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Abstract: Isobavachalcone (IBC) is a natural prenylated chalcone with a broad spectrum of pharmaco-
logical properties. In this work, we newly synthesized and investigated the antibacterial activity of
IBC against Gram-positive, Gram-negative and mycobacterial species. IBC was active against Gram-
positive bacteria, mainly against Methicillin-Susceptible Staphylococcus aureus (MSSA) and Methicillin-
Resistant Staphylococcus aureus (MRSA), with minimum inhibitory concentration (MIC) values of 1.56
and 3.12 µg/mL, respectively. On the other hand, IBC was not able to act against Gram-negative
species (MIC > 400 µg/mL). IBC displayed activity against mycobacterial species (MIC = 64 µg/mL),
including Mycobacterium tuberculosis, Mycobacterium avium and Mycobacterium kansasii. IBC was able to
inhibit more than 50% of MSSA and MRSA biofilm formation at 0.78 µg/mL. Its antibiofilm activity
was similar to vancomycin, which was active at 0.74 µg/mL. In order to study the mechanism of
the action by fluorescence microscopy, the propidium iodide (PI) and SYTO9 fluorophores indicated
that IBC disrupted the membrane of Bacillus subtilis. Toxicity assays using human keratinocytes
(HaCaT cell line) showed that IBC did not have the capacity to reduce the cell viability. These results
suggested that IBC is a promising antibacterial agent with an elucidated mode of action and potential
applications as an antibacterial drug and a medical device coating.

Keywords: chalcone; membrane; natural product; antibacterial; biofilm

1. Introduction

Approximately 1 million people died due to antibiotic-resistant infections between
2014 and 2016 around the world, and there is a projection that multidrug resistance will
lead 300 million people to premature deaths until 2050 [1,2]. The fast and global spread of
multidrug-resistant bacteria has been recognized as a great challenge to be overcome in
the 21st century. Thus, strong efforts are necessary to investigate new antibacterial drugs,
which must be active against resistant pathogens to current anti-infective therapy [2].

Natural products from plants and microorganisms are sources of new antibacterial
compounds [3]. Among the 162 antibacterial agents approved by FDA between 1981 and
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2019, about 55% are natural products and their derivatives, highlighting their relevance
to modern drug discovery [3,4]. Among the promising natural products, isobavachalcone
(IBC) is a prenylated chalcone isolated from plants of the Fabaceae, Clusiaceae, Moraceae,
Schisandraceae and Apiaceae families (Figure 1) [5,6]. Moreover, the concise synthesis
of IBC has been described by several groups [7–11]. IBC is a privileged compound due
to its extensive pharmacological properties, including antibacterial [6], anti-cancer [12],
antifungal [13], antioxidant [14], neuroprotective [15] and anti-inflammatory [16] properties.
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As part of our continuing search for novel antibacterial drugs that act on bacterial
membranes, we newly synthesized IBC and evaluated its antibacterial activity against
Gram-positive, Gram-negative and Mycobacterium planktonic cells. Additionally, we inves-
tigated the antibacterial activity of IBC against biofilms of Methicillin-susceptible Staphy-
lococcus aureus (MSSA) and Methicillin-resistant Staphylococcus aureus (MRSA). IBC was
tested regarding its effects on the membrane of Bacillus subtilis, as well as its toxicity toward
human skin cells.

2. Materials and Methods
2.1. Isobavachalcone (IBC)

The synthesis of IBC was performed according to Sugamoto and collaborators, using
six steps [8]. The structure of IBC was confirmed by 1H and 13C nuclear magnetic resonance
(NMR) and mass spectrometry (MS) data analyses. The purity of IBC was determined
by high-performance liquid chromatography with a photodiode array detector (HPLC-
PAD). Detailed synthetic experimental procedures, NMR spectra, mass spectrum and the
HPLC-PAD chromatogram are presented in the Supplementary Material.

2.2. Antibacterial and Antimycobacterial Assays

The strains were directly purchased from the American Type Culture Collection
(ATCC) and were maintained in the culture collection of the Laboratory of Antimicrobial
Testing of the Federal University of Uberlândia state of Minas Gerais, Brazil.

The antibacterial activity was determined against Methicillin-susceptible Staphylococ-
cus aureus (ATCC 6538), Methicilin-resistant Staphylococcus aureus (ATCC BAA44), Strepto-
coccus pneumoniae (ATCC 6305), Streptococcus sanguinis (ATCC 10556), Streptococcus sobrinus
(ATCC 33478), Streptococcus mutans (ATCC 25175), Klebsiella pneumoniae (ATCC 10031)
and Pseudomonas aeruginosa (ATCC 15442). The antimycobacterial activity was determined
against Mycobacterium tuberculosis H37Rv (ATCC 27294), Mycobacterium avium (ATCC 25291)
and Mycobacterium kansasii (ATCC 12478).

The minimal inhibitory concentration (MIC) against Gram-positive and Gram-negative
bacterial species was determined in triplicate using the broth microdilution method in
96-well microplates as previously reported, using resazurin as a colorimetric indicator of
cell viability [17]. IBC was dissolved in DMSO at 1 mg/mL, followed by dilution in brain
heart infusion to achieve the final concentrations ranging from 400.0 to 0.195 µg/mL. The
final DMSO content was 5% (v/v), and this solution was used as the negative control. The
inoculum was adjusted for each microorganism to reach a cell suspension of 5.0 × 105

colony-forming units per mL (CFU/mL), as preconized by the Clinical and Laboratory
Standards Institute, with modifications in the culture medium [18]. Growth control (in-
oculated well) and sterility control (non-inoculated well free of antimicrobial agent) were
also included. Tetracycline and chlorhexidine were used as positive controls and were
tested in concentrations ranging from 0.0115 µg/mL to 5.9 µg/mL and 0.115 to 59 µg/mL,
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respectively. The 96-well microplates were sealed with plastic film and incubated at 37 ◦C
for 24 h. After this period, 30 µL of aqueous solution of resazurin (0.02%) was added to the
microplates and was incubated for 15 min at 37 ◦C. MIC value was defined as the lowest
concentration able to inhibit the microorganism growth indicated by the color change of
resazurin from blue to pink.

MIC values of IBC against mycobacteria species were determined according to Palomino
and collaborators protocol, with slight modifications [19,20]. A stock solution of IBC was
prepared in DMSO and diluted in Middlebrook 7H9 broth to achieve final concentrations
ranging from 7.8 to 1000 µg/mL. Isoniazid was dissolved in DMSO and used as positive
control in concentrations ranging from 0.015 to 1.0 µg/mL. The inoculum was prepared by
introducing a range of colonies grown in Ogawa-Kudoh in a tube containing glass beads
with 500 µL of sterile water. An aliquot of 200 µL was transferred to a tube containing
2 mL of 7H9 broth, incubated at 37 ◦C for 7 days and compared with McFarland scale 1
(3.0 × 108 cells/mL). Inoculum was suspended in 96-well plates at a 1:25 ratio with 7H9
broth. The growth controls (without antibiotic) and sterility controls (without inoculation)
were also included. The 96-well plates were incubated at 37 ◦C for 7 days. After this period,
30 µL resazurin 0.02% aqueous solution was added to each plate well. The MIC value was
defined as the lowest drug concentration able to inhibit the mycobacterial growth, which
was expressed in µg/mL. The assay was conducted in triplicate.

2.3. Checkerboard Assay

The combination effect of IBC with vancomycin was evaluated against MSSA and
MRSA using microdilution broth checkerboard assay according to White and collaborators,
adapted from the standard procedure established by CLSI [18,21]. The fractional inhibitory
concentration (FIC) of the combination between IBC and vancomycin was determined
using Mueller–Hinton broth culture medium into 96-well plates, with a final inoculum
suspension of 5.0 × 105 CFU/mL. The plates were incubated at 37 ◦C for 24 h. After
incubation, 0.02% aqueous resazurin solution was added to the wells. Fractional inhibitory
concentration index (FICI) was calculated using the Equation (1):

ΣFICI = FICA + FICB (1)

where the FIC is the ratio between the MIC of the drug in combination with the MIC
alone. The combination was classified as synergistic (FICI ≤ 0.5), additive (1> FICI > 0.5),
indifferent (4 > FICI > 1) and antagonistic (FICI ≥ 4) [21]. The assays were performed in
triplicate on independent experiments.

2.4. Antibiofilm Assay

The inhibition of IBC against MSSA and MRSA biofilm formation was evaluated
using broth microdilution methodology proposed by CLSI (2012) [18]. The minimum
biofilm inhibitory concentration (MBIC) was established as the concentration of IBC able to
inhibit 50% or more of biofilm formation [22]. The MBIC values were determined using two
protocols, including biomass assessment by optical density (OD) reading and determination
of viable biofilm cells by counting colony-forming units per milliliter (CFU/mL). Two
microplates were used for each protocol. Assays were performed in triplicate in three
independent experiments. The inoculum concentration and optimal incubation time for
this assay were determined by standardizing biofilm formation (data not shown).

Briefly, in 96-well flat-bottom microplates containing brain heart infusion (BHI) broth
supplemented with 2% glucose, serial dilutions of the samples were made from the stock
solution (1600 µg/mL), obtaining a final concentration between 0.195 to 400 µg/mL. From
a 24 h culture on BHI agar plates, the inoculum of S. aureus was prepared in BHI broth
supplemented with 2% glucose, with equivalent turbidity on a spectrophotometer oper-
ating at 625 nm, to match 0.5 in the McFarland scale (1.5 × 108 CFU/mL). The bacterial
suspensions were diluted to the final concentration of 1.0 × 106 CFU/mL. The microplates
were incubated at 37 ◦C for 24 h. Subsequently, the contents of the wells were aspirated,
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and non-adhered cells were removed by washing with a phosphate-buffered saline (PBS)
buffer (pH = 7.2). The biofilm formed was fixed with methanol for 15 min, dried at room
temperature and stained with a crystal violet solution (0.2%) for 20 min. After removing
the crystal and washing the wells with the PBS buffer, 33% acetic acid was added for
30 min to solubilize the crystal retained in the biofilm. The absorbance of the wells was
determined in a spectrophotometer at 595 nm. The determination of MBIC was performed
using Equation (2) [22,23].

MBIC = (A595 of the test ÷ A595 of the untreated control) × 100 (2)

For the determination of viable cells, plates were prepared following the same method-
ology described above. After the incubation period, the contents of each well were aspirated
and washed with PBS buffer to remove non-adhered cells. Then, 200 µL of BHI broth with
2% glucose was added to the wells and the microplate was subjected to an ultrasound
bath for 15 min. The content of the wells was homogenized, and decimal dilutions were
performed (100 to 10−7). After that, 50 µL aliquots of each dilution were plated on BHI
agar plates and incubated at 37 ◦C for 24 h. Finally, the colonies were counted, and the
results were expressed in log10 scale (CFU/mL).

Vancomycin was used as positive control and was tested in concentrations ranging
from 0.0115 to 5.9 µg/mL. Bacterial cells were evaluated in the absence of the antibacterial
compounds and were used as negative control. Antibiofilm assay data were analyzed
by nonparametric Kruskal–Wallis one-way analysis of variance (ANOVA) with a Steel–
Dwass–Critchlow–Fligner pairwise comparison test. Results were considered statistically
significant with p < 0.05.

2.5. Membrane Disruption Assay

For the membrane permeabilization assay, Bacillus subtilis strain 168 was kindly do-
nated by Dr. Frederico Gueiros-Filho, Department of Biochemistry, Institute of Chemistry,
São Paulo University.

B. subtilis was cultivated in LB/LB-agar at 30 ◦C, with stirring at 200 rpm for liquid
medium. A stock solution of IBC at 10 mg/mL was diluted into the wells of a 96-multiwell
plate to furnish the final concentrations ranging from 100 to 0.781 µg/mL, in total volumes
of 100 µL/well (NYG medium) [24,25]. The bacteria were inoculated at 1.0 × 105 cells per
100 µL of LB medium per well. Plates were incubated for 12 h at 30 ◦C. 15 µL of 0.1 mg/mL
resazurin Sigma-Aldrich (Taufkirchen, Germany) was added into each well, followed by a
2 h incubation at 30 ◦C. The post-reaction plates were evaluated through excitation and
emission wavelengths at 530 and 590 nm, respectively, using the Fluorescence Synergy
H1N1. The data obtained were used to plot the concentration of the compound versus cell
growth inhibition, and through a polynomial curve regression, it was possible to determine
the percentages able to inhibit cellular metabolism [26].

The minimum bactericidal concentration (MBC) was established by inoculating the
contents of each REMA well into a 15 cm Petri dish with solid LB medium before the
resazurin addition. The microbial transfer was aided by a stamping replicator fit for a
96-well microtiter plate. The cells were incubated in triplicates at 30 ◦C for 24 h to quantify
their growth.

Cells of B. subtilis were exposed to the IBC at its MBC. In 1 microcentrifuge tubes,
100 µL of 1.0 × 105 cells were used per treatment. After 15 min, 900 µL of saline solution
(0.85%) were added to each tube to dilute the compound and stop the contact reaction.
For the membrane integrity analyses, cells were stained using the Live/Dead BacLight
kit following the instructions of the manufacturer. Cells treated with 1% DMSO and
nisin (5 µg/mL) were used as negative control and positive control, respectively [26].
Cells were immobilized on agarose-covered slides before the microscope observations
with Olympus BX-61 microscope, equipped with a monochromatic OrcaFlash-2.8 camera.
Image acquisition and processing were performed with the software CellSens version 11
(Olympus). Data analyses were conducted with a minimum of 100 cells per treatment [27].
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2.6. Cytotoxicity Assay

Human keratinocytes cells (HaCaT) were cultivated in Dulbecco’s Modified Eagle
Medium (DMEM; Gibco, Grand Island, NY, USA) supplemented with 10% fetal bovine
serum (FBS), penicillin (100 IU/mL), streptomycin (100 µg/mL), and glutamine (2 mmol/L)
(ThermoFisher, Waltham, MA, USA) in an incubator with 5% CO2 at 37 ◦C (Isotemp Fisher
Scientific, Pittsburgh, PA, USA), being subcultured every 2 days. The cells were seeded
(5 × 105 cells/well) and pre-incubated for 24 h. After that, the cells were treated with IBC
and standard drug (chlorhexidine) at concentrations ranging from 25 to 0.39 µg/mL in
96 wells microplates for 24 h. Then, the culture medium was aspirated, and the cells were
incubated with resazurin (70 µM, Sigma Aldrich) in the culture medium and re-incubated
for another 4 h. Cell viability was read in a spectrophotometer (Biotek, Winooski, VT, USA)
at wavelengths of 570 and 600 m. The values were converted into a percentage of cell
viability in comparison with the negative control (DMEM), which was defined as having
100% cell metabolism. The means were determined for each compound [28].

3. Results and Discussion
3.1. Isobavachalcone (IBC)

Scheme 1 shows our synthetic route for synthesis of IBC. As illustrated, resacetophe-
none (1) was used as accessible starting material. A set of six steps, including MOM
protection/desprotection, [1,3]-sigmatropic rearrangement and Claisen–Schmidt reactions
furnished IBC with an overall yield of 12% (Scheme 1). NMR parameters, including chemi-
cal shifts, coupling constants and multiplicities as well as molecular weight corresponded
to IBC structure and were compared with former literature reports [8,11]. HPLC-PAD
analysis indicated 99% purity according to area peak at 372 nm.

Membranes 2022, 12, x FOR PEER REVIEW 5 of 13 
 

 

well microtiter plate. The cells were incubated in triplicates at 30 °C for 24 h to quantify 
their growth. 

Cells of B. subtilis were exposed to the IBC at its MBC. In 1 microcentrifuge tubes, 100 
µL of 1.0 × 105 cells were used per treatment. After 15 min, 900 µL of saline solution (0.85%) 
were added to each tube to dilute the compound and stop the contact reaction. For the 
membrane integrity analyses, cells were stained using the Live/Dead BacLight kit follow-
ing the instructions of the manufacturer. Cells treated with 1% DMSO and nisin (5 µg/mL) 
were used as negative control and positive control, respectively [26]. Cells were immobi-
lized on agarose-covered slides before the microscope observations with Olympus BX-61 
microscope, equipped with a monochromatic OrcaFlash-2.8 camera. Image acquisition 
and processing were performed with the software CellSens version 11 (Olympus). Data 
analyses were conducted with a minimum of 100 cells per treatment [27]. 

2.6. Cytotoxicity Assay 
Human keratinocytes cells (HaCaT) were cultivated in Dulbecco’s Modified Eagle 

Medium (DMEM; Gibco, Grand Island, NY, USA) supplemented with 10% fetal bovine 
serum (FBS), penicillin (100 IU/mL), streptomycin (100 µg/mL), and glutamine (2 mmol/L) 
(ThermoFisher, Waltham, MA, USA) in an incubator with 5% CO₂ at 37 °C (Isotemp Fisher 
Scientific, Pittsburgh, PA, USA), being subcultured every 2 days. The cells were seeded (5 
× 105 cells/well) and pre-incubated for 24 h. After that, the cells were treated with IBC and 
standard drug (chlorhexidine) at concentrations ranging from 25 to 0.39 µg/mL in 96 wells 
microplates for 24 h. Then, the culture medium was aspirated, and the cells were incu-
bated with resazurin (70 µM, Sigma Aldrich) in the culture medium and re-incubated for 
another 4 h. Cell viability was read in a spectrophotometer (Biotek, Winooski, VT) at 
wavelengths of 570 and 600 m. The values were converted into a percentage of cell viabil-
ity in comparison with the negative control (DMEM), which was defined as having 100% 
cell metabolism. The means were determined for each compound [28]. 

3. Results and Discussion 
3.1. Isobavachalcone (IBC) 

Scheme 1 shows our synthetic route for synthesis of IBC. As illustrated, resacetophe-
none (1) was used as accessible starting material. A set of six steps, including MOM pro-
tection/desprotection, [1,3]-sigmatropic rearrangement and Claisen–Schmidt reactions 
furnished IBC with an overall yield of 12% (Scheme 1). NMR parameters, including chem-
ical shifts, coupling constants and multiplicities as well as molecular weight corresponded 
to IBC structure and were compared with former literature reports [8,11]. HPLC-PAD 
analysis indicated 99% purity according to area peak at 372 nm. 
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3.2. Antibacterial and Antimycobacterial Activities 

Scheme 1. Synthesis of IBC. Reagents and conditions: (a) MOMCl, K2CO3, acetone, rt, 2 h; (b) iso-
prenyl bromide, K2CO3, acetone, rt, 24 h; (c) montmorillonite K10, DCM, rt, 0.5 h; (d) KOH 60%,
EtOH, rt, 2 h; (e) HCl 1 mol L−1, MeOH:THF (1:1), 55 ◦C, 6 h. MOM = methoxymethyl.

3.2. Antibacterial and Antimycobacterial Activities

In order to assess the antibacterial and antimycobacterial activities, IBC was evaluated
against five Gram-positive, two Gram-negative and three Mycobacterium species (Table 1).
Among these species, five species are in the World Health Organization (WHO) priority
list, justifying the discovery of innovative antibacterial agents [18]. IBC was active against
S. aureus, S. pneumoniae, S. sanguinis, S. sobrinus and S. mutans planktonic cells, exhibiting
MIC values ranging from 1.56 to 50.0 µg/mL. Among these, IBC displayed potent activity
against MSSA and MRSA, demonstrating MIC values of 1.56 and 3.12 µg/mL. These data
are according to studies on anti-Staphylococcus aureus effect of IBC against standard strains
and clinical isolates [29–32]. IBC was inactive against P. aeruginosa and K. pneumoniae
planktonic cells (MIC > 400 µg/mL).
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Table 1. Antibacterial and antimycobacterial activities of IBC.

Species MIC (µg/mL)
IBC Tetracycline Chlorhexidine Isoniazid

Gram-positive

MSSA 1.56 0.20 - -
MRSA 3.12 >5.90 - -
Streptococcus
pneumoniae 50.0 0.40 - -

Streptococcus
sanguinis 3.12 - 1.82 -

Streptococcus sobrinus 6.25 - 3.64 -
Streptococcus mutans 6.25 - 0.91 -

Mycobacterium avium 62.5 - - 0.50

Mycobacteria Mycobacterium
kansasii 62.5 - - 1.00

Mycobacterium
tuberculosis 62.5 - - >1.00

Gram-negative
Pseudomonas
aeruginosa >400 5.90 - -

Klebsiella pneumoniae >400 2.95 - -
MSSA = Methicillin-susceptible Staphylococcus aureus; MRSA = Methicillin-resistant Staphylococcus aureus.

Antimycobacterial assays indicated MIC values of 62.5 µg/mL against M. avium,
M. kansasii and M. tuberculosis. Two studies described the antitubercular activity of IBC
against M. tuberculosis [33,34]. In addition, IBC was described as an inhibitor of extracellular
nuclease Rv0888 from M. tuberculosis H37Rv, which acts as a virulence factor and could be
related to the persistence of M. tuberculosis in the host [35].

3.3. Checkerboard Assay

In anti-infective drug therapy, the association of drugs is a useful strategy to treat
bacterial infections, enhancing the antibacterial potency and decreasing side effects [36,37].
In this context, hydroxychalcones and aminochalcones showed synergistic association with
vancomycin [38,39]. Considering the potent activity of IBC against S. aureus, we used this
species for the checkerboard assay. We evaluated the effect of the combination of IBC
with vancomycin against MSSA and MRSA planktonic cells (Table 2). The association
between IBC and vancomycin displayed FICI values of 2.5 and 2.0 against MSSA and
MRSA, respectively, indicating an indifferent association.

Table 2. Antibacterial effect of combination of IBC and vancomycin against MSSA and MRSA.

S. aureus
Strain Combination

MIC (µg/mL) FICI
Type of

Combination
Alone Combined

FICIBC + FICVAN

IBC VAN IBC VAN

MRSA IBC + VAN 3.12 0.73 1.56 1.47 2.5 indifferent
MSSA IBC + VAN 1.56 0.73 1.56 0.73 2.0 indifferent

VAN = vancomycin.

3.4. Antibiofilm Assay

Biofilm can be described as a highly organized sessile community of cells, which are
attached to a substratum, interface and complex polymeric matrix [40]. S. aureus has been
known to infect and form a chronic biofilm infection in medical devices, being the most
common pathogen associated with nosocomial infections [41,42]. Several chronic infections
are associated with S. aureus biofilms, including osteomyelitis, periodontitis, chronic wound
infections, chronic rhinosinusitis, endocarditis and ocular infections. After the attachment
stage, S. aureus biofilms are difficult to eradicate with conventional antibacterial agents and
the host response [41].
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Current antibacterial drugs have not been effective against S. aureus biofilms, requiring
its surgical removal [43]. Some therapeutic alternatives have been investigated, including
antibacterial peptides, vaccines, matrix-degrading enzymes, modulation of quorum-sense
system and small molecules inhibitors. Most of them are in preclinical development
stage [41,43]. Xanthohumol, a prenylated chalcone from hop extracts, showed a potent
anti-adherent and antibiofilm activities against S. aureus [44,45]. As part of our efforts in the
discovery of novel antibiofilm agents, we described the effect of chalcones against bacterial
and fungal biofilms [38,46,47].

IBC and vancomycin were evaluated in concentrations ranging from 0.195 to 400 µg/mL
and 0.0115 to 5.9 µg/mL, respectively. IBC displayed antibiofilm activity with MBIC values
of 0.78 µg/mL against MSSA and MRSA (Figure 2). At this concentration, IBC was able to
inhibit 75% biofilm formation. Vancomycin displayed MBIC value of 0.74 µg/mL against
MSSA and MRSA, demonstrating 90% biofilm formation inhibition. Moreover, in the
presence of IBC at MBIC value, the number of viable cells of MSSA and MRSA decreased
about 9 CFU/mL when compared with the untreated control.
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3.5. Membrane Disruption Assay

In order to investigate the action of IBC on the bacterial membrane, we used B. subtilis,
which is a non-pathogenic Gram-positive bacteria used for studies of antibacterial mode of
action [26]. Bacterial cells were treated with IBC at its MBC value (3.13 µg/mL) for 15 min,
as well as with nisin (positive control), an antibiotic that targets the bacterial membrane,
producing pores [48]. Two fluorescent dyes propidium iodide (PI) and SYTO9 were added,
which stain cells with disrupted membranes (in red) and intact membranes (in blue) [49].
Representative fluorescence microscopy images of the negative control (cells treated with
1% DMSO), the positive control (nisin at 5.0 µg/mL) and IBC were presented in Figure 3.
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The percentages of cells with damaged membranes were quantified from the microscope
images (Figure 4). Cultures treated with 1% DMSO had approximately 10% of the cells with
membranes permeabilized. Treatment with nisin demonstrated 95% of the cells stained
with PI/SYTO9 due to its ability to makes pores in the bacterial membrane. Treatment of
IBC displayed damage percentages of 75%.
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Our finds are corroborated by other studies, which reported that the antibacterial mode
of action of IBC is related to the disrupting action on bacterial membranes. IBC was able to
cause damage to the MSSA membrane, evidenced by diS-C3-(5) dye experiments, leading
to macromolecular biosynthesis inhibition [29]. Song and collaborators described how
IBC binds to the phospholipids of MSSA membrane, resulting in the dissipation of proton
motive force and metabolic perturbations [50]. Palko-Labuz and coauthors identified IBC
as membrane-perturbing agent of human colorectal adenocarcinoma cells. IBC was able
to be intercalated into model membranes, affecting phospholipid phase transition [51].
Additionally, the antibacterial effect of IBC has been correlated with the leakage of alkaline
phosphatase (AKP) due to the impairment of the cell wall and cell membrane damage,
the inhibition of protein and nucleic acids biosynthesis as well as the inhibition of energy
metabolism [30,52].
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3.6. Cytotoxicity Assay

The evaluation of new antibacterial compounds against human cells is an important
step for investigations of their selectivity and safety. The toxicity of IBC was tested against
epidermal human keratinocytes (HaCaT cell line), which was chosen because skin is a
typical site of S. aureus colonization [53]. IBC was not able to reduce the cell viability
of HaCaT cells at the highest concentrations (25 µg/mL) after 24 h. (Figure 5). This
concentration is approximatively 20 times higher than the MIC values obtained from
assays MSSA and MRSA, indicating IBC has selectivity at its antibacterial concentration.
Moreover, IBC demonstrated to be less cytotoxic than chlorhexidine at concentrations equal
to or higher than 12.5 µg/mL.
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Figure 5. Effect of IBC and chlorhexidine on the viability of HaCaT cells. The results are expressed as
means ± SDs. Different lowercase letters (a, b) show statistical differences between IBC and CHX
according to ANOVA and Tukey’s test (p <0.05).

In spite of the non-toxic effect of IBC against skin cells, several studies have reported
its toxicity against leukemic cells [12] and solid tumor cells [54], including colorectal
(HCT116) [55], tongue (Tca 8113) [56], liver (HepG2) [57], breast (MCF-7) [58], prostate
(PC-3) [59], gastric (MGC803) [60], cervical (HeLa) [61], ovarian (OVCAR-08) [62] and neu-
roblastoma (IMR-32) [63]. The mechanism of IBC cytotoxicity is related to apoptosis induc-
tion via the mitochondrial pathway, decreasing its transmembrane potential [55,57,60–63].

4. Conclusions

In summary, we newly synthesized and evaluated IBC as part of our ongoing search for
antibacterial agents. IBC has potent activity against Gram-positive (MIC = 1.56–50.0 µg/mL)
and Mycobacterium species (MIC = 62.5 µg/mL). The combination of IBC and vancomycin
exhibited indifferent effects against MSSA and MRSA planktonic cells. Antibiofilm activity
of IBC was equipotent to vancomycin, displaying similar MBIC values. The mode of action
of IBC involved membrane disruption, which is a crucial target for the bacterial survival.
Furthermore, investigations of toxicity against human keratinocytes indicated that IBC is a
selective compound. Altogether, our findings open new avenues for IBC as an antibacterial
agent, with potential applications as a drug candidate and medical device coating.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/membranes12030269/s1, Figure S1: HPLC-PAD chromatogram of IBC. Methanol:Water (3:1),
372 nm, Figure S2. UV-Vis spectra of IBC, Figure S3. 1H NMR spectrum of IBC (acetone-d6; 600 MHz),
Figure S4. 13C NMR spectrum of IBC (acetone-d6; 150 MHz), Figure S5. Mass spectrum (MS) of IBC
(electrospray, positive mode).
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