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Patients with metastatic gastric cancer (GC) have a poor prognosis; how-

ever, the molecular mechanism of GC metastasis remains unclear. Here, we

employed bioinformatics to systematically screen the metastasis-associated

genes and found that the levels of basal cell adhesion molecule (BCAM)

were significantly increased in GC tissues from patients with metastasis, as

compared to those without metastasis. The upregulation of BCAM was

also significantly associated with a shorter survival time. Depletion of

BCAM inhibited GC cell migration and invasion. Knockout (KO) of

BCAM by the CRISPR/Cas9 system reduced the invasion and metastasis

of GC cells. To explore the mechanism of BCAM upregulation, we identi-

fied a previously uncharacterized BCAM sense lncRNA that spanned from

exon 6 to intron 6 of BCAM, and named it as BCAM-associated long non-

coding RNA (BAN). Knockdown of BAN inhibited BCAM expression at

both mRNA and protein levels. Knockdown of BAN suppressed GC cell

migration and invasion, which was effectively rescued by ectopic expression

of BCAM. Further clinical data showed that BAN upregulation was associ-

ated with GC metastasis and poor prognosis. Importantly, BAN expression

was also significantly associated with that of BCAM in GC tissues. Taken

together, these results indicate that increased expression of BCAM and its

sense lncRNA BAN promote GC cell invasion and metastasis, and are

associated with poor prognosis of GC patients.

Abbreviations

ACRG, Asian cancer research group; AJCC, American Joint Committee on Cancer; BAN, BCAM-associated lncRNA; BCAM, basal cell

adhesion molecule; FACS, fluorescence-activated cell sorting; GAPDH, glyceraldehyde-3-phosphate dehydrogenase; GC, gastric cancer;

lncRNA, long noncoding RNA; MTT, 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide; qRT-PCR, quantitative reverse transcription

PCR; ROC, receiver operator characteristic; TCGA, the cancer genome atlas.
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1. Introduction

Gastric cancer (GC) is the fifth most frequently diag-

nosed cancer and is the third leading cause of cancer-re-

lated deaths worldwide (Bray et al., 2018). Due to the

lack of obvious symptoms and biomarkers for early-

stage GC, ~ 40% of GC patients present with metastasis

at the time of diagnosis (Bernards et al., 2013). More-

over, the overall survival of GC patients with metastasis

is poor, with an about 5% of the 5-year survival rate

(Bernards et al., 2013). Thus, it is in an emergency to

clarify the molecular mechanisms of GC metastasis.

Basal cell adhesion molecule (BCAM), also known as

Lutheran, is widely expressed in various tissues and is

involved in many biological processes, such as cell adhe-

sion, migration, and invasion (Bartolini et al., 2016;

Campbell et al., 1994; De Grandis et al., 2013; El Nemer

et al., 1998; Gauthier et al., 2005; Hines et al., 2003; Kik-

kawa and Miner, 2005; Kikkawa et al., 2013; Parsons

et al., 1995). Emerging studies have shown that BCAM

plays an important role in tumor progression, including

skin tumors, hepatocellular carcinoma, colorectal cancer,

and bladder cancer (Bartolini et al., 2016; Campbell

et al., 1994; Chang et al., 2017; Drewniok et al., 2004;

Kikkawa et al., 2013). However, the role of BCAM in

GC progression is still unclear.

Long noncoding RNA, more than 200 nt in length,

are transcripts without protein-coding capacity (Der-

rien et al., 2012; Djebali et al., 2012; Ma et al., 2013).

Increasing data demonstrate that lncRNA regulate

gene expression through diverse mechanisms, including

gene activation and suppression, chromatin modifica-

tion and remodeling, splicing and translation modula-

tion, acting as miRNA sponges, and small RNA

precursors (Ponting et al., 2009; Spitale et al., 2011;

Wang and Chang, 2011; Wilusz et al., 2009). Accumu-

lating evidence has shown that lncRNA play key roles

in the formation and progression of many cancers,

including GC (Gutschner and Diederichs, 2012; Spizzo

et al., 2012; Xie et al., 2016). lncRNA are important

regulators of cell proliferation, apoptosis, migration,

and differentiation, and dysregulated lncRNA result in

tumor growth, invasion, and metastasis (Gupta et al.,

2010). Emerging data demonstrate that lncRNA,

including ANRIL, FENDRR, GAS5, GHET1, GMAN,

MALAT1, and PVT1, are involved in GC progression

(Kong et al., 2015; Sun et al., 2014; Tripathi et al.,

2010; Xie et al., 2016; Xu et al., 2014; Yang et al.,

2014; Zhang et al., 2014; Zhuo et al., 2019). Our recent

study shows that GMAN, upregulated in GC tissues, is

associated with metastasis and promotes the expression

of ephrin A1 (Zhuo et al., 2019).

In this study, we found that BCAM expression was

significantly correlated with GC metastasis and poor

prognosis. KO of BCAM suppressed GC cell invasion

and metastasis. Furthermore, we identified a previ-

ously undescribed gene BCAM-associated lncRNA

(BAN) as a sense lncRNA of BCAM, which was also

associated with GC metastasis and poor prognosis.

Knockdown of BAN not only inhibited BCAM expres-

sion, but also suppressed GC cell invasion, which was

successfully rescued by ectopic expression of BCAM.

Thus, our data suggest that BCAM and its sense

lncRNA BAN play a crucial role in GC metastasis.

2. Materials and methods

2.1. Bioinformatics analysis

RNA-seq data of The Cancer Genome Atlas

(TCGA) cohort were downloaded from the Genomic

Data Commons data portal (url) (Cancer Genome

Atlas Research, 2014). R DESeq2 package was used

to find genes with differential expression level

between GC tissues with distant metastasis and those

without metastasis, and the genes with FDR under

0.05 and expression fold change over 1.8 were con-

sidered as significantly upregulated genes (Love

et al., 2014). Microarrays of Asian Cancer Research

Group (ACRG) cohort were obtained from Gene

Expression Omnibus database (url) (Cristescu et al.,

2015). The raw CEL files were normalized with the

RMA algorithm using Custom chip Definition Files

mapping to official Gene Symbol (Brainarray v.22

http://brainarray.mbni.med.umich.edu/) (Manhong

et al., 2005). Notably, the averaged expression was

calculated for genes with multiple targeted probes. R

limma package was used to find the differentially

expressed genes between GC tissues with distant

metastasis and those without metastasis, and the

genes with FDR under 0.05 and expression fold

change over 1.8 were considered as significantly

upregulated genes (Ritchie et al., 2015). Univariate

Cox regression analysis was applied to identify the

survival-related genes in TCGA and ACRG cohorts,

and genes with P value under 0.05 and Z-score over

0 were considered as adversely prognostic.

2.2. Human tissue samples

All GC tissue samples were obtained from GC

patients undergoing gastrectomy with informed con-

sent. Zhejiang cohort (n = 64) samples were collected
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from Sir Run Run Shaw Hospital, Zhejiang Univer-

sity School of Medicine (Hangzhou, China) and Zhe-

jiang Cancer Hospital (Hangzhou, China). Among

them, 11 pairs of GC tissues were from patients

with distant metastasis and age- and sex-matched

patients without metastasis. Ethical consent was

granted from the Ethical Committee Review Board

of Zhejiang University School of Medicine. The

study methodologies conformed to the standards set

by the Declaration of Helsinki.

2.3. Cell culture

Human GC cell line BGC-823 was obtained from

the Chinese Academy of Sciences (Jiao et al., 2014).

Human GC cell line SGC-7901 was obtained from

Beijing Cancer Hospital (Xing et al., 2012). BGC-

823 and SGC-7901 cells were maintained in RPMI-

1640 medium supplemented with 10% FBS (Gibco

BRL, Grand Island, NY, USA) with 5% CO2. All

cell lines were routinely tested negative for

mycoplasma.

2.4. RNA extraction and quantitative RT-PCR

Total RNA was extracted from human tissue samples

and cultured cells, respectively, using the TRIzolTM

Reagent (Invitrogen, Carlsbad, CA, USA) following

the manufacture’s protocol. The concentration and

quality of RNA were determined with a NanoDrop

spectrophotometer (NanoDrop Technologies, Thermo

Fisher Scientific, Waltham, MA, USA) and gel analy-

sis. Reverse transcription reactions were carried out

using High-Capacity cDNA Reverse Transcription

Kits (Applied Biosystems, Foster City, CA, USA).

LightCycler� 480 Probes Master (Roche, Basel,

Switzerland) was used to evaluate the expression of

BCAM and BAN in human tissue samples and cul-

tured cells. The relative expression of BCAM and

BAN was calculated using glyceraldehyde-3-phosphate

dehydrogenase (GAPDH) as the endogenous control

to normalize the data. The sequences of the primers

used are as follows: BCAM, sense 50-GTGCTT

TCCTTACCTCTAA-30 antisense 50-GTAGGTGCCA

TTGGAATC-30 and probe 50-AGTCGTGAACTGCT

CCGTGC-30; GAPDH, sense 50-GGACCTGACC

TGCCGTCTAG-30, antisense 50-TAGCCCAGGATG

CCCTTAG-30, and probe 50-CCTCCGACGCCT

GCTTCACC-ACCT-30; BAN, sense 50-GACTCTT-

GACCTATACTCTTAG-30, antisense 50-TACGGGT-

CATAGGTTTCA-30, and probe 50-CAACCTCTGAA

CTCTGGCACTC-30.

2.5. Vector construction, siRNA, and transfection

Full-length human BCAM and BAN were amplified

from the cDNA of BGC-823 cells and were cloned

into pCS2 (+) and pcDNA3.1 vectors, respectively.

Both plasmids were confirmed by DNA sequencing.

SGC-7901 cells were then transfected with an empty

vector or the BCAM-expressing plasmid using Lipofec-

tamineTM 2000 (Invitrogen). BGC-823 cells were trans-

fected with siRNA for BCAM or BAN using

lipofectamineTM RNAiMAX (Invitrogen). siRNA cor-

responding to the following sequences for BCAM or

BAN silencing were synthesized by GenePharma: 50-
CAACGUGUUUGCAAAGCCATT-30 for siBCAM-

1, 50-CUGUCGCUCAGUUCUAUCATT-30 for siBC

AM-2, 50-CUCUGGCACUCAGAAUAAUTT-30 for

siBAN-1, and 50-GUUUAUGACUAAAUGGUG

CTT-30 for siBAN-2.

2.6. SDS/PAGE and immunoblot

Cells were lysed using RIPA protein extraction reagent

(Beyotime, Shanghai, China) supplemented with a pro-

tease inhibitor cocktail (Roche). The cell lysates were

separated by SDS/PAGE and were transferred onto a

poly(vinylidene difluoride) membrane. The membranes

were incubated with 5% BSA. The proteins were

detected using an anti-BCAM monoclonal antibody

(1 : 1000; Abcam, Cambridge, MA, USA), anti-

GAPDH (1 : 1000; Sigma-Aldrich, San Francisco, CA,

USA), and anti-ACTIN (1 : 1000; Sigma-Aldrich).

2.7. MTT assay

The 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyl-tetra-

zoliumbromide (MTT) assay was performed at 0, 24,

48, and 72 h post-transfection. The cells in the 96-well

culture were incubated with MTT (5 mg�mL�1, 20 lL)
for 4 h. After that, 150 lL of DMSO was added and

resuspended until the cysts were completely dissolved.

The absorbances of samples were measured with a

spectrophotometer at 490 nm. Each assay was per-

formed in triplicate and was independently repeated

three times.

2.8. Colony formation assay

For the colony formation assay, transfected cells

(n = 500) were placed in 6-well plates. After 2 weeks,

the cells were fixed with 4% paraformaldehyde and

were stained with 0.5% crystal violet in 20% EtOH

for 15 min. Visible colonies were photographed and
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counted by IMAGEJ software (NIH, Bethesda,

MD, USA). Each assay was performed in triplicate

and was independently repeated three times.

2.9. FACS assay

A fluorescence-activated cell sorting (FACS) assay was

performed to analyze the cell cycle distribution. The

cells were collected and fixed with 70% EtOH over-

night. Then, the fixed cells were treated with propid-

ium iodide and subjected to cell cycle distribution

analysis using a flow cytometer (Beckman, Brea, CA,

USA).

2.10. Transwell assay

For the transwell assay, 5 9 104 cells were placed in

the top chamber in medium with 1% FBS, and the

medium supplemented with 20% FBS was filled in the

lower chamber and served as a chemoattractant. After

incubation, the cells on the lower surface of the mem-

brane were stained with crystal violet and were

counted by IMAGEJ software. Each assay was per-

formed in triplicate and was independently repeated

three times.

2.11. Matrigel invasion assay

For the invasion assay, 5 9 104 cells were placed in

the top chamber with a Matrigel-coated membrane

(24-well insert; pore size, 8 mm; BD Biosciences, New

York, NY, USA) in medium with 1% FBS, and medium

supplemented with 20% FBS was filled in the lower

chamber and used as a chemoattractant. After

incubation, the cells on the lower surface of the mem-

brane were stained with crystal violet and were

counted by IMAGEJ software. Each assay was per-

formed in triplicate and was independently repeated

three times.

2.12. Knockout of BCAM

The pX330 vector (Addgene plasmid 42230) was a gift

from F. Zhang. Plasmids expressing hCas9 and

sgRNA for BCAM were prepared by ligating oligos

into the BbsI site of pX330. The sequences used for

sgRNA are as follows: sense: 50- ACCGCATG-

GAGCCCCCGGACGCAC-30, and antisense: 50-
AACGTGCGTCCGGGGGCTCCATGC-30. This

plasmid was designated pX330-BCAM. Then, the plas-

mid was introduced into BGC-823 cells and treated

with puromycin at 48 h after transfection. After 48 h,

the cells were placed into 96-well plates at the concen-

tration of 1 cell/well. Single colonies were picked and

validated by genotyping and immunoblot analysis.

2.13. Tumor metastasis model

Nude mice (6–8 weeks old) were maintained under SPF

conditions with individually ventilated cages in the Ani-

mal Facility of Zhejiang University. The spleens of the

mice were inoculated with 106 BGC-823 cells. Three

weeks later, the livers were harvested, and external areas

of metastatic masses were quantified. Animal experiments

Fig. 1. BCAM upregulation is associated with GC metastasis and poor prognosis. (A) The Venn diagram illustrating the number of

upregulated genes in GC tissues with distant metastasis that had a reverse outcome in both TCGA and ACRG cohorts. (B) Twelve genes

that were upregulated in metastatic GC tissues and were positively associated with a poor prognosis for GC patients were listed. (C) The

relative expression of BCAM in 25 GC tissues with distant metastasis (M1) compared to that in age- and sex-matched GC tissues without

metastasis (M0) from the TCGA dataset. The results are presented as log2 FPKM values normalized to that of TBP1. **P < 0.01. (D) The

relative expression of BCAM in 26 GC tissues with distant metastasis (M1) compared to that in age- and sex-matched GC tissues without

metastasis (M0) from the ACRG cohort. ***P < 0.001. (E) Kaplan–Meier survival curve analysis between patients with BCAM-high

expression group (n = 194) and BCAM-low expression group (n = 194) in TCGA cohort. The GC patients were classified into BCAM-high or

BCAM-low expression groups according to the median value. P = 0.002, HR = 1.628, 95% CI: 1.198–2.244. (F) Kaplan–Meier survival curve

analysis between patients with BCAM-high expression group (n = 150) and BCAM-low expression group (n = 150) in the ACRG cohort. The

GC patients were classified into BCAM-high or BCAM-low expression groups according to the median value. P = 0.028, HR = 1.428, 95%

CI: 1.039–1.964. (G) The forest plot depicted the multivariable Cox analysis results of BCAM in the TCGA cohort. All the bars correspond to

95% confidence intervals. (H) The forest plot depicted the multivariable Cox analysis results of BCAM in the ACRG cohort. All the bars

correspond to 95% confidence intervals. (I) Quantitative RT-PCR was performed to analyze the relative expression of BCAM expression in

11 GC tissues with distant metastasis (M1) compared to that in age- and sex-matched GC tissues without metastasis (M0). The results are

presented as fold changes based on log2 values normalized to GAPDH. **P < 0.01. (J) Kaplan–Meier survival curve analysis between

patients with BCAM-high expression group (n = 31) and BCAM-low expression group (n = 31) in the Zhejiang cohort. The GC patients were

classified into BCAM-high or BCAM-low expression groups according to the median value. P = 0.003, HR = 2.713, 95% CI: 1.436–5.387. All

the bars correspond to 95% confidence intervals. (K) The forest plot depicted the multivariable Cox analysis results of BCAM in the Zhejiang

cohort. All the bars correspond to 95% confidence intervals.
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were approved by the Institutional Animal Care and

Use Committee of Zhejiang University.

2.14. Statistical analysis

The significance of the differences between groups was

estimated by the Student’s t-test or v2 test as

appropriate. P < 0.05 was considered to be statistically

significant. Kaplan–Meier method with the log-rank

test was adopted to evaluate the overall survival of dif-

ferent groups. Univariate and multivariate Cox pro-

portional hazards models were performed using R

survival package. Receiver operating characteristic and

prediction error (PE) curves were produced using the
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survcomp and PEC package, respectively. All the

above analysis was conducted using R software (ver-

sion 3.4.4, http://cran.r-project.org).

3. Results

3.1. BCAM upregulation is associated with GC

metastasis and poor prognosis

To systematically screen GC metastasis-associated

genes, we first performed differential expression analy-

sis between GC tissues with distant metastasis and

those without metastasis in two cohorts from TCGA

and ACRG datasets. Seventeen genes were found to

be upregulated in GC tissues with metastasis

(P < 0.05). These genes were further filtered by analy-

sis of association with the shorter survival times of GC

patients (P < 0.05). A Venn diagram revealed that 12

overlapping genes were upregulated in GC tissues with

metastasis and associated with poor prognosis

(Fig. 1A). BCAM was among the genes with lowest P

value (Fig. 1B). Further paired statistical analysis con-

firmed that BCAM was significantly upregulated in

GC tissues with metastasis compared to those without

metastasis (Fig. 1C,D). BCAM upregulation was asso-

ciated with poor prognosis of GC patients in both

TCGA and ACRG cohorts (Fig. 1E,F). Multivariate

Cox analysis showed that high expression of BCAM

was independently associated with reduced overall sur-

vival time from TCGA cohort, but not ACRG cohort

(Fig. 1G,H).

To verify these bioinformatics results, we collected

62 GC tissues from Sir Run Run Shaw Hospital, Zhe-

jiang University School of Medicine and Zhejiang

Cancer Hospital with informed consent (Zhejiang

cohort). Quantitative real-time RT-PCR (qRT-PCR)

analysis revealed that the levels of BCAM were signifi-

cantly increased in GC tissues with metastasis com-

pared to those in tissues without metastasis (Fig. 1I).

Importantly, Kaplan–Meier curve analysis of this

cohort (n = 62) showed that the upregulation of

BCAM was significantly associated with the poor over-

all survival of GC patients (Fig. 1J). Further multivari-

ate Cox analysis confirmed that BCAM expression was

an independent predictor for predicting clinical out-

come of GC patients (Fig. 1K).

3.2. Knockdown of BCAM suppresses GC cell

migration and invasion

To investigate the potential role of BCAM in GC cells,

we first performed qRT-PCR analysis and found that

BCAM was upregulated at high levels in AGS, MKN-

45, and BGC-823 cells, and low levels in SGC-7901,

MKN-74, MGC80-3, and HGC-27 cells (Fig. S1A).

Then, we depleted BCAM expression by introducing

specific siRNA into BGC-823 cells. The knockdown

efficiency was confirmed by a western blot analysis

(Fig. 2A). Neither the MTT assay nor the clone for-

mation assay showed that knockdown of BCAM had

a significant effect on GC cell proliferation (Fig. 2B,

C). FACS analysis showed that silencing BCAM had

no significant effect on GC cell cycle progression

(Fig. 2D). However, the transwell migration assay and

Matrigel invasion assay revealed that knockdown of

BCAM dramatically suppressed GC cell migration and

invasion (Fig. 2E,F). Additionally, the migration assay

and invasion assay using AGS GC cell line showed the

same results (Fig. 2G,H).

3.3. Ectopic expression of BCAM promotes GC

cell migration and invasion

Next, we overexpressed BCAM expression by intro-

ducing pCS2-BCAM into SGC-7901 cells. The overex-

pression efficiency was confirmed by a western blot

analysis (Fig. 3A). Consistent with the knockdown of

BCAM, the results showed that ectopic expression of

BCAM had no significant effect on SGC-7901 cell pro-

liferation or cell cycle progression (Fig. 3B–D). How-

ever, the migration assay and invasion assay showed

that ectopic expression of BCAM significantly

enhanced GC cell migration and invasion (Fig. 3E,F).

Taken together, these data indicate that BCAM is

involved in promoting GC cell migration and invasion.

3.4. Knockout of BCAM by the CRISPR/Cas9

system reduces GC cell metastasis in a mouse

model

To further explore the role of BCAM in GC, we used

the CRISPR/Cas9 system to knock out the BCAM

gene in BGC-823 cells and generated two BCAM KO

subclones (Fig. 4A). The KO efficiency was confirmed

by western blotting (Fig. 4B). Similar to the knock-

down of BCAM, BCAM KO had no significant effect

on cell proliferation, colony formation, or cell cycle

distribution (Fig. 4C–E). However, the transwell

migration assay and Matrigel invasion assay showed

that KO of BCAM significantly inhibited GC cell

migration and invasion (Fig. 4F,G).

To investigate the potential role of BCAM in GC

metastasis in a mouse model, BCAM KO cells or wild-

type cells were intrasplenically injected into nude mice,

and liver metastases were measured after 6 weeks. The
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Fig. 2. Knockdown of BCAM expression suppresses GC cell migration and invasion. (A) Immunoblot analysis of the BCAM expression

levels following the treatment of BGC-823 cells with scrambled siRNA and siBCAM. (B–D) MTT assay (B), colony-forming growth assay (C),

and cell cycle (D) analysis were performed using BGC-823 cells with the indicated treatment. Colonies were captured and counted. The bar

chart represents the percentage of cells in G0/G1, S, or G2/M phase, as indicated. (E, F) Transwell migration (E) and Matrigel invasion

assays (F) were carried out using GC cells with the indicated treatments. (G, H) Transwell migration (G) and Matrigel invasion assays (H)

were carried out using AGS cells with the indicated treatments. Migrated and invaded cells were counted. Scar bar, 100 lm. Experiments

were performed in triplicate. Data are presented as the means � SDs; ns, no significance; *P < 0.05, **P < 0.01, ***P < 0.001.
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Fig. 3. Ectopic expression of BCAM promotes GC cell migration and invasion. (A) Immunoblot analysis of BCAM expression levels following

the treatment of SGC-7901 cells with an empty vector and pCS2-BCAM. (B–D) SGC-7901 cells transfected with the indicated plasmids

were processed for MTT assay (B), colony-forming assay (C), and cell cycle analysis (D). The bar chart for cell cycle represents the

percentage of cells in the G0/G1, S, or G2/M phase, as indicated. (E, F) Transwell migration (E) and Matrigel invasion assays (F) were

carried out using GC cells with the indicated treatments. Migrated and invaded cells were counted. Scar bar, 100 lm. Experiments were

performed in triplicate. Data are presented as the means � SDs; ns, no significance; **P < 0.01.

Fig. 4. KO of BCAM by CRISPR/Cas9 system reduces GC cell metastasis in a mouse model. (A) The BCAM KO BGC-823 cells were

produced by the CRISPR/Cas9 system. The schematic diagram of the mutation in BCAM locus by CRISPR/Cas9 technique was shown. (B)

Immunoblot analysis of the BCAM levels in wild-type or BCAM KO BGC-823 cells. (C-G) MTT assay (C), colony-forming growth assay (D),

cell cycle analysis (E), transwell migration (F), and Matrigel invasion analysis (G) of wild-type or BCAM KO BGC-823 cells. The bar chart for

cell cycle represents the percentage of cells in G0/G1, S, or G2/M phase. (H–J) Mice were intrasplenically injected with wild-type or BCAM

KO BGC-823 cells and were subjected to liver metastasis analysis. Representative gross liver (H) and H&E-stained liver sections (I) from

mice were shown. Scar bars, 5 mm (H); Scar bars, 100 lm (I). The liver metastatic nodules were counted (J). Data are presented as the

means � SDs; ns, no significance. *P < 0.05. **P < 0.01. ***P < 0.001.
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mice inoculated with wild-type cells developed severe

liver metastases, while the injection of BCAM KO cells

robustly reduced the number of liver metastatic nod-

ules (Fig. 4H–J). Taken together, these results suggest

that BCAM plays a critical role in GC metastasis.

3.5. BCAM expression is modulated by its

associated lncRNA BAN

The important role of BCAM in GC prompted us to

explore the upstream mechanisms in modulating

Fig. 6. BCAM is involved in BAN-mediated invasive activity of GC cells. (A–C) BGC-823 cells transfected with the indicated siRNA were

subjected to qRT-PCR analysis (A), transwell migration (B), and Matrigel invasion assays (C). (D–F) SGC-7901 cells transfected with the

indicated plasmids were subjected to qRT-PCR analysis (D), transwell migration (E), and Matrigel invasion assay (F). (G, H) After knockdown

of BAN, BGC-823 cells were transfected with pCS2-BCAM. Ectopic expression of BCAM rescued the decrease in GC cell invasion induced

by the knockdown of BAN. Scar bar, 100 lm. Experiments were performed in triplicate. Data are presented as the means � SDs.

**P < 0.01. ***P < 0.001.
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BCAM expression. We analyzed the BCAM gene locus

and found a previously uncharacterized BCAM sense

lncRNA, which we called BCAM-associated long non-

coding RNA (BAN) (GenBank access ID: AY927517).

BAN, which spanned from exon 6 and intron 6 of the

BCAM gene, is a transcript with a length of 486 nt

(Fig. 5A). The coding potential calculator and coding

potential assessment tool algorithms predicted that

BAN was a noncoding RNA (Fig. 5B). BAN was

upregulated at high levels in AGS, MKN-45, BGC-

823, MKN-74, and MGC80-3 cells, and low levels in

SGC-7901 and HGC-27 cells (Fig. S1B). Consistent

with RNA-FISH assay, nuclear and cytosolic fraction

analysis showed that BAN was localized both in cyto-

plasm and nucleus (Fig. S2A,B). lncRNA have been

documented to play versatile roles in modulating gene

regulation (Sun et al., 2017; Ulitsky and Bartel, 2013).

Indeed, knockdown of BAN evidently suppressed

BCAM expression at both the mRNA and protein

levels (Fig. 5C–E), while the depletion of BCAM had

no significant effect on BAN expression (Fig. 5F,G).

Moreover, we performed mRNA stability assay and

protein degradation assay to investigate how BAN

could promote BCAM expression. The results showed

that knockdown of BAN significantly decreased the

half-life of BCAM mRNA transcripts (Fig. 5H) and

BCAM protein (Fig. S3).

3.6. BCAM is involved in BAN-mediated invasive

activity of GC cells

To explore the potential role of BAN in GC cell

migration and invasion in vitro, we carried out loss-

and gain-of-function experiments, respectively, by

introducing either siRNA specific for BAN or

pcDNA3.1-BAN into GC cells. The transwell migra-

tion assay and Matrigel invasion assay showed that

knockdown of BAN significantly inhibited GC cell

migration and invasion (Fig. 6A–C). Ectopic expres-

sion of BAN in SGC-7901 cells dramatically enhanced

cell migration and invasion (Fig. 6D–F). It is reason-

able to propose that BCAM may be involved in BAN-

mediated invasive activity of GC cells after knock-

down of BAN, BGC-823 cells were transfected with

pCS2-BCAM. Ectopic expression of BCAM rescued

the decreased cell invasion ability caused by knock-

down of BAN (Fig. 6G,H). The invasion assay sug-

gests that the cotransfection could partially rescue

BAN RNAi-decreased GC cell invasion in BGC-823

cells. These data indicate that BAN regulated GC cell

migration and invasion by modulating BCAM

expression.

3.7. BAN upregulation is associated with GC

metastasis and poor prognosis

To explore the association between BAN and GC

metastasis, we examined BAN expression in GC tissues

with metastasis compared to those in tissues without

metastasis. Our qRT-PCR analysis revealed that

increased expression of BAN was significantly associ-

ated with GC metastasis and poor prognosis in the

Zhejiang cohort (Fig. 7A,B). Multivariate Cox analysis

further revealed that BAN expression was an indepen-

dent predictor for assessing the prognosis of GC

patients (Fig. 7C). Importantly, we also found that

BAN expression levels were positively correlated with

that of BCAM in GC tissues from the Zhejiang cohort

(Fig. 7D,E). Kaplan–Meier curve analysis showed that

high expression of both BCAM and BAN was corre-

lated with the worse prognosis of GC patients, and

GC patients with low expression levels of both BCAM

and BAN had relatively longer survival time (Fig. 7F).

To evaluate the potential clinical value of BCAM and

Fig. 7. BAN upregulation is associated with GC metastasis and poor prognosis. (A) The relative expression of BAN expression in 11 GC

tissues with distant metastasis (M1) compared to age- and sex-matched GC tissues without metastasis (M0) in the Zhejiang cohort. (B)

Kaplan–Meier survival curve analysis between patients with BAN-high expression group and BAN-low expression in the Zhejiang cohort. The

GC patients were classified into BAN-high or BAN-low expression groups according to the median value. P = 0.004, HR = 2.558, 95% CI:

1.370–5.176. (C) The forest plot depicted the multivariable Cox analysis results of BAN in the Zhejiang cohort. All the bars correspond to

95% confidence intervals. (D) The heatmap illustrated the association of BAN expression, BCAM expression, and different clinical

characteristics in the Zhejiang cohort. The GC patients were classified into BAN high and low expression groups according to the median

value. Statistical significance was performed by the v2 test. (E) The correlation of BCAM mRNA and BAN expression levels in GC tissues

was analyzed by qRT-PCR. r = 0.488, n = 62, P < 0.0001. (F) Kaplan–Meier survival curve analysis between low (BCAM-low and BAN-low

expression group, n = 22), middle (BCAM-high and BAN-low expression, or BCAM-low and BAN-high expression group, n = 18) and high

(BCAM-high and BAN-high expression group, n = 22) groups in the Zhejiang cohort. The GC patients were classified into low, middle, and

high groups according to the median value of BCAM and BAN. Number at risk table for BCAM and BAN expression can also be seen below

the plot; P value was calculated using the log-rank test. (G) PE curves of the different predictors in the Zhejiang cohort. Apparent error and

10-fold cross-validated cumulative PE at 5 years were computed using Kaplan–Meier estimation as reference. (H) Time-dependent ROC

curve analysis at 5 years of different predictors in the Zhejiang cohort.
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BAN for prognosis, we computed their accuracy by

PE curves compared with the American Joint Commit-

tee on Cancer (AJCC) staging system. Our data dis-

played that the prediction of GC prognosis using the

combination of BAN, BCAM, and AJCC stage had

the lowest predicting error in the Zhejiang cohort

(Fig. 7G). Furthermore, the time-dependent receiver

operator characteristic (ROC) curve at 5 years showed

that the area under the curve of BAN and BCAM

combining with AJCC stage was higher than that of

any other factors (Fig. 7H). Taken together, these data

indicate that the combination of BAN, BCAM, and

AJCC stage is more precise in predicting clinical out-

come of GC patients.

4. Discussion

Since the mechanism of GC metastasis is still not fully

understood, there is always a lack of effective GC

metastasis treatment strategies and prognostic markers

(Song et al., 2017). Here, we systematically screened

the key genes involved in GC metastasis and the prog-

nosis of GC patients. We found that BCAM and its

sense lncRNA BAN were significantly increased in GC

tissues with metastasis and correlated with the reduced

survival time of GC patients. BCAM promoted GC

metastasis and was regulated by BAN. Moreover, our

ROC analysis showed that both BAN and BCAM inte-

grating with the AJCC staging might be a better prog-

nostic predictor for GC patients than that of the only

AJCC staging.

Recent studies revealed that miR-199a-5p and the

14-3-3beta-FBI1/Akirin2 complex were involved in the

regulation of BCAM expression. In a previous report,

miR-199a-5p was found to repress BCAM expression

by directly targeting its 30UTR in human keratinocytes

(Kim et al., 2015). BCAM was also suggested as a tar-

get gene of the oncogenic 14-3-3beta-FBI1/Akirin2

complex (Akiyama et al., 2013). The 14-3-3beta-FBI1/

Akirin2 complex bound to the BCAM promoter and

repressed BCAM transcription. In our study, we found

that an uncharacterized lncRNA BAN, which is

located in the genomic locus of BCAM, modulated

BCAM expression. The knockdown of BAN sup-

pressed BCAM expression at both the mRNA and

protein levels. Our previous study reported that ephrin

A1 expression was modulated by its sense lncRNA

GMAN, which promoted the translational expression

of ephrin A1 by competitively binding its antisense

RNA GMAN-AS (Zhuo et al., 2019). It is unknown

whether there is also an antisense RNA or miRNA

related to BAN and BCAM. Moreover, knockdown of

BAN reduced the stability of BCAM mRNA

transcripts and BCAM protein. Considering the local-

ization of BAN both in cytoplasm and nucleus, it is

possible that there may exist different mechanisms for

BAN to modulate BCAM expression. However, the

detail molecular mechanisms were needed to be further

investigated.

The previous study has shown that BCAM plays a

functional role in the metastatic spreading of KRAS-

mutant colorectal cancer. Inhibition of BCAM

impaired adhesion of KRAS-mutant colorectal cancer

cells specifically to endothelial cells (Bartolini et al.,

2016). The exact mechanism of BCAM regulating GC

invasion and metastasis should be further explored.

However, the KO of BCAM significantly reduced GC

cell metastasis in a mouse model. These data suggest

that BCAM may act as a promising target for GC

metastasis treatment.

In our study, BCAM and BAN were significantly

upregulated in GC tissues with metastasis and associ-

ated with poor prognosis of GC patients. BCAM and

BAN may be independent prognostic factors for GC

patients according to multivariate Cox analysis. Fur-

thermore, integrating the expression of BCAM and

BAN with AJCC staging showed more sensitivity and

specificity in predicting GC prognosis based on both

PC and ROC analysis. Taken together, our data indi-

cate that BCAM and BAN might be used as prognos-

tic biomarkers for GC patients in clinical practice.

Undoubtedly, the possibility of BCAM and BAN for

the prognostic prediction and treatment of GC needs

to be further explored.

5. Conclusions

This study reveals that the upregulation of BCAM and

its sense RNA BAN are significantly associated with

GC metastasis and a shorter survival time of GC

patients. KO of BCAM reduced GC cell invasion and

metastasis. Knockdown of BAN not only inhibits

BCAM expression, but also inhibits the migration and

invasion of GC cells, which is effectively rescued by

the ectopic expression of BCAM. Our data indicate

that BCAM and BAN might be prognostic biomarkers

for GC patients.
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