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ABSTRACT: Metallic nanoparticles are increasingly present in our
environment, raising concerns on their interactions with living
organisms and potential toxicity. Indeed, metallic nanoparticles
release metal ions that can be toxic, bioessential, therapeutically
active, or combine several of these features. However, human cell
responses to different metallic nanoparticles and ions have rarely been
compared so far. We propose here a meta-analysis of the
transcriptomic responses of human cells to nanoparticles and ions
of various metals (titanium, iron, copper, zinc, silver, cadmium,
platinum, gold), in order to identify the commonalities and
differences between cell responses to these compounds. This analysis
revealed that the chemical properties of metals are more important
than their known biological functions (i.e., essential metals, toxicity)
in governing the cell transcriptome. Particularly, we evidence that the response to nanoparticles is dominated by the response to the
ions they contain, and depend on the nanoparticles’ solubility. The formulation as nanoparticles impacts the cell response at lower
intensity than the released ions, by altering genes related to vesicle intracellular transport and the cytoskeleton. Moreover, we put
into light that several metals (i.e., copper, zinc, silver, cadmium, and gold) trigger a common cell response governed by
metallothioneins, which coexist with singular signatures that are specific to a given element.
KEYWORDS: metallic nanoparticles, transcriptomic response, nanoparticle dissolution, metal ions, metallothioneins

■ INTRODUCTION
Humans are increasingly exposed to nanoparticles (NPs) that
originate from various manufactured products, such as
pesticides, food, textiles, cosmetics, or paints, that are made
by combustion or vehicle emissions, or that are introduced in
the body for medical purposes. This growing exposure to NPs
calls into question their impact on human health. Among these
NPs, metal-based NPs (i.e., metallic, metal oxide, or metal
sulfide NPs) represent an important proportion, but their
nanotoxicology is still a concern. Metallic pollutants are
increasingly considered to have an important impact on human
health, although the mechanisms underlying metal toxicity are
still widely debated. Indeed, it remains challenging to
determine which biological effects on human health could be
related to the metal they are composed of, and which are due
to their formulation as particles.

Particle matter and nanoparticles undergo multiple trans-
formations and release metal ions at different stages of their life
cycle, either before reaching the human cells or after their
cellular uptake and processing. However, there is no consensus
on how human cells respond to the various forms of metals
they are exposed to. Beyond the variety of forms of metals, e.g.,
their nanoparticle or soluble forms, it is also unclear if human

cells can share common response to different metals and how
such responses are related to metal toxicity.

Various metal ions are naturally found in the human body
with different redox states, concentrations, and locations. Some
of them, such as iron, copper, zinc, or manganese are essential
to human life, regulating the expression, folding, and activity of
vitally important proteins. However, all metals are also toxic,
regardless of their essential role, when they exceed a certain
concentration. Genetic diseases that lead to metal accumu-
lation (i.e., hypermanganesaemia for manganese, primary
hemochromatosis for iron, Wilson and Menkes diseases for
copper) highlight the deleterious effect of essential metal ions
at high doses when homeostasis mechanisms are disrupted.1,2

In contrast, the so-called heavy metals, i.e., lead, mercury, or
cadmium, are known to cause poisoning even at low exposure
doses. Several metals, including nonessential and highly toxic
ones, are also used in medicine as therapeutic or diagnostic
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agents, such as platinum anticancer drugs, gold-based drugs
against rheumatoid arthritis, or gadolinium contrast agents.

The cellular response to metallic compounds is complex to
capture, as it may vary not only with the nature of the metal,
but also with its chemical formulation (coordination sphere,
counterions, oxidation state, crystallization, size, shape or
surface state of NPs...).3,4 This complexity makes it difficult to
identify common patterns in the cell response to metallic
compounds. However, if many features impact this response, it
is likely that some of them outweigh the others and drive most
of the cellular response to metallic compounds. This is the goal
of the present study, to identify and hierarchize the human cell
response to various metals encountered by cells as nano-
particles or ionic forms.

Qualitative meta-analysis could be a valuable tool to identify
reproducible patterns between metallic compounds, independ-
ently of the exposure conditions and cell type. Using a
combination of different studies offers the possibility to
overcome batch effects by relying on results produced in
different contexts over a wide range of experimental conditions
and across different cell lines. Furthermore, the combination of
different analyses increases statistical power and gives access to
low intensity signals, provided that they are repeated across
data sets.

Such a statistical meta-analysis approach has so far been
implemented to offer a comprehensive view of NP
cytotoxicity,5,6 NP ecotoxicity,7−9 NP delivery to tumors,10,11

or NP protein corona composition,12 relying on a wide variety
of indicators including quantitative as well as qualitative factors
as raw data. Fewer studies use transcriptomic data as raw
materials to unravel the cellular outcome of NPs. Tran-
scriptomics studies measure the expression of several
thousands of genes in a single experiment. It is thus an
important tool to comprehensively capture the cell status and
the affected biological pathways. This approach was used to
unravel the impact of titanium dioxide or carbon-based
nanomaterials on pulmonary functions,13−15 of silver NPs on
epithelial cells,16 of various NPs on plants, fungi or aquatic
species,17,18 or to highlight the transcriptional mechanisms of
action of engineered nanomaterials.19

We hereby propose a meta-analysis of publicly available
transcriptomics data to compare the response of human cells to
eight different metals, i.e., cadmium, copper, gold, iron,
platinum, silver, titanium, and zinc, either in their ionic or
nanoparticulate forms. This list of metal contains essential (i.e.,
iron, copper, and zinc) and nonessential metals, with different
toxicity profiles. We first compared the cell response to the
different materials and ions in an unsupervised way with the
aim to identify common features of cellular responses without
preconceived ideas. It revealed that the cell response is similar
for ionic and nanoparticulate forms of the same metal.
Furthermore, a general cell response is common for five of
the eight metals and driven by metal binding proteins called
metallothioneins, regardless of the toxicity or physiological
functions of those metals. In addition to this common
response, we then identified up-regulated biological functions
that are specifically up-regulated by one or a few metals, and
that can be linked to the effects of metals as drugs or as poison.
Finally, we performed a supervised study to identify commonly
up-regulated sets of genes at a lower intensity that would
distinguish cell response to the ionic or nanoparticulate form
of the metal or to essential versus nonessential metals.

■ RESULTS AND DISCUSSION

Data Treatment and Meta-analysis Pipeline

The NCBI (National Center for Biotechnology Information)
database GEO (Gene Expression Omnibus) was screened to
identify in vitro data sets that describe human cell response to
single exposure to a metallic compound, which could be either
metallic NPs or metal ions. This approach thus enabled the
comparison of data sets obtained in very different contexts that
would not otherwise be brought together. For example,
exposure to Pt salts used in chemotherapy or to Au NPs
exploited in nanomedicine can be compared to the exposure to
TiO2 NPs used as a food additive, with no a priori on their
outcome in the cell transcriptome. This naive approach enables
the comparison of gene expression across conditions without
prior knowledge of the systems of interest and the singular cell
responses.

To focus on short-term cell responses, a maximal time lapse
of 7 days between the metal exposure and the RNA extraction
was considered. The study was also restricted to transcriptomic
data generated by DNA microarrays, a standardized method to
measure gene expression with a low number of commercial
microarrays, standardized protocols, and analysis, allowing
reliable comparison of data obtained in different laboratories.
Moreover, all data in the GEO database follow the MIAME
(Minimum Information About a Microarray Experiment)
standard in the microarray submission, allowing an easy access
to the experimental features on the data.20

Initially, data were gathered for eight metals: titanium (Ti),
iron (Fe), copper (Cu), zinc (Zn), silver (Ag), cadmium (Cd),
platinum (Pt), and gold (Au). 51 data sets were identified and
analyzed individually, as summarized in Figure 1 (orange
dotted square), Supplementary Figure S1, and detailed in the
Materials and Methods section. To investigate nonmetallic
NPs as control, we chose 5 additional data sets of cells exposed
to carbon-based nanomaterials or silicon-based NPs.

The selected data sets most often compared multiple doses,
time points after exposure, cell types, and NPs with different
sizes, coatings, and shapes. In order to avoid imbalance
between the data sets, all experimental parameters could not be
conserved in the final analysis, and gene expressions were
averaged on the basis of the correlations between log2 fold
change. First, the conditions with different doses and time
points were sufficiently correlated to allow averaging gene
expression (median Pearson’s correlation coefficients of r =
0.54 ± 0.20 and 0.60 ± 0.25, respectively, Figure S2a−d).
More surprisingly, the cell transcriptomic response was only
slightly affected by the different sizes, shapes, and coating of
NPs constituted of the same material (median Pearson’s
correlation coefficient of r = 0.80 ± 0.28, Figure S2e,f). Thus,
we could average the responses to NPs for one material or
metal.

In contrast, the recipient cell types displayed different
responses to NPs made of the same metal or material (median
correlation Pearson’s coefficient of r = 0.32 ± 0.29, Figure
S2g,h) and thus were treated separately. Indeed, different cell
types might elicit different responses: for example, phagocytes
such as macrophages can present a different profile than
nonphagocytic cells in their response to metallic NPs, because
of their ability to generate a high level of oxidative species that
might impact and potentially accelerate NP intracellular
dissolution. Regarding metal ions, differences could also be
expected, for example, in the case of Pt between tumor cells
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that show resistance or not to Pt based treatment. It is thus not
surprising to obtain a lower correlation coefficient when
comparing cell types.

From these individual analyses, a general table displaying the
expression of 14 912 genes in log2 fold change was generated
from the 85 studied conditions (Figure 1, blue dotted square),
including eight different metals as NPs or ionic forms, and

nonmetallic NPs (Table 1, Supplementary Table S1 and Data
File S1).
Metal Nanoparticles and Ions Elicit a Common
Transcriptomic Signature

We first examined if we could classify metallic stimuli into
subgroups according to their impact on cell gene expressions
using principal component analysis (PCA). The genes that
have the higher contribution to the first principal component
were found to be mainly associated with DNA damages and
cell death (GADD45B, GADD45A, CDKN1A, PMAIP1). The
second principal component was associated with metal-
lothionein (MT) genes, which encode proteins that bind and
store metal ions (MT1A, MT1E, MT1G, MT1B, MT2A)
(Figure S3 and Table S2).21 No identified function was
associated with the genes that contributed the most to the
third principal component. Importantly, all materials, either in
their ionic or NP form, belong to a single point cloud, with the
exception of Pt ions, which generated a separated cluster
(Figure S4).

These results show that the log2 fold change is not an
effective metric to separate the cell responses to metals.
Consequently, we also compared the data sets related to a
given material and form (e.g., Au NPs or Pt ions) using the
average gene rank, from the highest to the lowest log2 fold
change,19 in order to identify the genes that are commonly up
regulated. The correlations between the resulting average ranks
are displayed in Figure 2. Weighted correlation was
implemented in order to give a higher weight to the up-
regulated genes, which are considered to be more specific than
the down-regulated genes in response to a given stimulus.22 P-
values were calculated by two different ways fully described in
the Materials and Methods, with the one related to weighted
linear model being implemented in Figure 2, and the one
calculated by bootstrapping being displayed in Table S3 and
Figure S5. Correlation coefficients that are described as
statistically significant present a p-value under 0.01 using
both methods.

A first reading of Figure 2 is to analyze to what extent the
cell responses to nanoparticulate or ionic forms of the same
metal are correlated (thick circles). Remarkably, the
correlation coefficient between NPs and ions exceeds 0.6 for
Ag, Cu, and Zn (rAg(ion)/Ag(NP) = 0.83, rCu(ion)/Cu(NP) = 0.66,
rZn(ion)/Zn(NP) = 0.64) and 0.4 for Fe and Au (rFe(ion)/Fe(NP) =
0.48, rAu(ion)/Au(NP) = 0.47).

This striking result indicates that the cell responses to metal
NPs and ions investigated in both form share common up-
regulated genes. These similarities can be tentatively explained
considering the fate of NPs outside or inside the cells. On the
one hand, extracellular dissolution of NPs might take place
during cell exposure: several NPs that are insoluble into pure
water, such as CuO (copper oxide),23 ZnO (zinc oxide),24 and
Ag NPs,25 were found to partially dissolve into the cell culture

Figure 1. Schematic description of the analysis process. QC stands for
Quality Control. Steps followed with * are not systematic and have
been applied only if required.

Table 1. Summary of the Number of Data Set, Cell Type, and Conditions for Each Material and Form

metal Ag Au Cd Cu Fe Pt Ti Zn C Si

form ions NPs ions NPs ions ions NPs ions NPs ions NPs ions NPs NPs NPs

number of GEO data set 2 2 1 5 5 3 1 4 1 9 7 4 4 3 2
number of cell line 2 2 3a 5 5 4 1b 4 1c 18 12 5d 7 4 2
number of conditions 3 3 3 6 5 4 1 4 1 19 13 5 7 8 2

a3 B cell lines. bBronchial epithelial cells. cMesenchymal stem cells. d4 B cell lines.
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medium. Indeed, serum proteins can bind metal ions and
displace the dissolution equilibrium toward the ionic form.26

On the other hand, intracellular degradation of NPs often take
place in the lysosomes, where most NPs converge and
accumulate following endocytosis pathway. Endolysosomes
are characterized by an oxidative potential, a moderate acidity
(minimum of pH 4.5), a high proteolytic activity, and redox
regulation pathways, including glutathione and MTs metabo-
lism as well as ferritin regulation and storage. This environ-
ment favors the dissolution of several metallic NPs, including
iron oxides,27 ZnO,24 CuO,28 Ag,25 and Au29 NPs, and thus
intracellular exposure to metallic ions. Lysosomal processing of
metal ions has been also described to regulate the metabolism/
homeostasis of metals or ensure detoxification through
sequestration.30,31

The case of the recently evidenced Au NP degradation
within lysosomes is particularly informative: as Au NPs are
poorly reactive, their dissolution is observed over weeks to
months in cells.29 A longitudinal transcriptomic monitoring
during this dissolution process revealed that the cell response
to Au NPs was markedly different from that to Au ions at the
shortest time point, while both responses converged at the
latest time points.32 This finding suggests that the pace of NP
degradation within the cells is a key factor to understand the
similarities between the cell responses to metallic NPs and
their ionic forms.

In addition to these dissolution mechanisms, the common-
alities in the responses to ions and NPs can also be explained

in light of the recrystallization process of metals inside the
cells. As an example, Au ions and NPs have a common
intracellular fate as they end up as a single form, called
aurosomes, after exposure and internalization by cells.29,32

These intralysosomal structures, which appear quickly after
exposure to ionic Au, but within days to months after exposure
to Au NPs, are composed of self-assembled crystallized Au
nanoclusters. Aurosome formation strikingly illustrates that
ions and NPs of the same metal can be processed by cells in
the same manner, eliciting similar gene expression. Crystal-
lization processes from ionic species have also been described
for other metals, such as Pt, Ag, Zn, and Fe.33,34 It has been
demonstrated that intracellular and extracellular medium
continuously transform Ag, Cu, Zn, Fe, and Au NPs into
their ionic forms, and, conversely, that cells exposed to metal
ions can also biomineralize NPs in situ. Thus, we hypothesize
that the continuity of intracellular fate can explain that mostly
the same genes are involved in the cell response to ionic and
nanoparticulate forms of these metals, thus sharing a common
metabolism for NPs and ions.
Cu, Zn, Ag, Cd, and Au Induce a Common Cell Response
Driven by Metallothioneins

Apart from the correlations between ions and NP forms, we
thought to analyze whether the cell response can be similar for
different metals. Actually, the second and most evident
observation from Figure 2 is that two groups of materials
can be distinguished. On the one hand, Cu, Zn, Cd, Ag-based
compounds (both ions and NPs) and Au ions present high and

Figure 2. Correlation table between the different materials and forms. Correlation values are calculated from the weighted correlation between
average gene ranks. P-values are computed using a Fisher test after modeling with a weighted linear model. Thick circles indicate the correlations
between ions and NPs of the same metal.
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statistically significant correlation coefficients between each
other (0.52 ≤ r ≤ 0.83). The correlation is less marked when
including Au NP, but still important (r ≥ 0.34). This
represents a group of metals with a common cellular response,
which is clearly distinguished from the cell responses to Fe
(both ions and NPs), Pt (ions), Ti (NPs) as well as
nonmetallic silicon and carbon-based NPs. The latter group
of materials is defined only in contrast to the first group. The
transcriptomic response to Pt, Ti, and Fe are much less or even
not correlated between each other, which is evidence of the
singularity of these three metallic compounds.

To get insight into the similarities within the cell responses
to Cu, Zn, Ag, Cd, and Au (disregarding their forms), we
investigated the list of the most commonly up-regulated genes
for these 5 metals. We then identified the top genes of the list
which best separate Cu, Zn, Ag, Cd, and Au treated cells from
Ti, Fe, Pt, or nonmetallic NPs treated cells, that show distinct
responses. This selection process combines hierarchical
clustering and a stepwise approach. Among the 50 most up-
regulated genes, the ones that optimized the partition score F1,
which was calculated from the clustering precision and recall,
were selected.

Interestingly, seven genes were enough to optimize the
clustering, with a F1 score as high as 90.9%, with an associated
p-value of 0.0040 based on bootstrapping (Figure S6). The
expression of these seven genes over conditions is displayed in
Figure 3. Five of these genes belong to the metallothionein
family of proteins (MT1X, MT2A, MT1H, MT1E, MT1F).
MTs are small proteins implicated in metal storage and
detoxification.21 They contain 30% of cysteine, whose sulfur
can strongly interact with metal ions. Among the two last
genes, one encodes for the protein SLC30A1. This protein is
implicated in the transport of Zn ions, which are known to play
a key role in MTs regulation and biosynthesis, as they activate
MT transcription factor. Hence, SLC30A1 up-regulation can
also be related to MT activation. Lastly, DUSP5 gene is also
commonly up-regulated by the five metals sharing a common
response. It plays a role in the inhibition of mitogen-activated
protein (MAP) kinases, which are implied in cellular division
and differentiation. Its role is therefore more general and less
metal-specific than the six other genes.

Overall, our major finding is that Cu, Zn, Ag, Cd, and Au
commonly up-regulate MTs or MT-related genes in exposed
cells, in contrast to the other metallic and nonmetallic
materials investigated here. This is consistent with the

known interactions of these five metals with MT proteins.21

On the contrary, no clear results have been established about
the interaction between MTs and Ti ions. The interactions of
Pt and Fe with MTs is more complex. It has been observed
that Pt ions can interact with MTs in vivo in rats,35 and that
Fe(II) can bind metal-free rabbit MTs.36 However, these two
studies suggest that Fe and Pt ions could only bind to the free
thiol function of MTs, and cannot displace metal ions that are
already bound to the protein. As the displacement of Zn ions
from MT is necessary to induce MTs biosynthesis,37 Fe and Pt
ions could not activate MTs genes expression.

Our results prompt us to draw a first classification of metals:
the ones that have a greater affinity than Zn ions for MT thiols,
and those which have a lower binding energy that Zn ions.
This affinity can be related to several parameters. First, as thiols
are known to be a soft base in Pearson acid−base theory, they
should interact predominantly with soft acid, namely Cu+, Ag+,
Au+, Cd2+, and Pt2+, while Zn2+ and Fe2+ have an intermediate
behavior, and Ti4+ is a hard acid. This would explain why Ti
ions have not been shown to interact with MTs, while the
other have, but also why Zn ions are particularly suitable to
regulate MT synthesis, as they have an intermediate behavior
which enables other metal ions to displace them from MTs.
However, it does not explain why Pt and Fe ions cannot
displace Zn from loaded MTs. A second parameter that could
influence the ability of metals to bind MTs is the favored
configuration of ions within MTs. Metallic ions bind to MTs
with a diagonal, trigonal, or tetrahedral coordination,38 which
is not favorable for Pt2+ and Fe2+ ions. The similar response to
Cu, Zn, Ag, Cd, and Au-based compounds can thus be related
to their chemical features, and probably a combination of two
factors: their affinity for soft base thiols and their acceptance of
MTs binding geometry.

Altogether, the comparison between the metal tran-
scriptomic signatures revealed a common cell response for
Cu, Zn, Ag, Cd, and Au that is dominated by MT or MT-
related genes up-regulation. In contrast, the three remaining
metals, Ti, Fe and Pt, and the nonmetallic carbon and silicon-
based NPs do not trigger the up-regulation of these genes, as
they probably interact less strongly with MT thiols because of
their chemical properties.
Metals Also Induce Singular Transcriptomic Signatures

The latter analysis clearly underlined common mechanisms in
the cell response to Cu, Zn, Ag, Cd, and Au. However,

Figure 3. Heatmap of gene expression for the genes related to Cu, Zn, Ag, Cd, and Au treated cells, across data sets and conditions. Differential
expressions are in log2 fold change. Clustering was performed by ascending hierarchical classification using Ward method on squared distances.
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paradoxically, these metals have very different impacts on cells
or organisms. Indeed, this list contains highly and moderately
toxic metals, physiological or essential metals, nonessential
metals, and also ions that are widely used as potent medicines.
This suggests that beyond a common response mediated by
MTs, these compounds might have distinct interactions with
cells and proteins.

We thus investigated the most up-regulated genes for all
distinct materials. The evolution of the average has been
plotted to estimate the impact of the number of conditions, as
illustrated for representative cases in Figure S7. To capture the
genes that were highly specific to a given metallic form, the 50
genes with the lower gene rank were selected (Data File S2),
and associated with several biological functions (Data Files
S3−S14), the most represented ones being summarized in
Table 2.

Metal detoxification, which is mostly directed by MT genes,
is clearly identified, confirming the above analysis on individual
genes. MT up-regulation is also the strongest observed signal
for most conditions, including the NP-treated cells. This
supports the important finding that the cell response to NPs is
widely dominated by the response to metallic ions released
after NP dissolution, rather than by the formulation as NPs. An
increasing number of studies suggested that most of the
observed toxicity of metallic NP might be related to the free
metal ions and not to the NP themselves.28,39,40 This effect has
been called the Trojan horse effect, as the internalized NPs can
release their metallic compounds directly inside the cell, while
metal ion uptake is tightly controlled by the cell. Here, we
observed that the general response to metallic NPs encompass
a primary response to metal ions. Released metal ions thus play
the prominent role in the cell response to NPs, both on the
transcriptomic and toxicological aspect. This observation
further interrogates on the existence and nature of a response
to the nanoparticulate form itself at a lower intensity than the
response to metal ions, which will be examined in the next
section.

Secondary to the MT response, we can notice that Cu, Zn,
Ag, Cd, Au-based compounds also partially share other cell
responses, such as the response to unfolded protein (heat
shock protein genes, DnaJ genes, CRYAB, DDIT3), the
response to oxidative stress (glutathione metabolism genes,
HMOX1, NQO1, SRXN1, TXNRD1), or to immune stress
(TNF, cytokines). Importantly the relationship between
metallic ions and oxidative stress has been widely described
as a determinant of metal toxicity.41 In contrast fewer studies
described the relationship between protein folding and metal
stress.42−44 These oxidative, immune or unfolded protein stress

could be responsible for the activation of cell death and/or
apoptosis genes.

Both Fe ions and Fe-containing NPs do not appear to trigger
a clear-cut response in comparison to other metals. This
unclear response can either be due to a lack of data sets to
describe these conditions, or to a higher variability of the
cellular response to Fe compounds between cell types than for
other metallic compounds. Similarly, no cellular function is
clearly activated by Ti, carbon, or silica NPs. On the contrary,
Pt ions appear to induce DNA damage (CDKN1A,
GADD45A, GADD45B), dysregulation of the cell cycle
(BTG2, BTG3), and apoptosis (PMAIP1, BAK1).

It is interesting to confront the above results on tran-
scriptomic response to the known biological action of these
metallic compounds. As an example, Pt ions are commonly
used as a potent anticancer drug, which interacts with the
DNA and triggers DNA damage.45 This mechanism of action is
fully consistent with our meta-analysis, which points out the
DNA damage induced specifically by Pt ions. In another
medical field, Au ions were used for 50 years as a treatment for
rheumatoid arthritis patients.32 Rheumatoid arthritis is a
chronic inflammatory disease, and Au ions potentially interfere
with the immune system. Here, the meta-analysis reveals the
activation of several genes related to inflammation (CCL5,
CCL3, TNF). This inflammatory response seems to be
mediated by the overexpression of PIR, a protein that can
“translate” oxidative stress to immune stress by activating the
NFkB pathway.46 This protein, which has been found to be
only up-regulated by Au ions in our study, might explain how
Au ions can interact with the immune system.

If Pt and Au ions are mostly known for their medical use,
other metals, such as Cd ions, are known for their high toxicity.
We can notice that Cd ions, contrary to most of the other MT-
related ions, do not trigger the overexpression of oxidative
stress-related genes, which encode for antioxidant proteins.
This is a surprising result, as Cd ions are known to generate
free radicals.47 Reactive oxygen species should normally be
captured and deactivated by antioxidant proteins to avoid
cellular damages. Hence, in the absence of antioxidant protein
activation, Cd ions might critically damage the cell, which
would explain its toxicity. Overall, the analysis of tran-
scriptomic cellular response highlights some specificity of
each metal in line with their known biological outcome. It is
worth emphasizing that the metal singular features are
secondary to their common signature for the group of Cu,
Zn, Ag, Cd, and Au metals.

Table 2. Summary of the Up-Regulated Biological Functions after Exposure to a Metallic Stimulusa

metal Ag Au Cd Cu Zn Fe Ti Pt C Si

form ions NPs ions NPs ions ions NPs ions NPs ions NPs NPs ions NPs NPs

metal detoxification + + + + + + + +
response to oxidative stress + + + (+) (+)
unfolded protein response + + + +
inflammation + + (+)
apoptosis/cell death + + + + + + + +
DNA damage + +
cell cycle + +

aThese functions have been identified by studying the role of the 50 most commonly up-regulated genes for each condition. The parenthesis
indicates functions for which the pathway activation is not certain.
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A Low-Intensity Transcriptomic Signature Is Identified for
the NP Form

We highlighted above that the cell response to metal NPs was
primarily governed by the response to metal ions. However, we
wondered if an intrinsic response to NPs could exist, but that
could be hidden by other biological functions that are strongly
activated.

To investigate this hypothesis, we performed a supervised
study to identify the sets of genes that would distinguish NPs
from their ionic forms and that could be hidden by the
dominant cellular response. To identify this possible response
to the NP form, we averaged, on one part, the ranks for all
metallic and nonmetallic NPs, and, on the other part, the genes
that are up-regulated by hardly degradable metallic and
nonmetallic NPs (i.e., Au, Ti, C).29,40,48 We used the same
strategy as described before to cluster the NPs-treated cells
from metal ions using hierarchical clustering and optimization
of the F1 score.

Importantly the clustering obtained with the group of hardly
degradable NPs better separates NPs from ions than the
clustering taking all NPs into account (maximal F1 score of
81.8% and 66.0%, respectively), with high significance (p-value
of 0.0021 after bootstrapping, Figure S8a). This NP-specific
clustering relies on seven genes, whose expression across
conditions is displayed in Figure 4. These seven genes do not
only cluster hardly degradable NPs from the other conditions,
but also Cu, Zn, or Ag NPs. This justifies a posteriori that the
specific NPs signature could be unveiled from the response to
hardly degradable NPs, but also characterizes more degradable
NPs.

Among the NP-induced genes, we observed that several of
them are related to intracellular transport and cytoskeleton,
such as DYNC1H1, CTTN, and GBF1. As NPs are denser,
larger, and stiffer than most of the biological organic
compounds, this disturbance can thus be explained by the
intracellular trafficking of NPs inside the cells that generate
cytoskeleton rearrangement. The relationship between NP
internalization and the cytoskeleton has been studied before
for a large variety of NPs.49 Here we clearly shed light on a list
of related genes that characterize the cell response to NPs
across NPs and cell lines. It would be instructive to evaluate
how the silencing of these genes would impact NP uptake and
intracellular processing.

Two of the NP-induced genes are involved in transcription
regulation (TRRAP, UBE2O), and are harder to interpret as

they can control many functions. RPAP1 gene encodes for a
protein which participates in RNA polymerase II, which could
interact with chaperone proteins. Regarding LIN37 protein, its
function is still unclear. The roles of these four genes identified
in the cell response to NPs are thus not currently elucidated.

Finally, considering the wide variety of biological functions
displayed by metals, we interrogated whether the qualification
of metals as life-essential (i.e., Cu, Zn, Fe), or highly toxic (i.e.,
Ag, Cd, Pt) could lead to a segregation of the data sets with an
associated list of genes using the same hierarchical approach as
reported above for NPs. We found that optimized clustering
was associated with F1 scores of respectively 66.7% and 67.7%
for bioessential metals and supposedly toxic metals, and
respective p-values of 0.020 and 0.022 (Figure S8b,c). These
scores are poorly significant and lower than the one
distinguishing NPs from metal ions. Moreover, the selected
genes could hardly be related to the essential character or the
toxicity of the metals (Figure S9). Other metal features could
be tested with this approach, such as the concentration of free
metal ions compared to the bound fraction, that is to say the
metal availability.50 Unfortunately, this notion has so far been
studied mostly for essential ions, which limits here our ability
to test if some genes are associated with this characteristic.

In conclusion, we designed a hierarchical analysis pipeline
enabling us to search for common expression patterns that
occur, even at low intensities, behind the dominant response
for a subgroup of conditions. Beyond the predominant
similarities between NPs and their ionic form for all metals,
this approach also shed light on the existence of a general
response to the NP form, but not to toxic or essential metals.
We evidenced a hierarchy between the activated pathways
specifically related to NPs, and observed a clear difference
between highly and poorly soluble NPs.

■ CONCLUSION
We performed a meta-analysis of publicly available data related
to the transcriptomics response of human cells exposed to
various metallic or metal oxide NPs (Ti, Fe, Cu, Zn, Ag, and
Au NPs), metallic ions (Fe, Cu, Zn, Ag, Cd, Pt, and Au ions),
as well as nonmetallic NPs (C and Si NPs). We proposed
different stages of analysis with an increasing degree of
supervision that enabled us to identify the common and
singular signatures in the response to metallic compounds, but
also their relative intensities.

Figure 4. Heatmap of NP-related gene expression across data sets and conditions. Differential expressions are in log2 fold change. Clustering was
performed by ascending hierarchical classification using the Ward method on squared distances.
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The analysis pipeline we propose combines the use of
stringent quality controls (redundancy avoidance, p-value
distribution check) and a very general formulation that can
be extended or adapted to a wide range of databases and
biological questions. One of the limitations we encountered is
that many steps rely on signal averaging (between the different
doses, time points, and NPs types as a first step, between the
different cell types as a second step) that might hide singular
behaviors.

A first important biological question addressed in this study
is the existence of a general cell response to metallic
compounds, as a class of chemically defined materials, that
would arise from the similarities in transcriptomic profile.
Notably, five of the eight considered metals, namely Cu, Zn,
Ag, Cd, and Au, emerged as a group that triggered a common
and intense transcriptomic response not observed in cells
exposed either to nonmetallic carbon and silicon NPs, or to Fe,
Ti, and Pt. This signature is driven by the common
overexpression of MT or MT-related genes, which are
implicated in Zn and Cu homeostasis, heavy metal
detoxification, and cellular redox chemistry. One can conclude
from this dominant cell response that Cu, Zn, Ag, Cd, and Au-
based compounds are primarily processed through a shared
MT-related metabolism, regardless of their specific outcome
and fate within the cell. Another important finding of the meta-
analysis was that Fe, Pt, and Ti, as well as nonmetallic NPs,
were excluded from the group of metals whose cellular
homeostasis mostly relies on MTs. This can be related to their
distinctive chemical properties, which drive metal ions
interactions with MTs. Our results are consistent with the
assumption that metals can be classified according to their
ability to displace Zn ions from MTs and thus induce MTs
biosynthesis, owing to the combination of their affinity for soft
base thiols and their acceptance of MTs binding geometry.

Apart from the general common impact of metal ions and
NPs on the metal binding pathway, the meta-analysis also
identified individual responses for each types of metal, such as
the activation of oxidative stress, ER stress, or inflammation
pathways, that are generally observed at a lower intensity than
the MT response. Interestingly, these cellular responses
correlate with known singular effects of some metals, such as
the biological functions of Au and Pt ions as drugs, which also
validates the statistical approach in our study.

Besides the categorization of metals according to their
transcriptomic impact, the main original biological question
asked through this meta-analysis was if human cells respond
similarly to metal ions and metal NPs. This question underpins
most of the experimental settings to assess inorganic NP
toxicity and the long-lasting debates on the biological impact
related to NP structuration with respect to their individual
constituents. Our main result is that the response to the
various metal NPs included in the meta-analysis is not distinct
from that of the corresponding metal ions. PCA analysis as well
as gene ranking of the most up-regulated genes did not clearly
distinguish metal and ionic forms of the same metal and high
correlation coefficients were found when comparing most of
the metals in both forms. In particular, metal or metal oxide
NPs that are prone to degradation and ion release (i.e., Cu, Zn,
Ag) elicit gene transcripts closer to that of their constitutive
ions. These important results shed light on the continuum of
the cell responses to NPs and ionic forms, which can be
explained by common intracellular fate at some points of their
journey in the cell.

Our hierarchical analysis of transcriptomic data sets also
allowed us to search for low-intensity responses shared by a
given set of conditions (e.g., NPs vs ions, highly toxic vs
moderately toxic metals, bioessential vs non-bioessential
metals). With this supervised strategy, we could interrogate if
the dominant similarity between responses to metal ions and
NPs could hide a low-intensity signature related to NP
specificities. Notably, we shed light on several genes that are
more specifically overexpressed after exposure to NPs (metallic
or not) and particularly to poorly degradable NPs. This NP-
related signature contains cytoskeleton and vesicle traffic-
related genes, which can be induced by the intracellular
trafficking of NPs involving membrane tension and cytoske-
leton rearrangement that are not observed with the molecular
form of metals. This signature related to the physical properties
of NPs (size, high surface/volume ratio, rigidity, architecture)
is important to consider as the primary determinant of cell
response which is independent of constitutive elements.
Contrary to what we observe regarding the nanoparticulate
form, no set of genes could be correlated to the essential
character of a metal or to its toxicity with a sufficiently high
partition score.

Overall, our important finding that the cell response to metal
NPs encompasses the response to metal ions has several
consequences. From a toxicology point of view, the impact of
metal NPs at the cell level (notwithstanding some differences
of biodistribution or bioavailability at the tissue level) could be
predicted from the impact of their constitutive ions, which is
often better elucidated. This could introduce a paradigm shift
in which it is more important to understand and control the
biotransformation and life cycle of NPs than their initial
chemical properties. Likewise, the therapeutic promises of
metal NPs could be envisioned in view of the biological
functions and fate of their constitutive ions as well as in situ
crystallization process. For example, the common fate of Au
NPs and Au ions, both resulting in aurosome intralysosomal
formation, encourages one to reconsider gold-based therapeu-
tics and promote the revival of gold salt therapy.32,51

This result can also help to understand the biological action
of complex NPs, such as nanoparticulate matter that
participates in atmospheric pollution. These particles are
hard to describe as they contain multiple chemical elements,
with a high variance between particles. Thus, understanding
the respective role of the soluble part and the insoluble part is a
cornerstone to evaluating their toxicity.52 If the response to the
metallic part of the particle could be estimated for its
extracellular and intracellular soluble fractions, as shown here
for simple NPs, it could be a tremendous improvement in the
understanding of the toxicity of such pollutants.53

■ MATERIALS AND METHODS

Data Set Selection
Data were extracted from the National Center for Biotechnology
Information (NCBI) Gene Expression Omnibus (GEO) database.
Eight metals were investigated in this database: titanium, iron, copper,
zinc, silver, cadmium, platinum, and gold. We selected data acquired
in vitro on human cells, after exposure to a single metal and no
costimulus. We favored data that provide replicates for each
condition. We also selected studies that do not provide replicates,
but only if different concentrations or time points were explored after
metal stimulation, and if replicates were available for the control
condition.
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Individual Data Set Extraction and Processing
The data were processed and statistical analysis was performed using
the programming software R (version 3.6.0). All analysis pipelines are
freely available at https://github.com/AliceBlf/Transcriptomics-meta-
analysis-metals.git.

The function getGEO (package GEOquery) was used to extract the
raw data using the GEO accession number in order to download both
the raw data and its annotations. Data were treated to have only one
gene per probe and one probe per gene. Briefly, multigene probes
were duplicated to get one value per gene, and redundant genes were
treated in order to get the mean values of the different probes.

Then, a value distribution was plotted to determine if the data were
expressed as intensity count or log fold change, and were translated to
log scale if needed. Data set expressions between conditions were also
normalized using the function normalize.quantiles (package preproces-
sCore). Data sets were then visualized by principal component
analysis with the function PCA (package FactoMineR) using as input
the genes with the highest variance (720 genes selected). This
visualization sometimes helped to correct batch effects, using the
function ComBat (package sva).54

Gene differential expressions were then calculated for each metal
exposure condition as a comparison to a unique control condition for
each cell type using the functions lm.Fit, contrasts.f it, and eBayes
(package limma) with default parameter values.55 Volcano plots were
performed to control the distribution of differential expression and p-
values over the data set.

Correlation of the Different Tested Conditions
For each cell type, metallic compound, dose, and time, gene
expression was compared between conditions using Pearson’s
correlation. First, the correlation was calculated after one-by-one
comparison of the different doses. As the median correlation
coefficient for all data sets was higher than 0.5, the different doses
were averaged as a single gene expression. Then, the same comparison
protocol was applied to the different time points, and then to the
different types of NPs. In both cases, the correlation coefficient was
found to be sufficiently high to average the gene expression over time
and NP types. Finally, the different cell types were compared, but
showed different responses from one cell type to another, and were
thus treated distinctly.

Data Aggregation and Preprocessing
Once data sets were individually analyzed, they were aggregated into a
single 2-dimension matrix of unique genes vs gene expression for each
condition. As all gene sets downloaded from the GEO database do
not use the same RNA chips, this matrix was not completely filled. To
avoid working with genes or data sets that were not sufficiently
described, we first eliminated the genes that were not measured in at
least two-thirds of the data set, and then the data sets that had missing
values in at least two-thirds of the remaining genes. Data sets were
then normalized to present a homogeneous range of values using the
function normalize.quantiles (preprocessCore package).

Determination of Gene Rank for a Condition
To determine the signature genes for one condition, for each data set,
the genes were associated with their rank of expression, the first one
being the most up-regulated gene of the data set. Then, for all data
sets that describe a given material, the average rank of each gene was
calculated using arithmetic mean.

The average rank helps to determine the most commonly up-
regulated genes, which have the lower average rank. However, we
notice that the amplitude of the average rank was dependent on the
number of associated conditions, and could hardly be compared
together under their raw form. Thus, all ranks were normalized using
the function normalize.quantiles (package preprocessCore) prior to
further analysis.

Comparison of Signature between Conditions
To compare average gene ranks, we use weighted correlation function
weightedCorr (package wCorr). Basically, correlation was weighted for

each gene by the inverse of the product of the square of the average
rank:

w
s s

1
X Y

X Y
, 2 2=

with wX,Y being the vector of weights applied to the calculate the
weighted correlation coefficient between the conditions X and Y, sX
the vector of average gene rank for the condition X, and sY the vector
of average gene rank for the condition Y.

The significance of the correlation was calculated using two distinct
methodologies. First, p-values were calculated using a linear regression
between the two lists of ranks using the function lm with the same
weights as the weighted correlation. The linear regression calculation
generates a Fischer test that estimates the association between the two
variables. . Then, lists of ranks were randomly shuffled to calculate
300 correlation coefficients for each pair of two conditions
(bootstrapping). The cumulative function was estimated using ecdf
function, and the p-value was estimated with this function using the
actual correlation coefficient from the nonshuffled vectors.

Selection of the Genes to Predict a Classification
Classical tools to predict a classification (i.e., linear discriminant
analysis, logistic regression, random forest regression) could not be
implemented here because of the large number of missing values.
Hence, the selection of genes was operated using hierarchical
clustering and a stepwise-like approach to identify the most important
genes.

First step: Classification with a small number of variables. The 5
genes that were most commonly up-regulated were selected and used
as input data to generate a tree relying on hierarchical clustering
(function hclust, using Ward method on squared distances). The two
main clusters were then identified with the function cutree. The
adequacy between this clustering and the classification to predict was
calculated through a F1 score.

Second step: Addition of new variables. The 45 following genes
were successively added at input data to generate new trees, new
partitions in two, and an associated F1 score. If one gene increases the
F1 score compared to the highest F1 score calculated so far (in the first
step or during the second step), it was selected. Else, it was
eliminated. This step is similar to the forward selection of a stepwise
regression.

Third step: Elimination of selected variables. One by one, the
selected genes were removed from the input data, to generate a new
tree and F1 score. If the elimination of the gene decreases the F1 score,
they were conserved in the final list of genes, else they were
eliminated. This step is similar to the backward selection of a stepwise
regression.

The final list of genes was used to generate an expression heatmap
using pheatmap function (package pheatmap), with the final
hierarchical tree.

The significance of the obtained F1 score was evaluated using
bootstrapping. Briefly, for an identified set of n genes, n genes were
randomly selected in the 50 top genes, and used to generate
clustering. This step was repeated 500 times, and the cumulative
function of F1 scores distribution was estimated using ecdf function.
The p-value was then estimated for the actual F1 score using this
distribution.
Calculation of Biological Pathway Enrichment
Enriched biological pathways have been determined from the 50 most
up-regulated genes for each metal form or NPs. Data File S2 gathers
all the top 50 gene lists. Gene Ontology (GO) database was chosen as
a database associating biological function to gene sets.

Significance of the enrichment was calculated using a hyper-
geometric test using the phyper function. This test calculated the
probability that n genes are present both in the top gene list and a
given gene set by chance. It computes the probability to choose n
genes belonging to a given gene set by randomly choosing genes
among the total number of studied genes, which is here 14 912. The
p-values were then corrected by Benjamini−Hochberg method, and
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the threshold for the resulting false discovery rate (FDR) adjusted p-
value was fixed to 0.01. In addition, gene sets that had only three or
fewer genes in common with the top 50 gene list were also excluded
to limit false positives. The selected gene sets are displayed as Data
Files S3−S14, with their associated FDR adjusted p-value and the
genes driving the enrichment. For Au NPs, Ti NPs, and Fe NPs, no
gene set was selected; thus, no data files are provided for these three
types of NPs.

To rationalize biological function enrichment and avoid redun-
dancies, enrichments have been summarized in Table 2 manually.
However, this process was supported by several visualizations of the
data: for example, as some groups of genes obviously participated to
the activation of a group of gene sets, a matrix displaying the
occurrence of two genes in the same gene set was established for each
type of NPs and ions. These matrices were then visualized using
pheatmap function (package pheatmap) with hierarchical clustering,
or graph_f rom_adjacency_matrix function (package igraph). Groups
of genes that were responsible for the activation of a group of gene
sets were then thoroughly studied to be associated with a small
number of large biological functions.
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