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ABSTRACT Daptomycin, a last-line-of-defense antibiotic for treating Gram-positive
infections, is experiencing clinical failure against important infectious agents, includ-
ing Corynebacterium striatum. The recent transition of daptomycin to generic status
is projected to dramatically increase availability, use, and clinical failure. Here we
confirm the genetic mechanism of high-level daptomycin resistance (HLDR; MIC �

�256 �g/ml) in C. striatum, which evolved within a patient during daptomycin ther-
apy, a phenotype recapitulated in vitro. In all 8 independent cases tested, loss-of-
function mutations in phosphatidylglycerol synthase (pgsA2) were necessary and suf-
ficient for high-level daptomycin resistance. Through lipidomic and biochemical
analysis, we demonstrate that daptomycin’s activity is dependent on the membrane
phosphatidylglycerol (PG) concentration. Until now, the verification of PG as the in
vivo target of daptomycin has proven difficult since tested cell model systems were
not viable without membrane PG. C. striatum becomes daptomycin resistant at a
high level by removing PG from the membrane and changing the membrane com-
position to maintain viability. This work demonstrates that loss-of-function mutation
in pgsA2 and the loss of membrane PG are necessary and sufficient to produce high-
level resistance to daptomycin in C. striatum.

IMPORTANCE Antimicrobial resistance threatens the efficacy of antimicrobial treat-
ment options, including last-line-of-defense drugs. Understanding how this resis-
tance develops can help direct antimicrobial stewardship efforts and is critical to de-
signing the next generation of antimicrobial therapies. Here we determine how
Corynebacterium striatum, a skin commensal and opportunistic pathogen, evolved
high-level resistance to a drug of last resort, daptomycin. Through a single mutation,
this pathogen was able to remove the daptomycin’s target, phosphatidylglycerol
(PG), from the membrane and evade daptomycin’s bactericidal activity. We found
that additional compensatory changes were not necessary to support the removal of
PG and replacement with phosphatidylinositol (PI). The ease with which C. striatum
evolved high-level resistance is cause for alarm and highlights the importance of
screening new antimicrobials against a wide range of clinical pathogens which may
harbor unique capacities for resistance evolution.
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C. striatum develops high-level
daptomycin resistance through a single
nonfunctional point mutation in pgsA2, which
results in a complete loss of
phosphatidylglycerol (the in vivo and in vitro
target of daptomycin) from the membrane.
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Current trends in increasing antibiotic resistance and decreasing drug development
require urgent mitigation (1–3). Antibiotic-resistant infections claim over 700,000

lives globally each year, and this annual toll is predicted to swell to 10 million deaths
a year by 2050 without significant intervention. A growing number of bacterial infec-
tions are already resistant to virtually all first-line antibiotics (2, 4). Physicians are forced
to use “last-resort,” broad-spectrum antibiotics more frequently, and resistance to even
these carefully safeguarded drugs has emerged (5, 6). Daptomycin is one such last-
resort nonlytic (7) lipopeptide antibiotic and is effective against both stationary-phase
and log-phase Gram-positive bacterial pathogens (8), including Staphylococcus aureus,
Enterococcus faecium, and Corynebacterium striatum (9–11). Daptomycin integrates
Ca2� dependently into the bacterial cell membrane, causing membrane dysfunction
that leads to K�, Mg2�, and ATP leakage and cell death (12, 13). Very low levels of
resistance were observed during the early phase of daptomycin’s clinical use. Regret-
tably, recent clinical reports of treatment failures have emerged, with target pathogens
exhibiting �2,000-fold increases in daptomycin resistance (DR) (14–16), often over
short time scales (hours to a few days of treatment), which are beginning to challenge
daptomycin’s efficacy. These failures are expected to expand, as daptomycin use is
predicted to increase dramatically because its recent transition to generic status (17)
will increase its availability for clinical use.

C. striatum is an emerging opportunistic pathogen that colonizes the skin much like
S. aureus and has the ability to rapidly transition from susceptible to resistant to the
critical antibiotic daptomycin. This work establishes a genetic, transcriptomic, lipidomic,
and biochemical understanding of how C. striatum rapidly evolves high-level dapto-
mycin resistance (HLDR) which is mechanistically distinct from that seen with S. aureus
and Streptomyces spp. In S. aureus, low-level, stepwise accumulations in resistance
phenotypes are responsible for low (MIC, 2 to 4 �g/ml) and intermediate (MIC, 4 to
8 �g/ml) daptomycin resistance. The majority of these observations come from patho-
genic S. aureus, which was the first approved therapeutic target for daptomycin (18).
Accumulation of multiple single nucleotide polymorphisms (SNPs) in the yycFGHI
operon in S. aureus has resulted in 2-to-6-fold increases in daptomycin resistance
through cell wall thickening and alteration of membrane charge (19–24). Increases in
levels of positively charged membrane phospholipids, which reduce the affinity of the
Ca2�-conjugated daptomycin for the surface membrane, increased the MIC. Addition-
ally, mutations that alter lipid translocation and decrease membrane fluidity and
thickening of the cell wall have led to low-level (3-to-6-fold) increases in daptomycin
resistance (21, 25). Mutations associated with the physiological changes in pathogenic
S. aureus described above have all led to small (2-to-6-fold) stepwise increases in
resistance over long periods of time (weeks of treatment) and to loss of resistance to
daptomycin when the strain is no longer under daptomycin’s selection pressure (26). In
contrast, some environmental Streptomyces species have been shown to inactivate
daptomycin enzymatically (27, 28); clinical isolates have not used this mechanism to
date.

The first report of higher levels (~20-fold over the wild-type [WT] strain) of dapto-
mycin resistance came from laboratory adaptive evolution experiments performed with
the nonpathogenic soil bacterium Bacillus subtilis (29). Daptomycin-resistant B. subtilis
was found to harbor SNPs in 44 genes, including predicted reduction/loss-of-function
mutations in phosphatidylglycerol (PG) synthase A (pgsA), an essential enzyme for PG
synthesis (29, 30). Characterization of the lipid membrane revealed a reduction in PG
content from 30% in the wild-type strain to 10% in the resistant mutant. Consistent
with the lack of complete ablation of PG in the membrane, attempts to knock out pgsA
alone genetically were not successful due to the presumed essentiality of PG in
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B. subtilis (29). Nevertheless, studies of daptomycin’s target to date corroborate in vivo
the importance of PG in daptomycin activity (29–31). Indeed, a recent comparative
genomic and lipidomic study of S. aureus, C. striatum, and Enterococcus faecalis indi-
cated that mutations in PG synthase and the subsequent lack of PG synthesis confer
daptomycin resistance (31).

Over the past few years, there has been a steady increase in reports of even higher
levels of daptomycin resistance (�4,000-fold increases in resistance) in a number of
clinical pathogens, including viridians group streptococci (15), Enterococcus faecium
(11), and C. striatum (14). This high-level daptomycin resistance (HLDR)— defined here
as a MIC of �256 �g/ml daptomycin—was first observed in C. striatum, in a patient with
native valve endocarditis in 2012 (32). In 2014, a clinical laboratory reported in vivo
evolution of HLDR C. striatum in a patient with an infected left ventricular assist device,
during 17 days of daptomycin therapy (14). Evolution of HLDR was recapitulated in vitro
in 100% of tested C. striatum isolates (n � 50) after 24 h of daptomycin exposure (33).
C. striatum is a Gram-positive bacterium which typically resides as a commensal
organism on the skin (34). However, it has become a growing threat to hospital systems
and patients as an opportunistic pathogen. Indeed, C. striatum has been associated
with a plethora of infection types over the past 20 years, including bacteremia,
endocarditis, urinary tract, wound, respiratory, central line, medical device, and hard-
ware infections (14, 35–41, 72). Here we used a combination of comparative genomics,
transcriptomics, lipidomics, electron microscopy, and biochemical lipid and liposome
characterization to elucidate the mechanism of HLDR evolved in C. striatum both within
patients and in vitro. We demonstrate that loss-of-function mutations in pgsA2 resulted
in reductions in the levels of PG, the primary target of this last-resort drug, from ~45%
to �1% in the membrane, resulting in HLDR. Our work demonstrates that this is an
important consideration for designing future antibiotics that target the membrane
since bacteria can manipulate lipid composition to effectively evade lipid targeted
lipopeptides.

RESULTS

Analysis was performed on an evolved inpatient HLDR isolate (RP1b) and seven
evolved in vitro HLDR isolates. These strains were banked clinical C. striatum isolates
(Fig. 1). Paired susceptible strains obtained prior to HLDR evolution were used as
controls. A total of 17 days elapsed between collection of the inpatient susceptible
strain and HLDR isolate collection, and 24 h elapsed between collection of the in vitro
susceptible strain and HLDR isolate collection.

PG synthase mutations in HLDR C. striatum strains. All cases of evolved high-level
daptomycin resistance (HLDR) in C. striatum that were tested (Fig. 1 and 2) had a
predicted loss-of-function mutation in PG synthase. We performed whole-genome
sequencing of eight pairs of in vivo and in vitro evolved HLDR C. striatum isolates (n �

16) and found pgsA2 to be the only gene mutated consistently in all HLDR mutants. The
affected gene encodes PG synthase, responsible for converting cytidine diphosphate
diacylglycerol (CDP-DAG) to PG (Fig. 2A). The mutations observed included coding
changes at universally conserved sites (Fig. 2B), the dimer interface (Fig. 2C), the active
site (Fig. 2D), and those leading to premature stop codons (Fig. 2E). Each of these
mutations is predicted by snpEFF (42, 43) and PHYREII (44, 45) homology modeling to
result in loss of PG synthase activity.

We found no additional SNPs in the C. striatum genomes predicted to alter cellular
biosynthetic processes in potential compensation for PG synthase loss of function. In
B. subtilis, loss of just pgsA2 (PG synthase) was lethal and compensatory mutations were
necessary for cell survival (29), leading us to consider whether additional mutations
may also be required for HLDR in C. striatum. A total of 8 additional nonsynonymous
SNPs in biosynthetic pathways were detected in the in vivo evolved isolate (see
Fig. S1 in the supplemental material). Aside from the pgsA2 mutation, no SNPs in
biosynthetic pathways were detected in the in vitro evolved HLDR isolates. This is
consistent with the longer time between susceptible and resistant isolate collection in
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vivo (17 days) versus in vitro (24 h). The remaining SNPs in genes not related to
biosynthesis did not cluster in similar pathways (Data Set S1). No consistent genetic
change besides the loss-of-function mutation in pgsA is predicted to result in compen-
satory changes that would contribute to membrane viability or HLDR in C. striatum.

All of the parent daptomycin-susceptible C. striatum isolates were derived from
different patients, and the in vivo and in vitro HLDR phenotypes were evolved inde-
pendently (Fig. 1). This breadth of evolution events in C. striatum isolates obtained from
infected patients provides a robust, clinically relevant cohort for assessing mutations
necessary to daptomycin resistance. Accordingly, comparative genomics indicated that
loss-of-function SNPs in pgsA2 encoding PG synthase represent the only genomic
change necessary for HLDR and that no additional mutations are required to maintain
resistant cell viability (Fig. 2). In a recent report of evolved xenobiotic resistance in
Corynebacterineae (the suborder which includes Corynebacterium), minimal genetic
mutations were observed between susceptible and resistant pairs, but large-scale
transcriptomic changes were found to explain the change in phenotype (31, 46).
Accordingly, we tested whether whole-cell transcriptional changes were potentially
responsible for compensating for the loss of PG synthase function and stabilization of
the membrane in HLDR C. striatum.

Minimal transcriptional changes in HLDR C. striatum. No significant transcrip-
tional changes were detected in biosynthetically linked genes in clinically evolved
HLDR in C. striatum (Fig. 3C and Data Set S1; see also Fig. S2B). We compared the
transcriptomes of the WP1a strain (index; daptomycin susceptible) and the RP1b strain
(HLDR evolved in the patient) grown in cation-adjusted Mueller-Hinton broth (CAMHB)
to the exponential phase in biological triplicate. Even the transcriptional changes of the
largest magnitude did not exceed �85%, representing a magnitude much smaller than
that of the transcriptomic changes typically associated with phenotypic alteration (46).
Expression changes in genes related to phospholipid biosynthesis were small in mag-
nitude (less than 25%) and not statistically significant (Fig. 3C; see also Fig. S2).
Furthermore, most transcriptomic changes observed occurred in transposase genes
and hypothetical proteins of viral origin. The most notable biosynthetically linked
change was the LGFP repeat protein transcript detected at levels 1.302-fold (~30%)

FIG 1 Available and tested C. striatum isolates. Isolate naming convention: W, WT; R, resistant; P, isolated from a patient; E, evolved from a patient isolate in
culture under conditions of daptomycin selection; numbers, different isolate sources; a, b, and c suffixes, isolates collected from the same patient at different
time points. All isolates’ genomes were sequenced. WP1a was used as the reference genome. All other genomes were mapped to that genome, and SNPs found
in the resistant isolate and not the susceptible isolate from each pair were analyzed further. Transcriptomic analysis was performed on WPIa and RP1b.
Lipidomics analysis was performed on the WT strain and the resistant matched pairs of: WP1a:RP1b, WP1c:RE1c, WP2:RE2, and WP5:RE5.
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greater in the HLDR strain. pgsA2 expression levels changed by only 0.981-fold (not
statistically significant) in the HLDR strain, further indicating that the HLDR phenotypic
consequence of the predicted PG synthase loss-of-function binding pocket mutation in
the RP1b strain was due to loss of activity rather than loss of expression. Lack of
transcriptional alterations prompted us to interrogate the membrane composition of
daptomycin-susceptible and HLDR C. striatum strains using a comparative lipidomics
approach. We hypothesized that the HLDR phenotype resulted from the disruption of
PG synthase activity, which effectively removed PG from the membrane (Fig. 3A).

Lipidomics reveals loss of phosphatidylglycerol in the membrane. We found
that loss of PG synthase function led to removal or at least a �360-fold reduction of
membrane phosphatidylglycerol (PG) content in HLDR C. striatum isolates. Analysis by
mass spectrometry (MS) of the whole-cell membrane lipid content of four pairs of
daptomycin-susceptible and HLDR isolates, which represent each of the four types of
predicted loss-of-function pgsA2 mutations (Fig. 1, 2B to E, and 3A and B), reveals loss
of PG. In each isolate pair, PG detection was 369-fold to 1,990-fold (P � 0.0001) lower
in the evolved HLDR isolates than in the daptomycin-susceptible ancestor (Fig. 4A),
levels in the HLDR isolates which are indicative of complete removal of PG in the
membrane, resulting in the HLDR phenotype. In addition to PG, cardiolipin (CL) (a
derivative of PG) was the other lipid absent in the HLDR isolates (Fig. 4A and C).
However, CL was also absent in the daptomycin-susceptible WP1a isolate, and on the
basis of subsequent in vitro data, we posit that it was not the primary target of
daptomycin. We also found no lipidomic evidence that the sn-1/sn-2 fatty acyl groups
in PG are being modified to shield it from daptomycin binding as hypothesized in
S. aureus isolates with low-level resistance (47–50). Conversion of PG to CL, a proposed

FIG 2 All HLDR isolates have predicted nonfunctional mutations in pgsA2. (A) Structure of PG synthase monomer, with mutations in conserved sites overlaid.
(B) Mutation in CDP alcohol phosphatidyl (CDP-AP) transferase active site conserved across species. (C) Mutation in the dimer interface domain. (D) Mutation
in substrate binding pocket. (E) Premature stop mutations predicted to produce truncated products.
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mechanism of daptomycin resistance (51), also did not contribute to the C. striatum
HLDR mechanism, since CL was absent in the HLDR strains (P � 0.0001) (Fig. 4C). PG
synthase converts CDP-DAG, a biosynthetic precursor of PG, into phosphatidyl glycerol
(Fig. 3A). In the absence of PG synthase, we expected CDP-DAG either to be utilized in
a secondary lipid synthesis pathway or to accumulate in the cell. In support of the latter
hypothesis, we found that CDP-DAG levels were significantly (543-fold to 5,946-fold;
P � 0.0001) higher in HLDR isolates than in their wild-type (WT) counterparts (Fig. 3A
and 4B). PG synthase in HLDR strains across mutation types was nonfunctional (Fig. 2B

FIG 3 Lipid metabolism pathway of phosphatidylglycerol and cardiolipin, observed SNPs, and relative abundance changes of key lipids
and transcripts between WT and HLDR isolates. (A and B) The PG (A) and CL (B) lipid synthesis pathways were constructed with KEGG.
A total of 8 WT and HLDR isolate paired genomes were compared and nonsynonymous single nucleotide polymorphisms identified. The
names and structures of the metabolites are on the left, with key lipids colored in red and green. R1 represents the 16:0 carbon chain,
and R2 represents the 18:1 carbon chain. The enzyme nomenclature for each enzymatic step and the corresponding genes are located
next to the appropriate synthesis arrow. SNP mutations for each enzyme/gene unit are indicated at the far right with the number of
mutations among the 8 HLDR isolates, unless no mutations were present in any of the isolates. Except for pgsA2, none of the lipid synthesis
genes for PG have SNPs. On the left side, black bars indicate the functional completeness of the PG synthesis pathway. The WT strain
proceeds through the entire synthesis pathway producing PG, while the HLDR strain ends at the production of CDP-DAG. The green
coloring of the lipid CDP-DAG indicates a 543-fold to 5,946-fold buildup of that metabolite in the HLDR isolates compared to the WT. The
red coloring of PG and cardiolipin indicates a reduction of that metabolite in the HLDR isolates compared to the WT with a 369- to
1,990-fold reduction in PG. (C) Expression levels of genes involved in lipid synthesis pathways were not significantly altered in HLDR
isolates (P � 0.05). Expression levels of the housekeeping genes rpoA and gyrA were also not significantly altered (P � 0.05).
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to E and 3A), and no transcriptional compensatory changes were being made in the PG
biosynthesis pathway (Fig. 3; see also Fig. S2), enabling high-level CDP-DAG accumu-
lation (Fig. 3A and 4).

Until recently, determining the in vivo target of daptomycin had been challenging
because removal of PG from the membrane of model Gram-positive bacteria without
cell death was biologically untenable (16, 52). A recent study (31) corroborated that
C. striatum appears to uniquely compensate for the complete removal of PG in its
membrane by increasing the proportions of two other lipids in the membrane: phos-
phatidylinositol (PI) (Fig. 4E; see also Fig. S2A and B) and glucuronosyl diacylglycerol

FIG 4 Lipidomic comparison of WT and resistant paired isolates across mutation types. (A to E) The y axis represents the relative abundance of the important
phospholipid between the WT and HLDR isolates. WT-HLDR pairs are associated by color, with WT represented by solid block colors and HLDR represented by
black-striped colors. The value corresponding to the lipid that is most abundant in the WT or HLDR isolate has been normalized to 100. Fold changes, where
calculable, are listed above the WT and HLDR comparisons; fold change was calculated using (b � a)/a, where “b” is the largest value and “a” is the smallest,
to maintain a positive number. The structures of the lipid are directly to the right of the graph, where R1 represents the 16:0 carbon chain and R2 represents
the 18:1 carbon chain. Statistical analysis was performed with 1-way ANOVA, and the data in every column represent comparisons of the means (*, P � 0.05;
**, P � 0.01; ***, P � 0.001; ****, P � 0.0001).
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(Glua-DAG) (Fig. 4D). The level of PI was 1.6-fold to 5.3-fold higher (P � 0.0001 and P �

0.001) in the HLDR isolates than in the WT (Fig. 4E; see also Fig. S3A), and the level of
Glua-DAG was 5.5-fold to 23.0-fold higher (P � 0.0001 and P � 0.01) in the HLDR
isolates than in the WT (Fig. 4D). We demonstrated that the previously proposed
mechanisms of daptomycin resistance, which include altering membrane fluidity,
leaflet organization, and morphology, do not contribute to HLDR in C. striatum, as the
lipid membrane composition changes in the HLDR isolates did not visibly alter the
membrane (by transmission electron microscopy; Fig. 5A) or charge (by zeta potential;
Fig. 5B) compared to their daptomycin-susceptible counterparts. Furthermore, dapto-
mycin is very stable in solution and resistant to degradation. Additionally, WT C. stria-
tum evolved resistance to daptomycin in monoculture, and it is therefore unlikely that
C. striatum acquired new antibiotic resistance genes that could degrade daptomycin,
especially given that HLDR developed in eight independent cases of evolution with the
same genomic and phenotypic changes. Additionally, the results of spent-medium
experiments performed with three HLDR C. striatum isolates and with one susceptible
S. aureus isolate indicated that daptomycin was not degraded, as susceptible S. aureus
was unable to grow on daptomycin-containing spent media but was able to grow in
control spent media that did not contain daptomycin (Fig. 6). These data affirm that PG
is the in vivo target of daptomycin and that loss of PG due to nonfunctional PG synthase
is necessary and sufficient for the HLDR phenotype.

Surface plasmon resonance analysis indicates that PG is the preferred target of
daptomycin. In support of our genomic and lipidomic conclusions, we performed a
structure-function analysis of PG, which we show is the target of daptomycin and is
necessary and sufficient for daptomycin activity in vitro. By combining surface plasmon
resonance (SPR) analysis, which measures binding, and the carboxyfluorescein lipo-
some stability assay (CFLSA), which measures activity, we are able to understand the
structural interactions of daptomycin with PG. We used 200-nm artificial liposomes of
relevant membrane lipid compositions to determine these relationships. Four lipid
species—PG, CL, phosphatidic acid (PA), and phosphatidylcholine (PC) (Fig. 7F; see also
Fig. S3)—were tested for daptomycin binding affinity. Both PI and Glua-DAG were
found in the WT and HLDR isolates, and we did not test them in the next set of

FIG 5 Comparison of HLDR and WT lipid membranes and surface charge. (A) WP1a and RP1b isolates were imaged with transmission electron microscopy after
1 h with or without the addition of 10 �g/ml daptomycin. WP1a without daptomycin and RP1b with and without daptomycin showed no membrane
irregularities, while WP1a with daptomycin showed membrane blebbing and disruption. EDL, electron-dense layer; ETL, electron-transparent layer. (B) All
available WT and HLDR isolate pairs were checked for surface membrane charge changes. Charges were not indicative of HLDR, and the differences in the ranges
of surface charge between the most and least negative WT and HLDR isolates were not significant, while there was significant variability in charge for both
the WT and HLDR isolates compared within MIC group. Statistical analysis was performed with 1-way ANOVA and paired-means analysis (ns, P � 0.05; *, P �
0.05; **, P � 0.01; ***, P � 0.001; ****, P � 0.0001).
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experiments because our lipidomics analysis indicated they are not the in vivo targets
of daptomycin. Three types of liposomes of defined composition were assembled,
comprised of PG, CL, and PA combined at a 1:1 molar ratio with PC, and were compared
with homogeneous PC-only liposomes. Daptomycin showed a significantly higher
affinity to PG liposomes (P � 0.0001 and P � 0.001) than any of the other lipids tested
(Fig. 7). PG has been hypothesized to be an in vitro target of daptomycin due to its
charged phosphate; however, the lack of binding to PC and the minimal binding to PA
(Fig. 7E) indicate that the negatively charged phosphate plays a subordinate role in
daptomycin binding. Additionally, when the fatty acyl groups were restricted to the
bilayer surface plane, as they are in CL, daptomycin bound with much lower affinity
(Fig. 7A to E). When the phosphatidyl-sn-glycerol-3-phosphate glycerol head group was
accessible, as it is with PG, daptomycin bound more efficiently (Fig. 7A to E). Also, the
daptomycin binding to the 1:1 PG liposomes appeared to saturate with daptomycin
above 20 �g/ml, indicating that PG was acting as a binding site for the daptomycin
(Fig. 7E). Accordingly, we would expect daptomycin activity to correlate with the
binding of PG, CL, PA, and PC, and we tested this through a carboxyfluorescein
liposome stability assay (CLFSA).

CFLSA results indicate that PG is necessary and sufficient for daptomycin
activity. We found that the presence of PG in the bacterial membrane correlates with
daptomycin’s bactericidal activity. Carboxyfluorescein liposome stability assays (CLFSA)
confirmed PG’s role in daptomycin activity in vitro. Liposomes were generated as
described above in the presence of self-quenching carboxyfluorescein. Daptomycin
was added and interacted with the liposome membrane, releasing and diluting the
carboxyfluorescein, which was then unquenched in the buffer, producing dramatically
increased fluorescence (53). Daptomycin had higher activity against PG-containing
membranes in all cases (Fig. 8A to F) and acted in a concentration-dependent manner
against both PG and PA (Fig. 8F). Even though PA had lower binding affinity to
daptomycin than CL (Fig. 7E), daptomycin was more active against PA than it was
against liposomes containing CL, where there were no available glycerol-3-phosphates
extending from the membrane surface for daptomycin binding (Fig. 8A and D). This is
consistent with the observed PG-to-CL daptomycin activity relationship. Furthermore,
this suggests to us that the larger (4-alkane-chain) CL suppressed daptomycin’s inte-
gration with the membrane structure, which is necessary for increased permeability in
the CFLSA inhibiting daptomycin activity. We observed a reduction in daptomycin
activity in liposomes that contain CL even though they have a higher binding affinity
than those containing PA and PC (Fig. 7E and 8A to F). These findings indicate that the
conversion of PG to CL can reduce the activity of daptomycin in membranes, providing
low-level resistance against daptomycin in vivo.

FIG 6 Daptomycin spent-medium growth curves. Growth curves of daptomycin-susceptible S. aureus
ATCC 29213 grown in spent media are shown. Spent medium was obtained by growth of resistant
isolates (RP1b, RE4, and RE6) or the control isolate (S. aureus [SA] 25923) and uninoculated media, with
or without daptomycin (5 �g/ml), for 24 h. After filtration, in triplicate, susceptible S. aureus ATCC 29213
grew only in media that had never contained daptomycin. This indicates lack of daptomycin degradation
by HLDR isolates. OD 600, optical density at 600 nm.
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CFLSA data indicate that the PG concentration predicts daptomycin activity in
vivo. We found that daptomycin bactericidal activity is correlated with the percentage
of composition of PG in the membrane. Liposomes with 0% to 50% PG were generated
as described above, and daptomycin’s activity against those liposomes was tested at a
consistent 35 �g/ml daptomycin. At or above 20% PG composition, daptomycin did not
show a significant change in activity (Fig. 8G). This observation directly maps to
daptomycin’s in vivo bactericidal activity as measured by MIC across a number of
bacterial species. B. subtilis, C. striatum, and S. aureus strains with 30% to 50% mem-
brane PG (29, 33, 54) content have daptomycin MICs of �1 �g/ml. Below 20% PG
content, daptomycin’s activity drops precipitously, both in vitro and in vivo.
Daptomycin-resistant B. subtilis with a PG content of 10% showed a 27-fold increase in
MIC (29). This was recapitulated with our artificial liposomes, where equivalent dapto-
mycin reduction resulted in a 3.66-fold decrease in carboxyfluorescein-based fluores-
cence (Fig. 8G), indicative of a loss in daptomycin activity. When membrane PG
composition is �5%, daptomycin’s activity is indistinguishable from that seen with a
complete absence of PG in the artificial liposome. In HLDR C. striatum, which has 0% PG

FIG 7 Daptomycin binding across concentrations and liposome content. (A to E) The y axis plots the
normalized binding of daptomycin to liposomes at various concentration ratios. The x axis shows the types
of liposomes tested, which include 1:1 equimolar ratios of PG, PA, or CL to PC and a control liposome made
entirely of PC. The data in panel E demonstrate stepwise increases in daptomycin binding to PG. (F)
Structures of our lipid of interest. Statistical analysis was performed with 1-way ANOVA, and the data in
every column represent comparisons of the means (*, P � 0.05; **, P � 0.01; ***, P � 0.001; ****, P � 0.0001).
All tests were performed in buffer containing 100 mM KCl, 10 mM HEPES (pH 7.0), and 2 nM Ca2�.
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FIG 8 Daptomycin activity across concentrations and liposome content. (A to F) The y axis plots percent
activity of various concentrations of daptomycin based on absolute fluorescence that is normalized to
the fluorescence achieved by the addition of Triton X-100. In panels A to E, the x axis shows the types
of liposomes tested, which include 1:1 equimolar ratios of PG, PA, or CL to PC and a control liposome
made entirely of PC. (F) The x axis indicates the concentration of daptomycin added to the different
liposome compositions. (G) Relation of percent activity of 35 �g/ml of daptomycin (Dap) based on
absolute fluorescence that is normalized to the fluorescence achieved by the addition of Triton X-100
(y axis) to the percentage of PG content of the liposome tested with PC contributing the remainder of
the required lipid to reach 100% composition (x axis). Daptomycin activity against liposomes is correlated
with MIC values for WT and daptomycin-resistant bacterial isolates where the percentage of PG content
is known. HDR, highly daptomycin resistant. Statistical analysis was performed with 1-way ANOVA, and
the data in every column represent comparisons of the means (*, P � 0.05; **, P � 0.01; ***, P � 0.001;
****, P � 0.0001). All tests were performed in buffer containing 100 mM KCl, 10 mM HEPES (pH 7.0), and
2 nM Ca2�.
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in its membrane, we saw a �4,000 increase in MIC (14, 33) and our data show a
13.5-fold decrease in carboxyfluorescein fluorescence when the liposomes had �5%
PG. Thus, the percentage of composition of PG relative to other membrane lipids is
predictive of daptomycin susceptibility and activity both in vivo and in vitro. It also
suggests that the CFLSA in vitro model is an effective method of studying daptomycin’s
interactions with membranes.

DISCUSSION

C. striatum is an emerging, commensal opportunistic pathogen that has the poten-
tial to cause widespread harm in our hospital systems. Rapid adaptive evolution of
loss-of-function pgsA2 (PG synthase) mutations which result in significant loss or
removal of membrane PG are necessary and sufficient for high-level daptomycin
resistance in C. striatum, which leads to catastrophic daptomycin treatment failure in
patients. No additional genomic or transcriptomic compensation mechanisms are
evident for the evolved HLDR phenotype. The HLDR mutants also have no changes in
cell wall thickness, cell surface charge, conversion of PG to cardiolipin, or membrane
shape, which are all mechanisms previously implicated in lower-level daptomycin
resistance (19, 20, 22-25, 27, 28, 51, 55-58). Rebalancing of membrane composition to
include more PI in the absence of PG as observed by lipidomic profiling likely results in
membrane stability. The ability of C. striatum to completely remove PG from its membrane
with simple loss-of-function point mutations in PG synthase further demonstrates that PG
is the in vivo and in vitro target of daptomycin. The remarkable ability of C. striatum to
remove a membrane phospholipid that had previously been presumed to be necessary
could make C. striatum an ideal model for developing new Gram-positive antibiotics such
as daptomycin and for studying the potential for resistance to develop.

MATERIALS AND METHODS
All C. striatum isolates were cultured in BBL Mueller-Hinton II broth (cation-adjusted) (BD) supple-

mented with calcium to maintain 50 �g/ml calcium.
Whole-genome sequencing and comparison. We sequenced 8 sets of C. striatum strains before and

after the emergence of high-level resistance to daptomycin. Isolates were sequenced using an Illumina
Hi Seq 2500 platform, generating 101-bp paired-end reads. One case of resistance emergence occurred
in a patient bloodstream, while the remaining strains evolved resistance during in vitro selection. We
used the original susceptible patient isolate as our reference strain and assembled the genome de novo
using SPADES (59). This reference genome was annotated using Prokka v1.12 and the Pfam database (60).
We assembled the remaining 15 genomes by mapping to this reference using bowtie2 (61). We identified
single nucleotide polymorphisms (SNPs) between the resistant strains and their respective susceptible
controls using Pilon (62). The effects of these mutations were predicted using SNPeff (42). All of the genes
annotated in the reference genome were clustered by predicted metabolic function using Blast2Go (63).
Genes with a predicted loss-of-function mutation were annotated on this metabolic map. pgsA2 was the
only gene with a biosynthetic function predicted to contain loss-of-function mutations in more than one
case of HLDR (in fact, pgsA2 loss-of-function mutations were found in all cases of resistance). A total of
33 other nonsynonymous SNPs were detected across all 8 strain pairs. Only 8 of these SNPs were in genes
predicted to affect biosynthetic processes. After clustering by Gene Ontology (GO) was performed, pgsa2
altering phospholipid biosynthesis was the only metabolic alteration predicted in more than one case of
resistance. Phyre2 homology modeling (44) supported predictions that the pgsA2 mutation in every
resistant strain was associated with loss of function.

Transcriptomic methods. We performed transcriptomic profiling of the susceptible isolate and the
in vivo evolved resistant isolate from the original patient in triplicate. Frozen culture was streaked onto
plates containing CAMHB plus blood and was grown overnight for single-colony selection and then
inoculated into 50 ml CAMHB and grown overnight. The following day, the cultures were diluted to a
0.5 McFarland standard and split into three 100-ml cultures per condition. The diluted cultures were
incubated at 37°C with shaking for 1 h. The cells were collected by centrifugation at 200 � g for 15 min.
The pellets were resuspended in RNAlater (76104 Qiagen) and frozen at �80 until analysis.

We used bead beating and SDS treatment to disrupt the sample cells, phenol:chloroform extraction
to remove proteins, and alcohol precipitation followed by DNase treatment to isolate RNA from the
frozen samples. rRNA was removed by the use of a Ribo-Zero rRNA removal kit (Epicentre). cDNA libraries
were generated from the isolated RNA and amplified as described by Yoneda et al. (46). The double-
stranded cDNA libraries were sequenced using a Nextera platform (64) to generate at least 7 million
75-bp reads from each sample.

Reads from the triplicate susceptible and HLDR samples were aligned to the reference genome con-
structed from the index susceptible isolate using cufflinks (65). Differences in expression between susceptible
and HLDR strains were calculated using cuffdiff (66). Fold change was calculated as the resistant-isolate
expression level divided by the susceptible-isolate expression level. Expression levels of control housekeeping
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genes rpoA and gyrA remained constant in resistant versus susceptible samples (fold changes of 1.02 and
1.00). The statistical significance of changes was calculated using the beta negative binomial distribution
previously described by Trapnell et al. (66) and a significance level P value of �0.05.

Zeta potential measurement methods. We performed surface charge measurement of the sus-
ceptible and HLDR strains using zeta potential (67). Frozen culture was streaked onto plates containing
CAMHB plus blood and was grown overnight for single-colony selection and then inoculated into 50 ml
CAMHB and grown overnight. The following day, the cultures were diluted to a 0.5 McFarland standard
and one 4-ml culture was grown per condition. The diluted cultures were incubated at 37°C with shaking
for 1 h. A 1-ml volume of the culture was placed in a Malvern zeta-sizing cuvette. Zeta potential (surface
charge) was measured using a Zetasizer Nano ZS (ZEN3600) dynamic light-scattering system (Malvern
Instruments), and the data were compared between susceptible and HLDR paired strains. The expression
levels of genes related to lipid biosynthesis are presented in Fig. 2 (see also Fig. S3 in the supplemental
material). Additionally, the genes with the greatest fold changes were determined (Data Set S1).

Spent-medium growth curve. C. striatum daptomycin-resistant isolates RP1B, RE4, and RE5 and
wild-type daptomycin-susceptible S. aureus ATCC strain 25923 were grown in the presence of cation-
adjusted MHB (BBL Mueller-Hinton II broth) with supplemental calcium added to reach 50 mg/liter in the
presence of 5 g/ml daptomycin and without daptomycin for 24 h at 37°C with agitation in 10-ml tubes
with 5 ml of culture. Uninoculated medium was also incubated with agitation and with and without
daptomycin. The spent medium was filtered using a 0.22-�m-pore-size filter and divided into aliquots,
placed in a 96-well plate, and seeded with daptomycin-susceptible S. aureus 29213 in triplicate followed
by growth at 37°C with agitation. The plate was read every 30 min over 48 h.

Lipidomic methods. We performed comparative lipidomics across all four mutation types. Matched
WT and HLDR isolates were grown overnight and diluted to an optical density (OD) of 1 in 2.5 ml liquid
culture in quintuplicate. Liquid cultures were spun down to form a cell pellet, and whole-cell lipids were
extracted using the Bligh-Dyer method (68). Samples were then stored at �20°C until the lipids could be
analyzed via liquid chromatography/mass spectrometry (LC/MS). The peak intensities were normalized to
100 for each lipid, with the WT or HLDR isolate being the source of the normalizing lipid. The WT lipids
were chosen as the normalizing lipids for PG and cardiolipin because those lipids were most abundant
in the WT isolate compared to the HLDR isolate. The HLDR lipids were chosen as the normalizing lipids
for CDP-DAG, Glua-DAG, and PI because they were most abundant in the HLDR isolate compared to the
WT isolate. Statistical analysis was performed with 1-way analysis of variance (ANOVA), and the data in
every column in the figures in which the results of the analysis appear represent comparisons of the
means (*, P � 0.05; **, P � 0.01; ***, P � 0.001; ****, P � 0.0001).

Carboxyfluorescein liposome stability assay. We performed a liposome disruption assay (69) in
triplicate to assess the activity of daptomycin with various compositions of liposomes. Equimolar ratios
of PG:PC, CL:PC, and PA:PC with a PC-only liposome control were created using the reverse-phase
method in the presence of elution buffer containing 100 mM KCl, 10 mM HEPES (pH 7.0), 2 nM Ca2�, and
carboxyfluorescein (70). Liposomes were then suspended in a buffer solution containing 100 mM KCl,
10 mM HEPES (pH 7.0), and 2 nM Ca2� and subjected to various concentrations of daptomycin from
3.125 �g/ml to 1,000 �g/ml. Levels of fluorescence increases due to daptomycin as a result of
carboxyfluorescein release were measured using a Varian Eclipse spectrophotometer with an excitation
wavelength of 492 nm and an emission wavelength of 512 nm. Daptomycin activity was measured as a
function of normalization to 100% release by Triton X-100. Additionally, to assess percent PG with respect
to daptomycin activity, PG:PC liposomes were created in triplicate with various mole fraction ratios
converted to various proportions of PG (50%, 40%, 20%, 15%, 10%, 5%, and 0%) and subjected to
35 �g/ml daptomycin. Statistical analysis was performed with 1-way ANOVA, and the data in every
column in the figures in which the results of the analysis appear represent comparisons of the means (*,
P � 0.05; **, P � 0.01; ***, P � 0.001; ****, P � 0.0001).

Surface plasmon resonance. We performed surface plasmon resonance analyses (71) in triplicate to
assess the binding of daptomycin with various compositions of liposomes. Equimolar ratios (1:1) of
PG:PC, CL:PC, and PA:PC with a PC-only liposome control were created using the reverse-phase method
(70). Liposomes were bound to a carboxymethyl dextran hydrogel surface sensor chip that was treated
with sphingosine and subjected to various concentrations of daptomycin (3.125 �g/ml to 35 �g/ml)
diluted in buffer containing 100 mM KCl, 10 mM HEPES (pH 7.0), and 2 nM Ca2�. Baseline, stable
liposome, and peak daptomycin binding readings were collected. Daptomycin binding was normalized
to liposome binding, and the data are presented as the level of daptomycin/lipid unit. Statistical analysis
was performed with 1-way ANOVA, and the data in every column in the figures in which the results of
the analysis appear represent comparisons of the means (*, P � 0.05; **, P � 0.01; ***, P � 0.001; ****,
P � 0.0001).

Accession number(s). All nucleotide sequences generated during this study have been uploaded to
NCBI under BioProject accession no. PRJNA420593.

SUPPLEMENTAL MATERIAL
Supplemental material for this article may be found at https://doi.org/10.1128/

mSphereDirect.00371-18.
FIG S1, PDF file, 0.3 MB.
FIG S2, PDF file, 0.3 MB.
FIG S3, PDF file, 0.3 MB.
DATA SET S1, XLSX file, 0.1 MB.
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