transfected with Fluc expression vector driven by CMV or L1 promoters and cotransfected with either an empty (control, gray bars) or MT1 expression
plasmids (MT1, black bars). A vector expressing Renilla luciferase was used as transfection control. Fluc vector without any promoter was used as negative
control (no promoter). Luciferase activity is shown as percent of the activity detected in cotransfection with empty plasmid for each construct. (B) Luzindole
treatment eliminates the downregulatory effect of MT1 overexpression on L1 retrotransposition when L1 is driven by its own promoter (�CMVL1) (also
Supplementary Figure S7A). (C) Alu retrotransposition driven by the wild-type human L1 expression plasmid (wt hL1) or by the codon-optimized human
L1 (codon opt and co hL1) expression plasmid with and without cotransfection with the MT1 expression plasmid. Error bars are standard deviation;
asterisks indicate statistically significant differences by t-test.

DISCUSSION

In 2007, the World Health Organization recognized light ex-
posure at night as a probable carcinogen (47). This recogni-
tion is based on several epidemiological studies (70,71) and
research using animal models (32,72) that demonstrate that
shift workers and animals exposed to light at night have in-
creased risk of cancer. While the carcinogenic nature of this
light exposure is appreciated, the physiology and molecu-
lar mechanisms underlying this phenomenon are not fully
understood.

Despite the fact that human cancers differ significantly
in their time of onset, aggressiveness and response to treat-
ment, it is well established that they share at least one com-
mon feature (and their ultimate root cause), which is ge-
nomic instability. Genomic instability in the form of point
mutations, insertions and deletions, as well as large chromo-
somal rearrangements is responsible for cancer initiation,
progression and heterogeneity [reviewed in (73)]. Genomic
instability can be caused by intrinsic factors or be induced
by environmental exposures. One of the intrinsic DNA-
damaging agents that can cause different types of genomic
instability often found in human cancers is L1 retrotrans-
poson [reviewed in (16)], expression of which is usually up-
regulated in many human cancers compared to their match-
ing normal tissues (3,74,75). Recent second-generation se-
quencing analyses of de novo L1 retrotransposition in sev-
eral human cancers demonstrated that some of these inserts

occurred early in cancer development (5,22,24,76). Most
interestingly, a proportion of de novo L1 integrations dis-
rupted normal expression of cancer-relevant genes, sup-
porting L1’s role in generation of genomic alterations rel-
evant to cancer origin, progression and heterogeneity (22).
These studies also found that the number of de novo L1 in-
serts varies significantly even among tumors (5,22) of the
same type, which could arise from the difference in the num-
ber of functional polymorphic L1 loci in the human popu-
lation (77,78) or genetic variation in cellular DNA repair
(29,79). The recognition of light exposure at night as a can-
cer risk factor raises a question of how this environmental
stimulus can promote different types of cancer. One possi-
bility may be that light exposure at night promotes genomic
instability. If so, upregulation of L1 expression and activity
by environmental light exposure at night could be one of the
contributing factors driving genomic instability relevant to
cancer risk and/or progression in shift workers.

We demonstrate that expression of endogenous L1 ele-
ments in a tissue-isolated model of prostate cancer is sup-
pressed by melatonin circulating in human blood (Figure 6
and Supplementary Figure S8). This regulation is disrupted
by the host’s exposure to light at night, which suppresses
nocturnal melatonin production (42). Indeed, melatonin-
depleted blood collected after exposure to light at night does
not reduce endogenous L1 mRNA as does melatonin-rich
blood collected during the dark phase of the circadian cycle.
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Figure 5. Inactivating mutations of putative phosphorylation and ubiq-
uitination sites predicted within ORF1p sequence abolish MT1 effect on
ORF1p. (A) Schematic of putative phosphorylation (ORF1 Ser) and ubiq-
uitination (ORF1 Ub) sites predicted within the ORF1p sequence mutated
to alanine. (B) Western blot analysis of ORF1p in the presence or ab-
sence of melatonin receptor 1 expression (MT1 and control, respectively).
Transfection with an empty vector was used to assess background levels of
ORF1p. GAPDH is used as loading control. (C) Quantitation of western
blot results (N = 3). ORF1, ORF1 Ser and ORF1 Ub expression in the
presence of MT1 (black bars) is normalized to their respective expression
in the presence of control vector (gray bars). Error bars are standard devi-
ation; asterisks indicate statistically significant differences between control
and MT1 lanes by t-test.

Circulating melatonin suppresses endogenous L1 mRNA in
a receptor-mediated manner (Figure 6), which is demon-
strated by the abolishment of the effect of melatonin on en-
dogenous L1 mRNA levels in a prostate cancer model by
the addition of MT1 and MT2 antagonist during in situ tu-
mor perfusion (Figure 6). Consistent with this result, the
addition of exogenous melatonin during in situ perfusion
restores suppression of endogenous L1 mRNA, suggesting
that the effect of light exposure at night on L1 mRNA in
tumors can be mitigated by melatonin supplementation.

Consistent with our in vivo observation, overexpression
of MT1 receptor decreases steady-state levels of L1 mRNA
and L1 ORF1p in cultured cells (Figure 3 and Supplemen-
tary Figure S5) and suppresses L1 retrotransposition (Fig-
ures 1 and 2). Administration of melatonin receptor an-
tagonists during the retrotransposition assay increases L1
and Alu mobilization in a dose-dependent manner (Figure
2 and Supplementary Figures S3 and S7). This effect is in-
dependent of the L1 promoter (Figure 4A and Supplemen-
tary Figure S6) and L1 mRNA sequence (Figure 4C) as Alu
retrotransposition by the L1 containing codon-optimized
ORF1 and ORF2 sequences and lacking its 5′ and 3′ UTRs
is still suppressed by melatonin receptor overexpression
(Figure 4C). Furthermore, MT1 suppresses ORF1p even
when it is expressed by a codon-optimized plasmid con-

taining only ORF1 sequence (Figure 5). In contrast, L1
ORF1ps with mutations of putative phosphorylation or
ubiquitination sites are no longer affected by the MT1 over-
expression, even though their expression is driven by the
same promoter as the one driving the expression of the wild-
type protein (Figure 5, ORF1 Ser and ORF1 Ub).

Many signaling pathways, including melatonin signal-
ing, activate a cascade of protein kinases that decrease
amounts of cellular proteins by targeting them for degra-
dation or change their ability to associate with their inter-
acting partners (68,80). Indeed, Akt/PKB signaling is re-
ported to decrease ischemia-induced activation of L1 ex-
pression in rat heart (81) and many cellular proteins have
been recently reported to be associated with L1 ORF1p
(82). The ORF1p forms homotrimers, which associate with
the L1 mRNA (8,10,11,83) to form RNPs. This association
potentially plays a role in protecting the L1 mRNA from
degradation or enabling its dissociation from the polyribo-
somes. Little is known about the regulation of this ORF1p
self-association and RNP formation in mammalian cells
(84,85). Melatonin signaling may trigger postranslational
modifications altering ORF1p stability or its ability to in-
teract with itself or cellular proteins. We demonstrate that
MT1 suppresses ORF1p even when the protein is expressed
outside of the context of the full-length L1 (Figure 5).
ORF1p contains numerous putative phosphorylation and
ubiquitination sites identified by respective prediction pro-
grams (Figure 5). If there is any cooperation between these
sites in the MT1-induced downregulation of L1 ORF1p,
then independent elimination of either putative phosphory-
lation or ubiquitination sites from ORF1p sequence should
dampen its response to MT1. We demonstrate that inac-
tivating point mutations of putative phosphorylation or
ubiquitination sites within ORF1p abolish negative effect
of MT1 on ORF1p expression (Figure 5). These ORF1p
mutants suggest a mechanism of MT1-induced phosphory-
lation of L1 ORF1p, which likely targets it for degradation
through proteasomal or proteolytic degradation. Further-
more, the decrease in L1 ORF1p may reduce L1 mRNA
stability due to the disruption of RNP formation. Alter-
natively, it is also possible that point mutations introduced
into the ORF1p sequence disrupt protein:protein interac-
tions important for ORF1p stability. Identifying which spe-
cific mutations within the ORF1p sequence are responsible
for the MT1 effect of L1 ORF1p and the degree of redun-
dancy in the ORF1p response to MT1 will refine our under-
standing of this mechanism and the cellular players respon-
sible for its action. Likewise, further studies exploring the
hypothesis of light exposure at night increasing L1 retro-
transposition in vivo will be needed to determine whether
the genomes of shift workers or other individuals who have
experienced extensive LEN accumulate increased amounts
of L1-induced damage.

Combined, our in vivo data and tissue culture-based re-
sults support the following model of light-dependent regu-
lation of L1 in cancer. Under normal light exposure, noc-
turnal melatonin production activates melatonin receptors,
leading to suppression of L1 mRNA and ORF1p (Figure 7).
Nighttime light exposure suppresses nocturnal melatonin
production, which abolishes activation of melatonin recep-
tor(s) signaling needed to suppress L1 mRNA. Based on
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Figure 6. Endogenous L1 expression is regulated by melatonin in prostate cancer model in vivo. (A) Experimental design. Human prostate tissue-isolated
xenografts were established in nude male rats as described (56,69). Animals were housed under normal light exposure (12L:12D). Whole blood was collected
from the same healthy male donors during the day (DT), night (NT) or at night after exposure to light (NT+LEN, LEN is light exposure at night) and
used for in situ perfusion of human prostate xenografts as described (58). MLT is melatonin. (B) Analysis of endogenously expressed L1 mRNA. Tumor
samples are labeled as described in (A). NT+A is nighttime blood supplemented with melatonin receptor antagonist (S20928) during in situ perfusion.
NT+LEN+MLT is melatonin-low blood collected at night after exposure to light and supplemented with exogenous melatonin during in situ perfusion.
RT-PCR is performed with primers amplifying a region within 1–100 bp of the human L1 5′UTR, L1, (see Supplementary Figure S6). PC3 are prostate
cancer cells used to generate tissue-isolated xenografts, M is a marker lane and NTC is a no template control. 1, 2, 3 are the same three donors for each
time point. Actin is used as loading control.

these data, we propose that suppression of nocturnal mela-
tonin production by light results in accumulation of L1
mRNA and ORF1p in tumor cells during the night when
the genome is normally protected from L1 activity (Figure
7). This continuous L1 expression in tumors likely results
in an increase in L1 retrotransposition in vivo, leading to
accumulation of de novo integration events in the tumors of
shift workers or individuals with disrupted melatonin pro-
duction. While specific molecular events controlling regu-
lation of L1 by melatonin have yet to be identified, this
finding provides a tantalizing first glimpse into the complex
regulation of L1 activity in vivo. The connection between
the circadian system and L1 suggests that L1-induced dam-
age is likely increased in tumors originating in shift work-
ers and the elderly. Both subpopulations have reduced noc-

turnal melatonin levels and increased incidence of cancer
(43,44,86,87) that could partly be due to the upregulation
of somatic L1 activity reported to introduce cancer-driving
mutations (22,23).

Our findings also raise important questions about the
control of L1 expression in normal tissues. We have previ-
ously detected various amounts of endogenous L1 mRNA
in a broad spectrum of normal human tissues (3). This vari-
ation can occur because of the tissue-specific differences in
premature polyadenylation and splicing of L1 transcripts
(28,30). The observation that L1 mRNA is regulated by the
circadian system in tumors also supports circadian regula-
tion of L1 expression in normal tissues. Thus, the reported
differences in the amount of the full-length L1 mRNA could
also result from the collection of these tissues at different
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Figure 7. A model for regulation of L1 expression and damage by environmental light exposure. During the day when melatonin production and secretion
as well as melatonin receptor expression is suppressed by light, L1 mRNA and proteins are expected to accumulate leading to L1-induced damage (left
panel). During the night, ongoing melatonin production activates melatonin receptor, resulting in the suppression of L1 mRNA and ORF1p, consequently
leading to a decrease in L1-associated genomic instability (middle panel). Exposure to light at night, which encompasses subpopulations of shift workers,
people with sleeping disorders, caretakers and the elderly, disrupts normal melatonin production allowing accumulation of L1 mRNA and proteins that
leads to L1-induced damage during the time when the host genome normally would be protected from L1 DNA-damaging activity (right panel).

times during the circadian cycle. While no experimental evi-
dence supporting L1 regulation by the host circadian system
in normal tissues exists, our data predict that L1 expression
in normal tissues would demonstrate a 24-h periodicity. In
contrast to most tumors that are often deficient in the func-
tion of core circadian genes (88,89), but maintain melatonin
receptor function (38), normal tissues express functional
core circadian proteins and are responsive to the nocturnal
melatonin production. As a result, the pattern of L1 expres-
sion over a 24-h period in normal tissues may differ from
that found in tumors. L1-induced damage in normal tis-
sues is also expected to be affected by melatonin in a tissue-
specific manner due to the variation in MT1 expression (35).
Furthermore, L1 damage can be regulated in a circadian
manner because of the oscillation in expression or activity
of cellular proteins and pathways known to influence L1 ex-
pression or steps of the L1 integration process, such as the
nucleotide excision repair (NER) pathway (33). NER is reg-
ulated by the circadian system and has been shown to sup-
press L1 retrotransposition in cultured cells (29,33).

The implications of circadian regulation of L1 expression
and activity expand beyond its impact on the genomes of
shift workers. Our findings suggest a possibility of an in-
crease in L1-induced genomic instability with age. An age-
dependent decline in melatonin production and melatonin

receptor expression may result in upregulation of L1 expres-
sion, leading to an increase in L1 activity and the muta-
genic burden associated with its expression. Consistent with
this idea is a recent study on somatic L1 retrotransposition
in colorectal cancers, which found a strong correlation be-
tween L1 retrotransposition and age (5). Furthermore, age-
associated circadian decline may enhance L1-induced ge-
nomic instability not only through a direct increase in L1
expression, but also via the loss of DNA repair response
necessary to shield the genome from L1 damage (90,91).

Overall, our finding of receptor-mediated melatonin-
induced suppression of L1 expression and activity adds
an important component to the numerous existing cellular
pathways known to downregulate L1 expression and activ-
ity. It establishes a link among the host circadian system,
environmental light exposure and genomic instability. Fur-
thermore, this discovery has important evolutionary impli-
cations. Melatonin is one of the most evolutionarily con-
served molecular entities, estimated to originate some 2.5
billion years ago (92). Transposable elements, particularly
retrotransposons, can be found in animals, plants, proto-
zoans and fungi (93), suggesting that melatonin and the cir-
cadian system may be a common pathway of suppression
or regulation of these elements in different kingdoms.
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In conclusion, L1 elements and their damage in
vivo should be considered as a dynamic, probably age-
dependent, entity with effects consequential to the whole
human body, but likely unique to individual tissues, genetic
backgrounds and environmental light exposures.
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