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Abstract: The macrolide polyene antibiotic amphotericin B (AmB), remains a valuable drug to
treat systemic mycoses due to its wide antifungal activity and low probability of developing re-
sistance. The high toxicity of AmB, expressed in nephropathy and hemolysis, could be partially
resolved by lowering therapeutic AmB concentration while maintaining efficacy. This work dis-
cusses the possibility of using plant polyphenols and alkaloids to enhance the pore-forming and
consequently antifungal activity of AmB. We demonstrated that phloretin, phlorizin, naringenin,
taxifolin, quercetin, biochanin A, genistein, resveratrol, and quinine led to an increase in the integral
AmB-induced transmembrane current in the bilayers composed of palmitoyloleoylphosphocholine
and ergosterol, while catechin, colchicine, and dihydrocapsaicin did not practically change the AmB
activity. Cardamonin, 4′-hydroxychalcone, licochalcone A, butein, curcumin, and piperine inhibited
AmB-induced transmembrane current. Absorbance spectroscopy revealed no changes in AmB mem-
brane concentration with phloretin addition. A possible explanation of the potentiation is related
to the phytochemical-produced changes in the elastic membrane properties and the decrease in the
energy of formation of the lipid mouth of AmB pores, which is partially confirmed by differential
scanning microcalorimetry. The possibility of AmB interaction with cholesterol in the mammalian
cell membranes instead of ergosterol in fungal membranes, determines its high toxicity. The replace-
ment of ergosterol with cholesterol in the membrane lipid composition led to a complete loss or a
significant decrease in the potentiating effects of tested phytochemicals, indicating low potential
toxicity of these compounds and high therapeutic potential of their combinations with the antibiotic.
The discovered combinations of AmB with plant molecules that enhance its pore-forming ability in
ergosterol-enriched membranes, seem to be promising for further drug development in terms of the
toxicity decrease and efficacy improvement.
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1. Introduction

Fungal invasive infections are associated with a wide range of side effects and high
mortality rates, especially in immunocompromised patients [1–4]. Amphotericin B (AmB)
remains the gold standard in the therapy of serious systemic fungal diseases due to its
broad activity spectrum, low resistance, and high clinical efficacy [5–7] in various cases
including post-COVID fungal infections [8].

AmB belongs to the polyene macrolides with a fungicidal mechanism of action accom-
plished mainly through pore formation in the membranes of fungal cells by the assembly of
antibiotic and ergosterol (ERG) molecules, which induces outflow of electrolytes and other
substances from the intracellular medium [9–12]. In planar lipid bilayers, addition of AmB
on one side leads to the formation of predominantly cation-selective pores [13,14]. Using
solid-state nuclear magnetic resonance spectroscopy and molecular dynamics simulations,
the three-dimensional structure of the AmB pore in the bilayers formed from palmitoy-
loleoylphosphocholine (POPC) and ERG has been resolved as a single-length heptamer
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assembly [15]. The possibility of AmB interaction with mammalian sterol—cholesterol
(CHOL) determines the high toxicity of the antibiotic, which seriously limits clinical use of
AmB [16].

Chemosensitization by natural compounds, to increase the effectiveness of commercial
antimycotics is a promising approach to overcoming pathogen resistance, reducing side
effects and the cost of antifungal treatment, especially when bearing in mind the high cost
of bringing a new antimycotic drug to the pharmaceutical market [17]. Thus, one way to
reduce AmB toxicity is to potentiate its antifungal action with other molecules, so that less
active substance is needed to achieve the same effect. In this regard, the naturally occurring
polyphenols and alkaloids are of particular interest. Alves et al. [18] demonstrated the
potential effect of combining AmB with the phenolic compounds, gallic and ellagic acids,
in pharmaceutical formulations for the treatment of cutaneous leishmaniasis in mice. Two
other phenolic compounds, ethyl cumarate and (1E)-1-(4-hydroxyphenyl)hex-1-en-3-one,
in combination with AmB showed a 16 times decrease in the fungicidal concentration of
AmB, without noticeable cytotoxicity to mammalian cells [19]. Anthraquinones extracted
from Aloe spp., emodin, barbaloin, and chrysophanol, have shown pharmacological syn-
ergism with AmB at sub-inhibitory concentrations against Cryptococcus neoformans [20].
Moreover, the authors suggested that the anthraquinones enhanced the pore formation
by AmB. Nidhi et al. demonstrated that 2-β-pinene, δ-3 carene, and D-limonene from
Citrus aurantium essential oil exhibited synergism with AmB against Candida albicans and in-
creased its antifungal efficacy by more than 8–30 times [21]. According to [22], quercetin pro-
tects red blood cells from AmB-mediated toxicity and decreases the MIC for C. neoformans
from 0.25 µg/mL for AmB alone, to 0.125 µg/mL for the combination. Combined treat-
ment with catechin and AmB showed a marked decrease in the growth of AmB-resistant
C. albicans and a two-fold decrease in MIC for the susceptible strain [23]. The synergistic
effect of resveratrol and AmB was studied against Leishmania amazonensis [24]. The syn-
ergistic interaction of eugenol and AmB was demonstrated [25]. Two indole alkaloids,
shearinines D and E, were shown to enhance the AmB potency by eight times against
clinical Candida spp. including the prevention of the biofilm formation [26]. A series of syn-
thetic analogs of a pyrrolo-quinoline alkaloid, camptothecin, demonstrate the synergistic
antifungal activity with AmB against yeasts [27]. Despite the fact that the abovementioned
small molecules successfully potentiated AmB activity, no mechanism of action was studied
or even proposed for such findings. Therefore, the search for AmB potentiators seems to be
random and inefficient. Understanding the underlying principle of similar action shown
by chemically different molecules could pave the path for a targeted and highly productive
approach for AmB improvement and antibiotic development.

In this work, we tested the idea that small molecules of plant origin can potentiate the
pore-forming ability of AmB by modulating membrane lipid media. Plant polyphenols,
phloretin, phlorizin, cardamonin, naringenin, catechin, taxifolin, quercetin, biochanin A,
genistein, resveratrol, 4′-hydroxychalcone, licochalcone A, butein, and curcumin, and
alkaloids, quinine, colchicine, piperine, and dihydrocapsaicin, were tested. Figure 1
demonstrates the chemical structure of the tested phytochemicals. To predict the pos-
sible selectivity index, lipid bilayers enriched with ERG and CHOL mimicking the fungal
and mammalian cell membranes were used. The discovered combinations of AmB with
phytochemicals seem to be promising for developing innovative lipid formulations of
the antibiotic.
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Figure 1. Chemical structures of tested phytochemicals (phloretin, phlorizin, cardamonin, naringenin,
catechin, taxifolin, quercetin, biochanin A, genistein, resveratrol, 4′-hydroxychalcone, licochalcone A,
butein, and curcumin) and alkaloids (quinine, colchicine, piperine, and dihydrocapsaicin).

2. Materials and Methods
2.1. Materials

1-Palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) and cholesterol (CHOL)
were purchased from Avanti Polar Lipids (Avanti Polar Lipids, Inc., Alabaster, AL, USA).
Amphotericin B (AmB), ergosterol (ERG), KCl, HEPES, KOH, EDTA, dimethylsulfoxide
(DMSO), methanol, chloroform, polyphenols (phloretin (≥99%, HPLC), phlorizin (≥99%,
HPLC), cardamonin (≥98%, HPLC), naringenin (≥95%, HPLC), catechin (≥98%, HPLC),
taxifolin (≥90%, HPLC), quercetin (≥95%, HPLC), biochanin A (≥95%, HPLC), genistein
(≥98%, HPLC), resveratrol (≥99%, HPLC), 4′-hydroxychalcone (≥99%, HPLC), licochal-
cone A (≥96%, HPLC), butein (≥98%, HPLC), curcumin (≥80%, HPLC)), and alkaloids
(quinine (≥98%, HPLC), colchicine (≥95%, HPLC), piperine (≥97%, HPLC), and dihydro-
capsaicin (≥85%, HPLC)) were purchased from Sigma-Aldrich Company Ltd. (Gillingham,
UK). Membrane bathing solutions of 0.15 M KCl (10 mM HEPES, pH 7.4) and 2.0 M KCl
(10 mM HEPES, pH 7.4) were used. All experiments were performed at 25 ± 1 ◦C.

2.2. Electrophysiological Assay: The Formation of the Planar Lipid Bilayers and Their Modification
by an Antibiotic and Phytochemicals

The planar lipid bilayers without solvent lenses were constructed according to the
Montal and Mueller technique [28] on the aperture in the Teflon film which separates the
Teflon chamber into two distinct compartments (in and out). The aperture was preliminarily
treated with hexadecane. The planar lipid bilayers were composed of mixtures of 67 mol.%
POPC and 33 mol.% sterol (ERG or CHOL) and bathed in 2.0 M KCl (pH 7.4). After the
POPC/ERG (67/33 mol.%) and POPC/CHOL (67/33 mol.%) bilayers were completely
stabilized in time, AmB was added from a 10 mM stock solution in DMSO to the in-
compartment up to concentrations in the ranges of 0.5–8 and 3–10 µM, respectively, to obtain
an integral current (more than 50 pA). The AmB concentrations were chosen according
to [14].

To modify the pore-forming ability of AmB, polyphenols and alkaloids were intro-
duced into both chamber compartments up to 100 and 400 µM, respectively. The concentra-
tions were chosen to maximize the effects of phytochemicals on the pore-forming antibiotic
activity based on the obtained dependencies of AmB-induced transmembrane current on
their concentration. Figure 2 presents the examples of I(C)-curves for different polyphe-
nols (a) and alkaloids (b) in POPC/ERG (67/33 mol.%) and POPC/CHOL (67/33 mol.%)
bilayers. An increase in polyphenol and alkaloid concentrations from 100 to 150 and from
400 to 600 µM, respectively, does not lead to an increase in their effects. Reduction in
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the concentrations of polyphenols and alkaloids up to 25 and 100 µM, respectively, is
impractical due to the diminishing of the effects.
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Figure 2. The dependence of transmembrane current induced by amphotericin B on the concentra-
tion of different polyphenols (a,c) and alkaloids (b,d). Membranes were formed from POPC/ERG
(67/33 mol.%) (a,b) and POPC/CHOL (67/33 mol.%) (c,d) and bathed in 2.0 M KCl pH 7.4. The
transmembrane voltage was 50 mV.

Tested phytochemicals alone do not alter the ion permeability of model lipid mem-
branes at concentrations used within 120 min. Solvent (DMSO or ethanol) alone did not
cause any changes in the stability and ion permeability of the model lipid membranes at
the concentrations used (≤10−4 mg/mL).

The variation of the AmB pore-forming activity upon the introduction of phytochemi-
cals was assessed as the ratio of the AmB-induced current flowing through the POPC/ERG
(67/33 mol.%) or POPC/CHOL (67/33 mol.%) bilayer at a transmembrane voltage equal
to 50 mV after (Im) and before the addition of plant molecule (Io). The Im/Io-values were
averaged from three to seven independent experiments and are presented as mean ± S.E.
(p ≤ 0.05).

The measurements of the transmembrane current (I) and the applied transmembrane
voltage (V) were produced using Ag/AgCl electrodes with 2 M KCl/1.5% agarose bridges.
At positive voltage the in-side compartment was positive with respect to the out-side.

The Axopatch 200B amplifier (Molecular Devices, LLC, Orleans Drive, Sunnyvale,
CA, USA) in the voltage-clamp mode was used to measure the current. The signals were
digitized by Digidata 1440A (Molecular Devices, LLC, Orleans Drive, Sunnyvale, CA, USA)
at a 5 kHz sampling frequency using 1 kHz low-pass filtering. The data analysis was
performed using pClamp 10.2 (Molecular Devices, LLC, Orleans Drive, Sunnyvale, CA,
USA) and filtering by an 8-pole Bessel 100 kHz and Origin 8.0 (OriginLab Corporation,
Northampton, MA, USA).
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2.3. Absorbance Spectroscopy Assay: The Formation of the Polyene-Loaded Lipid Vesicles and Their
Modification by Phloretin

The technique of [29] with modifications for the formation of the polyene-loaded
liposomes was used. Lipid mixture (67 mol.% POPC and 33 mol.% sterols (CHOL or
ERG) without or with AmB and/or phloretin were suspended in a mixture of chloroform
(67 vol.%) and methanol (33 vol.%). Equimolar contents of lipid, AmB and flavonoids
(phloretin, biochanin A, and genistein) were used. The resulting solution was evaporated
in a vacuum rotary evaporator at room temperature for 120 min. Further, the lipid film was
dispersed in a buffer (0.15 M KCl, 10 mM HEPES, 1 mM EDTA, pH 7.4) and was exposed to
ultrasound for 10 min. The AmB absorbance spectrum in the lipid microenvironment in the
absence and presence of phytochemicals revealed distinct maxima at 363 nm and 427 nm
that can be referred to self-associated and monomeric membrane forms of antibiotic [30].
The optical density values were averaged from two to four independent experiments and
presented as mean ± S.E. (p ≤ 0.05).

Absorbance spectroscopy was determined using a spectrofluorometer “Fluorat-02-
Panorama” (Lumex, Saint-Petersburg, Russia). All liposome suspensions were scanned
from 300 to 450 nm with a 1 nm step. The extinction coefficient of AmB in DMSO was
determined experimentally as 1.1 × 105 M−1cm−1 and was in good agreement with the
literature data [30,31].

2.4. Differential Scanning Microcalorimetry

Differential scanning microcalorimetry experiments were performed by a µDSC 7EVO
microcalorimeter (Setaram, Caluire-et-Cuire, France). Giant unilamellar vesicles compose
of DPPC were prepared by the electroformation method using Vesicle Pre Pro@ (Nanion
Technologies, Munich, Germany) (standard protocol, 3 V, 10 Hz, 58 min, 55 ◦C). The
resulting DPPC liposome suspension contained 2.5 mM lipid and was buffered by 5 mM
HEPES at pH 7.4. The molar ratio of lipid:phlorizin and lipid:biochanin A was equal
to 10:1. The liposomal suspension was heated and cooled at a constant rate of 0.2 and
0.3 ◦C/min, respectively. The reversibility of the thermal transitions was assessed by
reheating the sample immediately after the cooling step from the previous scan. The
temperature dependence of the excess heat capacity was analyzed using Calisto Processing
(Setaram, Caluire-et-Cuire, France).

The peaks on the thermograms were characterized by the maximum temperature of the
main phase transition (Tm) of DPPC and the width of the main peak, i.e., the temperature
difference between the upper (onset) and lower (completion) boundary of the main phase
transition (∆Tb) of DPPC.

The values of ∆Tm and ∆∆Tb were averaged from two independent experiments and
presented as mean ± S.E. (p ≤ 0.05).

3. Results and Discussion

To mimic the action of AmB on fungal cell membranes the model lipid membranes
were constructed from the binary mixture of POPC with the major fungal sterol, ERG [32,33].
The effects of polyphenols (phloretin, phlorizin, cardamonin, naringenin, catechin, taxifolin,
quercetin, biochanin A, genistein, resveratrol, 4′-hydroxychalcone, licochalcone A, butein,
and curcumin) and alkaloids (quinine, colchicine, piperine, and dihydrocapcaicin) on the
AmB pore-forming activity in the membranes composed of POPC and ERG (67/33 mol.%)
were tested.

Figure 3 presents the kinetics of transmembrane current produced by AmB before
and after the addition of the phytochemicals. The inset in Figure 3a demonstrates the
fluctuations in single AmB pores at the initial time moment. Figure 3 shows that the addition
of phloretin (3a), phlorizin (3b), naringenin (3d), taxifolin (3f), quercetin (3g), biochanin
A (3h), genistein (3k), resveratrol (3m), and quinine (3r) led to significant improvement of
pore-forming activity of AmB expressed during the increase in transmembrane current.
The addition of catechin (3e) and dihydrocapsaicin (3u) slightly increased AmB pore-
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forming activity. Colchicine (3s) did not practically modulate AmB-produced current.
Interestingly, the addition of the cardamonin (3c), 4′-hydroxychalcone (3n), licochalcone A
(3o), butein (3p), curcumin (3q) and piperine (3t) caused a decrease in the AmB-produced
transmembrane current. Table 1 presents the mean ratios between trans-bilayer currents
induced by the antibiotic after and before the addition of tested phytochemicals (Im/Io). Im/Io-
value increased in the following order: butein ≈ piperine ≈ curcumin ≈ cardamonin ≈
4′-hydroxychalcone ≈ licochalcone A (Im/Io varies in the range from 0.4 to 0.7) < colchicine
(Im/Io is about 1) < catechin ≈ dihydrocapsaicin (Im/Io is about 2) < naringenin ≈ taxifolin
(Im/Io is about 3) ≤ phlorizin ≈ quinine (Im/Io is 4 ÷ 5) ≤ quercetin ≈ resveratrol (Im/Io is
6 ÷ 7) ≤ genistein ≈ biochanin A ≈ phloretin (Im/Io is about 10 ÷ 18).
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Figure 3. The effects of different phytochemicals on the pore-forming activity of amphotericin
B. Polyphenols (a–q) and alkaloids (r–u) were added up to the concentration of 100 and 400 µM,
respectively. The arrows indicate the moments of addition of phloretin (a), phlorizin (b), cardamonin
(c), naringenin (d), catechin (e), taxifolin (f), quercetin (g), biochanin A (h), genistein (k), resveratrol
(m), 4′-hydroxychalcone (n), licochalcone A (o), butein (p), curcumin (q), quinine (r), colchicine
(s), piperine (t), and dihydrocapsaicin (u) to the membrane bath solution (2.0 M KCl, pH 7.4). The
membranes were formed from POPC/ERG (67/33 mol.%). The antibiotic was added at the initial
time moment and their concentration in bathing solution was equal to 5 (a), 2 (b), 3 (c), 1 (d), 7 (e),
3 (f), 2 (g), 1 (h), 1 (k), 2 (m), 5 (n), 5 (o), 8 (p), 5 (q), 1 (r), 3 (s), 7 (t), and 3 µM (u). The transmembrane
voltage was 50 mV. Inset: The fluctuations of the transmembrane current caused by openings and
closures of single ion-permeable pores produced by amphotericin B.

Table 1. The effects of plant metabolites on the amphotericin B pore-forming activity and dipalmi-
toylphosphocholine main phase transition.

Phytochemical
Im/Io

−∆Tm, ◦C ∆∆Tb, ◦C
POPC/ERG POPC/CHOL

phloretin 18.1 ± 14.0 0.9 ± 0.1 1.2 ± 0.3 [34] 5.1 ± 0.7 [34]

phlorizin 4.3 ± 1.1 3.2 ± 0.6 0.6 ± 0.1 0.6 ± 0.2

cardamonin 0.7 ± 0.2 n.d. 1.5 ± 0.6 [35] 2.4 ± 0.5 [35]

naringenin 2.7 ± 0.5 1.4 ± 0.5 1.3 ± 0.2 [35] 1.9 ± 0.2 [35]

catechin 1.7 ± 0.2 1.0 ± 0.1 0.3 ± 0.1 [34] 1.3 ± 0.2 [34]

taxifolin 3.5 ± 1.3 1.1 ± 0.1 0.9 ± 0.1 [34] 1.4 ± 0.2 [34]
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Table 1. Cont.

Phytochemical
Im/Io

−∆Tm, ◦C ∆∆Tb, ◦C
POPC/ERG POPC/CHOL

quercetin 6.2 ± 2.6 1.1 ± 0.1 0.3 ± 0.1 [36] 3.2 ± 0.3 [36]

biochanin A 11.9 ± 6.7 0.8 ± 0.1 0.9 ± 0.1 2.7 ± 0.3

genistein 9.8 ± 4.4 0.9 ± 0.1 0.2 ± 0.1 [34] 0.7 ± 0.1 [34]

resveratrol 6.7 ± 1.9 0.9 ± 0.2 1.9 ± 0.2 [35] 2.3 ± 0.4 [35]

4′-hydroxychalcone 0.7 ± 0.2 ND 2.0 ± 0.5 [35] 4.9 ± 0.6 [35]

licochalcone A 0.6 ± 0.1 ND 1.8 ± 0.1 [35] 4.5 ± 0.4 [35]

butein 0.4 ± 0.1 ND 2.3 ± 0.5 [35] 5.1 ± 0.4 [35]

curcumin 0.5 ± 0.1 ND 2.6 [37] * 8.6 [37] *

quinine 4.9 ± 2.9 1.6 ± 0.2 0.6 ± 0.1 [38] 0.8 ± 0.1 [38]

colchicine 1.1 ± 0.3 ND 0.8 ± 0.3 [38] 1.9 ± 0.3 [38]

piperine 0.4 ± 0.1 ND 2.9 ± 0.3 [38] 3.4 ± 0.2 [38]

dihydrocapsaicin 1.9 ± 0.3 1.7 ± 0.2 4.1 ± 0.2 [38] 4.5 ± 0.4 [38]
Im/Io—a ratio of the amphotericin B produced transmembrane current after and before the addition of the phy-
tochemical at 50 mV. Membranes were composed of POPC/ERG or POPC/CHOL (67/33 mol.%) and bathed
by 2.0 M KCl (pH 7.4). The concentration of phloretin, phlorizin, cardamonin, naringenin, catechin, taxifolin,
quercetin, resveratrol, 4′-hydroxychalcone, licochalcone A, butein, and curcumin in the bilayer bathing solution
was equal to 100 µM; the concentration of quinine, colchicine, piperine, and dihydrocapsaicin was equal to
400 µM. ∆Tm, ∆∆Tb—phytochemical-induced changes in the main phase transition temperature of dipalmi-
toylphosphocholine and the width of the peak corresponding to lipid melting at the lipid:phytochemical molar
ratio of 10:1; *—according to [37] at the lipid/curcumin molar ratio of 16:1. ND—not determined due to absence
of pharmacological perspective for combination with antibiotics.

First, we checked if the effects are related to the alteration in the partitioning of the
antibiotic between the aqueous and membrane phases. To compare the AmB concentration
in the untreated POPC/ERG-liposomes and after the introduction of the most effective
potentiator, phloretin, we performed absorbance spectroscopy measurements. The AmB
absorbance spectrum in the lipid microenvironment revealed distinct maxima at 427, 399,
376, and 363 nm. According to [30,39], the first three maxima are typical for the solution
of AmB in DMSO and are related to the monomeric form of the antibiotic, while the
last one is due to the absorbance of AmB aggregates. Figure 4 demonstrates that the
phloretin, biochanin A, and genistein did not practically affect the antibiotic absorbance
spectrum, in particular, the optical density at 427 and 363 nm, indicating that these plant
polyphenols did not alter the lipid/water partitioning of AmB and the balance between its
monomeric and self-associated membrane forms. Thus, we concluded that the enhancement
in AmB-produced transmembrane current by phloretin, biochanin A, and genistein was
not related to the increase in the membrane concentration of polyene. The intersection of
the absorption spectra of the antibiotic and the phytocompounds, which reduce the AmB
pore-forming activity, cardamonin, 4′-hydroxychalcone, licochalcone A, butein, curcumin,
and piperine [40–45], does not allow one to estimate the antibiotic concentration in the
membrane in the presence of these compounds by the spectrophotometric method.

It is known that antifungal polyene macrolide antibiotics AmB and its close analog,
nystatin, added to the lipid bilayer from one-side, form asymmetric single-length pores. The
length of the pores is insufficient to penetrate the entire membrane [13,46]. Thus, polyene
pore formation requires bending of the opposite lipid monolayer to form a lipid mouth
of a pore having a positive curvature. This membrane deformation incurs an energetic
cost that depends on bilayer material properties. Induction of local positive curvature
stress in the membrane decreases the cost of pore formation and enhances the pore-forming
activity of nystatin [31,38,47]. Based on the dependence of the polyene pores on curvature
stress, we assessed whether the compounds could cause the changes in AmB-produced
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current by altering membrane elastics. Table 1 also summarizes the results of differential
scanning microcalorimetry measurements of dipalmitoylphosphocholine melting after
phytochemical addition. Figure 5 demonstrate the effects of phlorizin and biochanin A at
the lipid:polyphenol molar ratio of 10:1 on the heating thermograms of DPPC.
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Figure 4. (a) Amphotericin B absorbance at 427 nm characterizing the antibiotic concentration in
POPC/ERG (67/33 mol.%) and POPC/CHOL (67/33 mol.%) liposomes in the absence and presence
of phloretin, biochanin A, and genistein. (b) The ratio of amphotericin B absorbance at 363 and 427 nm
characterizing the balance between self-associated and monomeric antibiotic forms in the distinct
lipid microenvironment in the absence and presence of phytochemicals. Inset: The representative
amphotericin B absorbance spectrums in the absence (control) and presence of phloretin in the
POPC/ERG (67/33 mol.%) vesicles.
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Figure 5. Heating thermograms of DPPC in the absence (black curve) and presence of phlorizin
(purple curve) and biochanin A (red curve). The lipid:polyphenol molar ratio is equal to 10:1.

One can notice that addition of phloretin, phlorizin, cardamonin, naringenin, taxifolin,
biochanin A, resveratrol, 4′-hydroxychalcone, licochalcone A, butein, curcumin, quinine,
colchicine, piperine, and dihydrocapsaicin led to a decrease in Tm and an increase in ∆Tb by
more than 0.5 ◦C. Catechin, quercetin, and genistein slightly affected lipid melting temper-
ature, but demonstrated a significant effect on phase transition peak width. Diminishment
of the temperature and/or cooperativity of lipid melting indicated the disordering action
of the tested phytochemicals on the membranes. More probably, these plant molecules are
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able to absorb on the membrane and intercalate between lipid heads, increasing the area per
lipid molecule and causing membrane disordering. This suggests that the phytochemicals
reduce the energetic cost of bilayer deformation. Thus, the action of phytochemicals on
the lipid packing might explain the potentiating effects of phloretin, phlorizin, naringenin,
taxifolin, biochanin A, resveratrol, quinine, and dihydrocapsaicin. The schematic represen-
tation of potentiating AmB pore formation by embedding of the phytochemicals between
lipid heads into hydrophilic regions of the lipid bilayer is shown in Figure 6. A similar
explanation was applied by Ingolfsson et al. to elucidate the alteration in gramicidin A
pore-forming ability by capsaicin, curcumin, genistein, and resveratrol [48].
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Figure 6. Scheme illustrating the facilitation of amphotericin B pore formation by the adsorption of
plant small molecules on the lipid bilayer. Membrane lipids, pore-forming complexes (composed
of amphotericin B and sterol), and phytochemical molecules are colored with grey, red, and violet
respectively. h and h′ are the thicknesses of lipid bilayer in the absence and presence of phytochemical
respectively, dotted curves indicates the positive curvature stress in the vicinity of lipid mouth of
amphotericin B pore in the absence (grey) and presence of phytochemical (red) respectively.

Considered in this way, the lack of effect of colchicine as well as the inhibitory effect of
cardamomin, 4′-hydroxychalcone, licochalcone A, butein, curcumin, and piperine seems to
be surprising. Comparing the structures of these phytochemicals one can notice that all of
them share the same structural motif—a carbonyl group linked to a fragment composed
of several conjugated double bonds. This motif is able to form both the electrostatic
interactions with the mycosamine sugar residue and π–π electron interactions with the
hydrophobic heptaene chain of AmB. It is possible that cardamomin, 4′-hydroxychalcone,
licochalcone A, butein, curcumin, and piperine might compete with ERG for binding to
the antibiotic and thus destroy the pore-forming AmB/ERG complexes. According to
Neumann et al. [49], the complex between polyene and sterol molecules is stabilized by
van der Waals interactions. The coplanarity and parallelism between polyene and sterol
molecules determine the strength of their interaction. At the same time the hydrogen bonds
formed between the sterol OH-group and AmB amino sugar residue control the relative
orientation of the interacting molecules. The π–π electron interactions between double
bonds in the steroid core and the side chain of the ERG molecule and polyene chain of
AMB, additionally stabilize the AmB/ERG complex [50]. The possible influence of small
molecules on the stability of polyene–sterol complexes was also discussed in [51,52]. The
possibility of interaction between tested molecules having the indicated structural motif
and AmB can modify the interaction of the polyene with the sterol and affect the stability of
the pore-forming complexes. Figure 7 shows the schematic representation of intermolecular
bonds between AmB and piperine molecules.
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The sterol-dependent mode of action of polyene macrolides suggests that the specificity
of antibiotics for different cells is determined by the sterol composition of their membranes.
The preferred affinity of AmB for ERG controls the selectivity of its action on fungal cells.
However, this selectivity is not absolute, AmB can interact with CHOL in membranes of
mammalian cells; and this is the reason for the high toxicity of the antibiotic. In order to pre-
dict the possible toxicity, we tested the effects of phytochemicals on the pore-forming ability
of AmB in lipid bilayers composed of POPC/CHOL (67/33 mol.%) (Table 1). Phlorizin,
naringenin, quinine, and dihydrocapsaicin caused an increase in the pore-forming activity
of AmB in the CHOL-containing bilayers by 3, 1.4, 1.6 and 1.7 times, respectively. Phloretin,
catechin, taxifolin, quercetin, biochanin A, genistein, and resveratrol did not practically
affect AmB-produced current in the CHOL-enriched membranes (Im/Io was about 1). Taking
into account that the membrane lipid packing, and phase segregation depend on the type of
membrane-forming sterol [53], a possible reason for the observed discrepancy between the
effects of phytochemicals on the AmB pore-forming ability in ERG- and CHOL-enriched
lipid bilayers might be related to a difference between elastic properties of these mem-
branes. An increase in the pore-forming ability of AmB in ERG-containing membranes and
the absence of the potentiating effect of phloretin, catechin, taxifolin, quercetin, biochanin
A, genistein, and resveratrol on the polyene-induced current in CHOL-enriched bilayers
(Table 1) can result in an increase in the antibiotic selectivity index. In silico evaluation of rat
acute toxicity of identified potentiators of the pore-forming activity of AmB using GUSAR
software [54] predicts low toxicity of the compounds with various routes of administration.
Taking into account the in silico evaluation, the plant polyphenols are recommended for
consideration in the development of new improved liposomal formulations of AmB. Thus,
the approach used, based on the combination of AmB with plant molecules affecting mem-
brane elasticity, can be applied not only to reduce the effective therapeutic concentration of
the polyene, but also to expand its therapeutic window.

4. Conclusions

(1) Phloretin, phlorizin, naringenin, taxifolin, quercetin, biochanin A, genistein, resver-
atrol, and quinine are able to significantly potentiate the AmB pore-forming ability. This
effect might be explained by membrane disordering. The replacement of ergosterol with
cholesterol dramatically diminishes the potentiating effects of phloretin, taxifolin, quercetin,
biochanin A, genistein, and resveratrol, demonstrating the possibility to enhance the selec-
tivity index of the antibiotic.

(2) A combination of AmB with these polyphenols seems to be a promising approach
to decrease antibiotic toxicity while maintaining its efficacy.

(3) Cardamomin, 4′-hydroxychalcone, licochalcone A, butein, curcumin and piperine
are able to inhibit the AmB pore-forming ability, probably by binding the antibiotic.
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For the first time, the question of why various compounds of different chemical
structures and plant sources have a similar enhancing effect on the membrane activity of
AmB has been investigated. Identified phytochemicals are able to alter membrane elasticity,
which leads to a decrease in the energy cost of the formation of the lipid mouth of AmB
pores. This opens a principal way of searching for new possible potentiators of membrane
and, probably, antifungal antibiotic activity.

In addition, one way to regulate AmB activity has been discovered; binding of plant
molecules containing a certain structural motif. It should be noted that the production of
compounds with a similar structural motif, asperjinone and terrain, by Aspergillus terreus [55]
might be an explanation for the refractory nature of these fungi to AmB therapy.
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