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Abstract
As a first national surveillance of Acinetobacter in Cuba, a total of 500 Acinetobacter spp. isolates recovered from 30 hospitals between 2010

and 2012 were studied. Acinetobacter baumannii–calcoaceticus complex accounted for 96.4% of all the Acinetobacter isolates, while other

species were detected at low frequency (A. junii 1.6%, A. lwoffii 1%, A. haemolyticus 0.8%, A. soli 0.2%). Resistance rates of isolates were

34–61% to third-generation cephalosporins, 49–50% to β-lactams/inhibitor combinations, 42–47% to aminoglycosides, 42–44% to

carbapenems and 55% to ciprofloxacin. However, resistance rates to colistin, doxycycline, tetracycline and rifampin were less than 5%.

Among carbapenem-resistant isolates, 75% harboured different blaOXA genes (OXA-23, 73%; OXA-24, 18%; OXA-58, 3%). The blaNDM-1

gene was identified in an A. soli strain, of which the species was confirmed by sequence analysis of 16S rRNA gene, rpoB, rpoB–rpoC and

rpoL–rpoB intergenic spacer regions and gyrB. The sequences of blaNDM-1 and its surrounding genes were identical to those reported for

plasmids of A. baumannii and A. lwoffi strains. This is the first report of blaNDM-1 in A. soli, together with a high prevalence of OXA-23

carbapenemase for carbapenem resistance in Acinetobacter spp. in Cuba.
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Introduction
The genus Acinetobacter includes opportunistic pathogens

capable of causing both community- and health care–associated
infections, and it has recently emerged as their major cause
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because of its propensity to accumulate resistance to multiple

antimicrobial drugs [1]. Multidrug-resistant Acinetobacter bau-
mannii–calcoaceticus complex (A. baumannii–c complex) isolates

are increasingly reported worldwide; it is susceptible to an ‘old’
drug, colistin, which often remains as the only effective thera-
peutic option. Bacterial isolates showing carbapenem resistance

have been increasing as a result of acquisition of carbapenemase
belonging to classes A, B and D β-lactamases.

Class B β-lactamases, i.e. metallo-β-lactamases (MBLs),
include New Delhi MBL (NDM), a novel MBL first reported in

Klebsiella pneumoniae and Escherichia coli in New Delhi. The
emergence and dissemination of NDM-1-producing isolates in

both human and environment have been reported in relevant
bacteria and many countries, causing a serious threat for anti-

microbial therapy [2]. Although A. baumannii–c complex is the
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most clinically important in the genus Acinetobacter, the spread

of carbapenemase genes has occurred also in other Acineto-
bacter spp. in the last decade [3,4]. Several reports evidenced

presence of different types of MBL in A. pittii, A. nosocomialis and
A. bereziniae in Korea since 2006 [5]. On the other hand, an

A. baylyi strain carrying both blaSIM-1 and blaOXA-23 was reported
in China in 2011 [6]. Recently, NDM-1 has been detected in
A. soli in Japan, China and Taiwan [7–9], and in other non-

baumannii Acinetobacter spp. in China (Acinetobacter junii, A.
lwoffii and A. pittii) [10–12], Turkey and Latin American coun-

tries (A. pittii) [13–15]. These findings indicate the need for
global surveillance of NDM in Acinetobacter spp.

Resistance rates of imipenem and meropenem in
A. baumannii in Latin America (except for Cuba) in 2004–2010

were reported as 33.6% and 60.6%, respectively, by a large-
scale epidemiological study [16]. The first NDM-1-producing
bacterium in Latin America was reported in November 2011

when this enzyme was detected in Klebsiella pneumoniae in
Guatemala [17]. After that, the Pan-American Health Organi-

zation issued a regional alert to strengthen the Latin American
surveillance of carbapenemase producers in Gram-negative

rods (http://www2.paho.org/hq/dmdocuments/2010/alertas_
epi_2010_02_julio_carbapenemasas.pdf). In Cuba, a surveil-

lance network for Acinetobacter has been established since
2010, connecting different hospitals to forward clinical isolates

to the National Institute ‘Pedro Kourí’ in Havana for analysis.
In this study, we described prevalence of Acinetobacter spp.

and their phenotype of resistance and genetic characteristics of

carbapenem resistance genes obtained from national surveil-
lance data in Cuba during 2010–2012.
Materials and Methods
Bacterial isolates
Clinical isolates of Acinetobacter spp. (only one isolate per pa-
tient) from 30 hospitals in ten provinces across the Cuba during

2010–2012 were collected to the National Institute ‘Pedro
Kourí,’ and clinical information of individual patients was also

obtained. Bacterial identification was performed by conven-
tional microbiological methods and later confirmed by API

20NE strip (bioMérieux, Marcy l’Etoile, France). For identifi-
cation of a single strain, genetic analysis was used as described

below.

Antimicrobial susceptibility testing
Minimum inhibitory concentration (MIC) against 18 antibiotics

was measured by Etest (bioMérieux), and susceptibility was
judged according to Clinical and Laboratory Standards Institute

guidelines [18], except for rifampin, which was based on a
New Microbes and New Infections © 2015 The Authors. Published by Elsevier Ltd on beha
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standard of the French Microbiology Society (http://www.sfm-

microbiologie.org/UserFiles/files/casfm_2010.pdf). All isolates
with imipenem MIC �16 mg/L were considered potential car-

bapenemase producers and were selected for testing of MBLs
through the imipenem-EDTA double-disc synergy test as well

as molecular detection of carbapenem resistance genes. As a
carbapenem susceptible reference strain, E. coli strain ATCC
25922 was used.

Genetic analysis
For all the carbapenem-resistant isolates, the presence of

blaOXA genes encoding OXA-51-like, OXA-23-like, OXA-24-
like and OXA-58-like enzymes, and blaIMP, blaVIM and blaNDM

was examined by multiplex PCR with specific primers, as
described previously [19,20]. For phenotypically MBL-positive
isolates, PCR was performed to detect more metalloenzyme

genes blaGIM, blaSIM and blaSPM as described previously [21].

Sequence analysis
For a single strain (CU244) with NDM gene (blaNDM), partial
sequences of 16s rRNA gene, rpoB, rpoB-rpoC and rpoL-rpoB

intergenic regions, and gyrB were determined for species
identification. The PCR products were purified using the
Wizard SV Gel and PCR Clean-up System (Promega, WI, USA).

Nucleotide sequences were determined using the BigDye
Terminator v3.1 Cycle Sequencing kit (Applied Biosystems,

Foster City, CA) on an automated sequencer (ABI PRISM
3130). Sequences of NDM-1 gene and its upstream and

downstream regions were determined with PCR products
amplified by primers designed based on sequences of A. lwoffii

strain WJ10621 plasmid pNDM-BJ01 (GenBank JQ001791).
Search for homology with cognate gene sequences was per-

formed using BLAST software (Basic Local Alignment Search
Tool, http://blast.ncbi.nlm.nih.gov/). Sequences of the CU244
were deposited in the GenBank database under accession

numbers KP347604 to KP347608 (16S rRNA gene, rpoB, rpoB-
rpoC and rpoL-rpoB intergenic regions, and gyrB) and KP347609

(blaNDM-1 cluster).
Results
Through the national surveillance program for antimicrobial

resistance of Acinetobacter spp. in Cuba for 2-year period
(2010–2012), a total of 500 nonduplicated clinical isolates were

collected. Original specimens of these isolates were respiratory
samples (n = 193, 38.6%), blood (n = 155, 31.1%), skin and soft

tissue (n = 66, 13.1%) surgical wounds (n = 32, 6.4%), catheter
(n = 14, 2.8%), cerebrospinal fluid (n = 13, 2.6%), sputum (n = 7,
1.4%), lochia (n = 5, 1%) and others (n = 15, 3%). Four hundred
lf of European Society of Clinical Microbiology and Infectious Diseases, NMNI, 7, 52–56
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ninety-two isolates (98.4%) were obtained from hospitalized

patients admitted to different wards, including intensive care
unit (60.2%), neonatology (12%) and surgical (11.4%) wards and

other departments (16.4%). The remaining eight isolates (1.6%)
were derived from community-acquired infections.

A. baumannii–c complex accounted for 96.4% of all the Aci-
netobacter isolates, while frequencies of other species were low
(A. junii 1.6%, A. lwoffii 1%, A. haemolyticus 0.8%, A. soli 0.2%). The

antimicrobial resistance of Acinetobacter spp. isolates is shown in
Table 1. Resistance rates were 34–61% to third-generation

cephalosporin, 49–50% to β-lactam/inhibitor combinations,
42–47% to aminoglycosides, 42–44% to carbapenems and 55%

to ciprofloxacin. The most susceptible antimicrobial drugs were
colistin, doxycycline and tetracyclin, showing resistance rates of

less than 5%. Multidrug resistance, defined as resistance to
three or more antimicrobial agent groups, was detected in 57%
of the isolates, and 32% of isolates showed extensive drug

resistance (multidrug-resistant isolates plus carbapenem
resistance).

Among the 220 meropenem-nonsusceptible A. baumannii–c
complex isolates, 17% (37 isolates) were revealed to be MBL

producers by the disk diffusion test with EDTA. All the
A. baumannii–c complex organisms were positive for the

intrinsic blaOXA-51-like gene. Among carbapenem-resistant iso-
lates, 75% harboured different blaOXA (OXA-23, 76%; OXA-

24, 18%; OXA-58, 3%; combination of OXA-23 and OXA-24,
3%). PCR performed with primers specific for IMP- and VIM-
type enzyme genes was negative for all the carbapenem-

resistant isolates. However, the blaNDM gene was detected in
only one isolate (CU244) of non–A. baumannii–c complex.

Among other MBL-positive isolates, metalloenzyme genes
encoding GIM, SIM and SPM were not detected by PCR.
TABLE 1. Resistance rates of Acinetobacter spp. in Cuba and

antimicrobial susceptibility (MIC) of A. soli strain CU244

Antimicrobial drug
Resistance rate (%) of
Acinetobacter spp. (n [ 500)

MIC (μg/mL) of
A. soli strain CU244

Piperacillin 54 �128
Ticarcillin/clavulanic acid 50 �128
Piperacillin–tazobactam 49 �128/4
Ceftazidime 61 �32
Ceftriaxone 55 �64
Cefotaxime 34 �64
Imipenem 42 �16
Meropenem 44 �16
Gentamicin 47 2
Amikacin 42 2
Tetracycline 3 0.016
Doxycycline 4 0.016
Ciprofloxacin 55 1
Levofloxacin 17 1
Trimethoprim–

sulphamethoxazole
19 1/19

Aztreonam 50 4
Rifampicin 11 2
Colistin 1 0.125

MIC, minimum inhibitory concentration.
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Partial 16S rRNA sequence (670 bp) of CU244 was 100%

identical to those of A. baylyi and A. soli (GenBank accession nos.
JQ229812.1 and JX499235.1, respectively). However, partial

rpoB gene (365 bp), rpoB–rpoC intergenic spacer (177 bp),
rpoL–rpoB intergenic spacer (249 bp) and gyrB gene (686 bp)

showed 98–100% identities to those of A. soli, which were
clearly higher than those to A. baylyi (rpoB, 87%; gryB, 85%).
Therefore, CU244 was identified as A. soli. The NDM gene of

A. soli strain CU244 was identified as blaNDM-1 by sequencing
analysis. Upstream of the NDM-1 gene, ISAba125 was located,

and genes from bleR to groEL reported for A. lwoffii strain
WJ10621 were identified downstream of blaNDM-1 (Fig. 1). The

sequence of blaNDM-1 and its surrounding regions, determined
for CU244, was identical to that of A. baumannii strain ZW85-1

plasmid pAbNDM-1 (GenBank NC_019985.2), A. lwoffii strain
WJ10621 plasmid pNDM-BJ01 (GenBank JQ001791) and A. soli
strain M131 in Taiwan (GenBank JX072963.1). The NDM-1-

producing CU244 strain was resistant to all β-lactams but
showed good susceptibility to other antimicrobial groups

(Table 1), and possessed no OXA genes examined. Table 2
shows the clinical information of the patient infected with

A. soli producing NDM-1 carbapenemase. This patient had risk
factors, such as prolonged hospitalization in an intensive care

unit, an intravenous catheter and underlying disease.
Discussion
A. baumannii–c complex is responsible for hospital-acquired

infections and has become one of the most important
healthcare-associated infections in hospitals. This pathogen is

usually associated with multiple antibiotic resistance and few
therapeutic options of effective agents, which was also evi-
denced in the present report from the national surveillance in

Cuba. Together with studies in other countries and interna-
tional studies, it is clear that the frequency of drug-resistant

A. baumannii strains is increasing worldwide [22]. According
to the SENTRY Antimicrobial Surveillance Program in Latin

America (2008–2010) for Gram-negative bacilli, imipenem-
resistant Acinetobacter spp. rates increased from 0–12.6% in

the 1997–1999 period to 50.0–84.9% in 2008–2010 in
Argentina, Brazil and Chile [23]. In our study, resistance rates
to imipenem and meropenem were 42% and 44%, respectively,

which was slightly lower than but comparable to those in other
Latin American countries, suggesting widespread carbapenem

resistance in this region.
The most susceptible antimicrobial drugs to Cuban isolates

were colistin sulphate, doxycycline, tetracycline and rifampicin,
which were considered to be available for therapy. Over the

last decade, the emergence of multidrug resistant Gram-
European Society of Clinical Microbiology and Infectious Diseases, NMNI, 7, 52–56
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negative bacteria and the lack of new antimicrobial drugs have
led to a revival of polymyxins, especially colistin. This antibiotic

has been reinstated as a key therapeutic option for
carbapenem-resistant organisms, particularly A. baumannii, P.

aeruginosa and carbapenemase-producing Enterobacteriaceae. It
is very important in countries with limited resources where the
tigecycline is not available.

Several mechanisms of carbapenem resistance have been
reported in A. baumannii, including carbapenemase activity, loss

of outer membrane proteins, penicillin-binding protein modifi-
cations and efflux pump activities [1]. The main mechanisms are

fundamentally related to the production of acquired
carbapenem-hydrolyzing class D β-lactamases (oxacillinases) of

phylogenetic subgroups OXA-58, OXA-23, OXA-24/40 and
OXA-143 and, less frequently, to the acquisition of

carbapenem-hydrolyzing metallo-β-lactamases such as those of
type IMP or VIM. In recent studies in Latin America, the
presence of OXA-23 (Brazil, Argentina), OXA-24 (Mexico,

Argentina) and OXA-58 (Chile, Bolivia) has been documented
[23,24], with OXA-23 being the most prevalent (63–87%), in

contrast to the low frequencies of the other two oxacillinases
[25–27]. A similar prevalence of class D carbapenemases was

found in Asia-Pacific countries [28]. Although in the present
study a high detection rate of OXA-23 (76%) was observed, it

was of note that 18% of A. baumannii isolates was positive for
blaOXA-24, suggesting that this oxacillinase may be locally spread
in Cuba. In our present study, 17% of carbapenem-resistant

A. baumannii–c complex isolates were found to produce MBL,
TABLE 2. Clinical information of a patient infected with

Acinetobacter soli strain CU244

Characteristic Value

Region Holguin, eastern Cuba
Date of isolation January 2011
Ward Intensive care unit
Patient age 42 years
Patient sex M
Specimen Surgical wound
Underlying disease Bladder cancer
Secondary infection Peritonitis
Useful treatments Colistin and amikacin

New Microbes and New Infections © 2015 The Authors. Published by Elsevier Ltd on beha
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but they were negative for blaIMP, blaVIM, blaGIM, blaSIM and
blaSPM by PCR. Although these MBL genes were not identified,

it is conceivable that these strains might have genetic variant of
the known metalloenzyme gene, which is difficult to be

detected by PCR with reported primers, or might have har-
boured a novel MBL gene.

We reported in this study identification of NDM-1 in a

carbapenem-resistant A. soli strain CU244 isolated from a
patient hospitalized in an intensive care unit in Cuba. A. soli is

a novel species of Acinetobacter isolated from soil in Korea in
2008 [29]. The presence of blaNDM-1 in A. soli was reported in

Japan (two strains) [7], China (strain TCM341) [8] and Taiwan
(strain M131) [9]. To our knowledge, CU244 is the first A. soli

harbouring blaNDM-1detected outside Asia. By BLAST search,
the genetic organization and sequences of NDM-1 gene and

its surrounding genes of CU244 were found to be identical to
that of strain M131 in Taiwan but distinct from the Japanese
and Chinese strains. As is known as a common genetic feature

of NDM-1 gene [30], the insertion sequence ISAba125 and
bleomycin resistance gene were located upstream and

downstream of blaNDM-1 of CU244, respectively, probably as a
part of transposon Tn125, which is considered to be a main

vehicle for dissemination of blaNDM in A. baumannii [31].
Detection of two genetically identical blaNDM-1 clusters in

Cuba and Taiwan in the rare species A. soli suggested rapid
expansion of blaNDM-1from major species (A. baumannii, A.
lwoffii) among various Acinetobacter species. To date, only a

few reports have been published for non-baumannii Acineto-
bacter spp. expressing NDM in the Americas (A. pittii in

Paraguay and Brazil) [14,15]; nosocomial infections caused by
non-baumannii Acinetobacter spp. such as A. soli are extremely

rare, and their associated mortality is low [32]. However,
caution regarding acquisition of NDM-1 by non-baumannii

Acinetobacter spp. may be needed, and the importance of
epidemiological surveillance of non–A. baumannii species,

including A. soli, should be emphasized.
In summary, the first National Surveillance Program of Aci-

netobacter spp. in Cuba was conducted, and we reported high

prevalence of blaOXA-23 among Acinetobacter spp. and the
lf of European Society of Clinical Microbiology and Infectious Diseases, NMNI, 7, 52–56
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presence of blaNDM-1 in A. soli. Our findings indicate a need for

continuous surveillance regarding drug resistance and the
prevalence of the gene or genes responsible for carbapenem

resistance in Acinetobacter.
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