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Abstract

Background

L-type calcium current reactivation plays an important role in development of early afterde-
polarizations (EADs) and torsades de pointes (TdP). Secondary intracellular calcium (Ca;)
rise is associated with initiation of EADs.

Objective

To test whether inhibition of sarcoplasmic reticulum (SR) Ca®* cycling suppresses second-
ary Ca; rise and genesis of EADs.

Methods

Langendorff perfusion and dual voltage and Ca; optical mapping were conducted in 10 rab-
bit hearts. Atrioventricular block (AVB) was created by radiofrequency ablation. After base-
line studies, E4031, SR Ca®* cycling inhibitors (ryanodine plus thapsigargin) and nifedipine
were then administrated subsequently, and the protocols were repeated.

Results

At baseline, there was no spontaneous or pacing-induced TdP. After E4031 administration,
action potential duration (APD) was significantly prolonged and the amplitude of secondary
Ca, rise was enhanced, and 7 (70%) rabbits developed spontaneous or pacing-induced TdP.
In the presence of ryanodine plus thapsigargin, TdP inducibility was significantly reduced (2
hearts, 20%, p = 0.03). Although APD was significantly prolonged (from 298 + 30 ms to 457 +
75 ms at pacing cycle length of 1000 m, p = 0.007) by ryanodine plus thapsigargin, the
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secondary Ca; rise was suppressed (from 8.8 £ 2.6% to 1.2 £ 0.9%, p = 0.02). Nifedipine in-
hibited TdP inducibility in all rabbit hearts.

Conclusion

In this AVB and long QT rabbit model, inhibition of SR Ca?* cycyling reduces the inducibili-
ty of TdP. The mechanism might be suppression of secondary Ca, rise and genesis of
EADs.

Introduction

Drug-induced acquired long QT syndrome and torsades de pointes (TdP) is one of the most se-
rious adverse effects of medications. There is close relationship between risk of prolonged QT
interval/TdP and inhibition of rapidly activating delayed rectifier potassium current (Ix,) [1,2].
Ik, is encoded by the hERG gene, which is the gene encoding mutation in long QT syndrome
type 2 [3]. However, the risk of TdP development is not always linked to prolonged QT inter-
val. Amiodarone has been wildly used for ventricular and supraventricular tachyarrhythmias,
especially in patients with heart failure. Although it causes significant QT prolongation, the
risk of provoking TdP is relatively minor. The relationship between the risk of TdP and the se-
verity of QT prolongation remains mysterious.

Early afterdepolarizations (EADs) are secondary depolarization during repolarization of ac-
tion potential and usually developed in the presence of prolonged action potential duration
(APD). L-type calcium current (Ic, ) reactivation is required in the initiation of EADs [4]. Pre-
viously we observed secondary intracellular calcium (Ca;) rise in a rabbit heart failure model
[5]. It has also been reported that I, 1 blockade abolished EAD development in heart failure
animal models [6]. Whether or not sarcoplasmic reticulum (SR) Ca**cycling also plays a role
in genesis of EADs and secondary Ca®" rise is still unclear. In this study, we hypothesized that
SR Ca** cycling inhibition suppressed secondary Ca; rise and development of EADs. We used a
long QT syndrome rabbit model with atrioventricular block (AVB) creation and E4031 con-
taining low-K*-low-Mg>" Tyrode’s solution perfused to test the hypothesis. This study fol-
lowed the previous studies of long QT rabbit models [7,8]. E4031 is a specific I, inhibitor and
has been used for creation of long QT animal model.

Materials and Methods

The research protocol was approved by the Institutional Animal Care and Use Committee
(IACUC) of Chang Gung Memorial Hospital (Permit Number: 2012121704) and conformed
to the Guide for Use of Laboratory Animals. All surgery was performed under general anesthe-
sia with ketamine, rompun and isoflurane, and all efforts were made to minimize suffering.
Ten adult New Zealand white rabbits (2.5-3.5 kg) were used in this study.

Optical mapping and AVB model

We created AVB after harvesting rabbit hearts in this study using a modified atrioventricular
node ablation method [5] and the same optical mapping method described previously [9,10].
In brief, the rabbits were generally anesthetized with intravenous injection of ketamine

(8 mg/kg) and xylazine (8mg/kg).When the rabbits were fully anesthetized and unresponsive
to physical stimuli, the hearts were rapidly harvested and Langendorff-perfused with 37°C
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standard Tyrode’s solution of the following composition: 125 mM NaCl, 4.5 mM KCl,

0.5 mM MgCl,, 24 mM NaHCOj3, 1.8 mM NaH,PO,, 1.8 mM CaCl,, 5.5 mM glucose and
100 mg/L albumin, equilibrated with 95% O, and 5% CO, in de-ionized water and with a pH
of 7.40. We then performed radiofrequency ablation to create AVB using a 7Fr. quadripolar
large-tip ablation catheter (Biosense Webster, Diamond Bar, CA, USA) at a output energy of
10~20W generated by a radiofrequency generator (Radionics RFG-3C, Radionics Inc., MA,
USA). The target ventricular escape rate after AV node ablation was less than 60 beats

per minute.

The hearts were stained with Rhod-2-AM (Molecular Probes, Carlsbad, CA, USA) for Ca;
and RH-237 (Molecular Probes) for membrane potential (V,,,). We used a laser light at a wave-
length of 532 nm (Millennia, Spectra-Physics Inc., Santa Clara, CA, USA) to excite the fluores-
cence dyes. The emitted fluorescence was acquired and filtered (715 mm for V,,, and 580 nm
for Ca;) with twocharge-coupled device cameras (CA-D1-0128T, Dalsa Inc., Waterloo, On-
tario, Canada) at 4 ms/frame temporal resolution and 128 x 128 pixels with spatial resolution
of 0.35 x 0.35 mm” per pixel. To provoke development of TdP, the perfused solution was
changed to a modified low-K* (2.25 mM)/low Mg** (0.25 mM) Tyrode’s solution after fluores-
cence dye staining. Motion artifacts were suppressed by blebbistatin (15 umol/L, Tocris Biosci-
ence, Minneapolis, MN, USA).

Experimental protocol

Pseudo-electrocardiography (pECG) was recorded using three electrodes placed at the left atri-
um, the posterior wall of the left ventricle and the right ventricle. A bipolar catheter was in-
serted into the right ventricular apex for pacing at twice threshold. Because of significantly
prolonged APD in this long-QT syndrome model, the optical mapping signals were acquired at
cycle lengths of 1000, 800, 600, 500, 400, 350, 300 ms and then down to the shortest 1:1 cap-
tured cycle length with a 20 ms step. A S1/52/S3 short-long-short pacing protocol (S1 30 beats
with S§1-S1 500 ms, a long S1-S2 of 1000 or 2000 ms and a S2-S3 starting from 500 ms and
gradually shortened to the ventricular effective refractory period) was used to induce TdP.
Some TdP episodes were also induced by a short burst pacing following a long pause in this
AVB model. After the baseline studies, E4031 (0.5 uM), ryanodine (1.0 uM) plus thapsigargin
(1.0 uM), and nifedipine (2.0 uM) were administered subsequently, and the experimental pro-
tocols were repeated after each set of medications.

Data analysis

APDyg, was measured at the level of 80% repolarization of action potential. Secondary rise of
Ca; is defined as the spontaneous increase of the Ca; at the downslope of the primary Ca; re-
leased. The amplitude of secondary Ca; rises is defined as the largest deviation from a line
drawn between the onset and offset of the secondary Ca; rise as previously described [5]. TdP
was defined as polymorphic ventricular tachycardia more than 3 beats. Continuous variables
with normal distribution were expressed as the mean + SEM, and categorical variables were ex-
pressed as number (percentage). Differences in continuous variables between different zones of
the same heart with normal distribution were analyzed by paired t-test. One-way repeated
measures ANOVA with post-hoc LSD analysis was used to compare continuous variables in
the presence of different sets of medications with baseline values. The differences in categorical
variables at different concentrations were tested using Cochran’s Q test. Differences were con-
sidered significant when the probability value was < 0.05.
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Results
Inducibility of TdP in AVB model

We successfully obtained optical mapping recording in 10 rabbit hearts. There was no induc-
ible TdP or EADs at baseline. We recorded spontaneous or pacing-induced TdP in 7 hearts
(70%) in the presence of E4031. Fig 1 shows representative examples of spontaneous (panel A)
and pacing-induced TdP (panel B, the second and the third subpanels). Panel A shows second-
ary Ca; rise and Ca; oscillation (red trace) during the spontaneous TdP. After ryanodine plus
thapsigargin administration, the inducibility of TdP was significantly suppressed (Fig 1B, the
forth subpanel) and only 2 hearts had inducible TdP in the presence of ryanodine plus thapsi-
gargin (Fig 1C, 20%, p = 0.03). We further applied nifedipine and the inducibility of TdP was
completely suppressed (0%). The bottom subpanel of Fig 1B shows a representative example in
the presence of nifedipine. The results were compatible with previous findings that SR Ca>" cy-
cling also played an important role in the genesis of EADs.

Action potential duration

Fig 2A shows representative action potential traces and APD maps at baseline, in the presence
of E4031, further administration of ryanodine plus thapsigargin, and then nifedipine, respec-
tively. APDg, was longer in the presence of E4031 and was further prolonged after administra-
tion of ryanodine plus thapsigargin at both 1000 ms and 500 ms pacing cycle lengths (PCLs).
Nifedipine shortened APDg,. Because of significantly prolonged APDg,, we were not able to
pace the hearts at pacing cycles shorter than 400 ms after applying E4031 in most of the hearts.
Statistical tests showed that E4031 significantly prolonged APDg, (from 179 £ 5 ms to 298 +
30 ms, p = 0.003, and from 178 + 6 ms to 267 + 21 ms, p = 0.002, at PCL 1000 ms and 500 ms,
respectively, Fig 2B), and ryanodine plus thapsigargin further prolonged APDyg, (457 + 75 ms
and 357 + 637 ms, at PCLs of 1000 ms and 500 ms, p = 0.007 and p = 0.003, respectively). Ni-
tedipine significantly shortened the extremely prolonged APDg, (307 + 65 ms and 244 + 37
ms, at PCLs of 1000 ms and 500 ms, p < 0.001 and p = 0.001, respectively). Although inhibi-
tion of SR Ca®* cycling further prolonged APDgj, the inducibility of TdP was suppressed as
shown in Fig 1C.

Secondary Ca; rise

Previously we reported that apamin induced secondary Ca; rise and EADs in failing hearts [5].
Optical mapping recording showed that EADs were initiated at the area with secondary Ca;
rise. Therefore, we analyzed the amplitude of secondary Ca; rise and the relationship between
secondary Ca; rise and TdP inducibility. Fig 3A shows representative V,,-Ca; traces and sec-
ondary Ca; rise maps. Significant secondary Ca; rise developed at the basal area of the left ven-
tricle in the presence of E4031. The amplitude of secondary Ca; rise was positively correlated
with the APD with E4031. Fig 3B shows the average secondary Ca; rise at baseline, in the pres-
ence of E4031, further administration of ryanodine plus thapsigargin, and then nifedipine. At
baseline, there was only minimal secondary Ca; rise (1.0 = 1.0%), which was significantly en-
hanced by E4031 (8.8 + 2.6%, p = 0.03). Ryanodine plus thapsigargin prolonged APD but sig-
nificantly suppressed secondary Ca; rise (1.2 + 0.9%, p = 0.02). Nifedipine partially restored the
extremely prolonged APD and further suppressed secondary Ca; rise (0.4 = 0.4%). As shown in
Fig 3C, the highest secondary Ca; rise site presented the longest APD (point 1), and vice versa,
the amplitude of secondary Ca; rise was less obvious at the shorter APD area (point 3). Fig 1D
shows the relationship between TdP inducibility and the amplitude of secondary Ca; rise in
each heart. The filled bars indicate hearts with inducible TdP and the unfilled bars are hearts
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Fig 1. TdP and EAD inducibility. A. A representative example of spontaneous TdP ventricular tachycardia and the V,,,-Ca; traces. B. Short-long-short (SLS)
pacing did not induce TdP ventricular tachycardia at baseline (the top subpanel). In the presence of E4031, rabbit hearts developed pacing-induced TdP (the
second and third subpanels). After ryanodine plus thapsigargin administration, only 2 (20%) hearts developed TdP (the forth subpanel). Nifedipine abolished
the inducibility of TdP (the bottom subpanel). C. Inducibility of TdP inducibility at baseline, after administration of E4031, ryanodine plus thapsigargin and
nifedipine. D. The relationship between amplitude of secondary Ca; rise and TdP inducibility of each heart (numbers indicate the serial number of rabbit
hearts). Filled bars indicate hearts with inducible TdP and unfilled bars are hearts without inducible TdP. Note the 3 hearts without TdP inducibility had

relatively lower secondary Ca; rise.

doi:10.1371/journal.pone.0123868.g001
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of 1000 ms and 500 ms.
doi:10.1371/journal.pone.0123868.g002

without TdP. Note the 3 non-inducible hearts had relatively lower amplitude, although the ani-
mal number was too small for statistical testing.

Fig 4 shows an example of EAD mapped optically. Panel A shows the secondary Ca; rise
and APD maps. The greater-secondary Ca; rise area co-localized with the longer-APD area.
Panel B shows serial V, maps of initiation of an EAD (the numbers indicate the frame). Frame
308 shows that repolarization developed from the apex (red arrow) toward the middle LV.
Frame 334 shows that the basal area sustained at plateau phase (site a, the red color indicating
high V,,,) and the apical area developed repolarization (site ¢ and d, the blue color indicating
low V). Frame 336 shows that the earliest activation sites of this EAD beat was at the border
of the high secondary Ca; rises region (site b, white arrow), propagating to the apical area
(dashed white arrow, frame 337). Panel C shows the corresponding V,,, and Ca; traces of this
particular EAD in panel B. The bottom and right V., and Ca; traces were zoomed-in signals of
the black box in the top subpanel, representing the V,,, and Ca; signals of the corresponding
sites on the phase map. Note that the Ca; trace (red lines) shows earlier Ca; pre-fluorescence
(black arrow head) at site b, which co-localized with the initiation of the EAD in the V, map
(Fig 4C, right subpanels).
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Fig 3. Secondary Ca; rise. A. Representative secondary Ca; rise traces and secondary Ca; rise maps. Upper subpanels show the simultaneous recording of
Vr, and Ca; traces. Lower subpanels are the secondary Ca; rise maps. Ryanodine plus thapsigargin suppressed secondary Ca; rise. B. Mean secondary Ca;
rise. C. Simultaneous action potential and Ca; wave traces at different sites. The amplitude of secondary Ca; rise was positively correlated with APD.

doi:10.1371/journal.pone.0123868.g003

Calcium decay

Whether calcium decay is important in the development of TdP is not clear. Fig 5A shows a
representative example of the calcium decay at baseline, in the presence of E4031, further ad-
ministration of ryanodine plus thapsigargin, and then nifedipine. The trend of calcium decay
was similar to the trend of APDg,. The average calcium decay were significantly prolonged by
E4031 (Fig 5B, from 63 + 1 ms to 100 + 12 ms, p = 0.01) and then further prolonged after ad-
ministration of ryanodine plus thapsigargin (205 + 13 ms, p < 0.001). Nifedipine shortened
the calcium decay (126 + 22 ms, p < 0.001). Similarly, although inhibition of SR Ca** cycling
further delayed the calcium decay, the inducibility of TdP was not further enhanced.

Arrhythmia Pattern of Torsades de pointes

In this long-QT syndrome model, the TdP ventricular tachyarrhythmias usually resulted from
beat to beat changes in wave propagation patterns initiated by EADs from the border of the
largest Ca; rise area. Fig 6 shows an example of an episode of TdP following an intrinsic escape
beat (beat 1). The beat 2 was an EAD beat initiated from the border of the largest secondary
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doi:10.1371/journal.pone.0123868.g004

Ca; rise region. Because of significant spatially heterogeneous prolongation of APD, the short-
coupled EAD beat led to unidirectional conduction block and formed reentry. This arrhythmia
pattern is consistent with a previous study reported by Asano etal [11].

Discussion

The major findings of this study include that inhibition of SR Ca** cycling suppressed the in-
ducibility of TdP. In this model, inhibition of SR Ca** cycling did not shorten APD. The mech-
anism could be the suppression of secondary Ca; rise. We also demonstrated that EADs was
initiated from border of the high secondary Ca; rises region with earlier Ca; pre-fluorescence.
These results indicate that both SR Ca** cycling and I, 1 are important in development of sec-
ondary Ca; rise and EADs. Therfore, secondary Ca; rise might be a marker of

torsadogenesis risk.

Effects of SR Ca®* cycling inhibitors on APD

The interaction between APD and Ca®" dynamics is complicated. APD and Ca; are bidirection-
ally coupled in cardiac tissue: a longer APD usually triggers a larger Ca** release and a larger
Ca’" release can either shortens or prolongs APD [12,13]. A larger Ca** release enhances Na*-
Ca®" exchange current to prolong APD, but it also potentiates Ca** induced I, inactivation
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and enhances Ca®"-sensitive K" and Cl” currents to shorten APD. Ryanodine has been shown
to slow down I, inactivation through blockade of SR Ca** release [14]. Enhanced RyR phos-
phorylation is associated the development of EADs in a long QT 2 rabbit model [15]. The re-
duced Ca®* release leads with slow inactivation of Ic, leads to longer APD. Thapsigargin had
been also shown to prolong APD through depletion of SR Ca**, and patch clamp recording
showed an increased total influx of Ca®* with a longer duration in the presence of thapsigargin
[16]. Therefore, the net effects of SR Ca** cycling blockade include prolongation of APD, slow-
ing down I, inactivation and SR Ca®" reuptake.

The importance of SR Ca?* cycling on EADs genesis

The chain of Ca** cycling includes I, 1, Na*-Ca** exchange current and SR Ca®" release and
reuptake. I, 1 reactivation plays a central role in the development of EADs and TdP, and inhi-
bition of I, is one of the preventive and therapeutic approaches to TdP [6,17,18]. Experimen-
tal and simulation studies have shown that I, ; may reactivate and reversely repolarize under
the situation of reduced outward currents and/or increased inward currents [17]. A recent
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report showed that blockade of Na*-Ca** exchange current suppresses genesis of EADs with-
out interfering the reactivation of I, 1 in a H,O, oxidative cell model [18]. It suggests that
Na*-Ca** exchange current may also play a role in EAD genesis. In this study, our data showed
that SR Ca** cycling inhibition suppressed EAD genesis even in the situation of longer APD.

A possible mechanism is that the inhibition of SR Ca** cycling leads to slowing of Ca**-
dependent I, inactivation, which reduces the possibility of available L-type Ca** channels
for reactivation and the degree of secondary rise of Ca; to attenuate EAD genesis. This study
also confirms previous findings that any interference among the Ca®* cycling affects the genesis
of TdP [19]. On the basis of this study and previous reports, we postulate that the interaction
of L-type calcium channel, SR Ca** release-reuptake and Na*-Ca** exchanger is required to
generate EADs.

Mechanisms of secondary Ca; rise

The formation of secondary Ca; rise is complicated. Priori et al. first proposed that abnormal
Ca®* cycling can be the mechanism of EADs [20]. Piacentino et al. observed Ca** influx during
late portions of action potential in failing human cardiomyocytes using a voltage-clamp model
[21]. Zeng and Rudy demonstrated that recovery and reactivation of I, is the mechanism of
EADs [4]. It seems that I, 1 plays the most important role in genesis of EADs. However,
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whether or not I, 1 is the only factor in the EAD genesis was not very clear. Qu et al. investi-
gated the mechanisms of EADs and ultra-long APD using a Luo and Rudy simulation model
[22]. In the model, the formation of EADs and ultra-long APD is associated with alteration of
window I, 1, speed of Ix activation, slope of the steady-state inactivation curve of I, 1 and
pedestal I, [22]. SR Ca*" release or reuptake/extrusion can affect window I¢, 1, Ix activation,
inactivation of I, through Ca®*-dependent I, inactivation, modulating V,, by Na*-Ca**
exchange current, regulating Iy, and Ca** activated potassium and chloride currents. The
mechanisms of secondary Ca; rise involve the interaction of I, 1, SR Ca®* cycling and Na*-
Ca** exchange current: SR Ca®* release causes inactivates I, 1; then either sustained high v,
or spontaneous Ca’* release-induced depolarization through Na*-Ca** exchange current reac-
tivates I, [19]. SR Ca** cycling blockade reduces Ca** release, subsequently slows I, 1 inacti-
vation to reduce secondary Ca; rise.

Arrhythmia pattern of TdP

Most EADs initiated from the border zone rather than the region with largest amplitude of Ca;
rise in this study and the previous studies [5]. The mechanism of this phenomenon is not clear,
and the reason could be the long refractory period of the myocardial tissue with the longest
APD. Amplitude of Ca; rise is correlated with the APD, and the excessive prolongation of APD
prevents immediate re-initiation of an action potential. The nearby myocardium with relatively
shorter APD is available to initiate an EAD. Prolonged APD also leads to unidirectional block
during the episodes of TdP. Therefore, the pattern of arrhythmias was focal trigger of EADs
and reentry due to heterogeneously prolonged APD in this model.

Clinical implications

Prolongation of QT interval leading to TdP is one of the major adverse effects of medications.
It has been reported that the risk of drug-induced QT prolongation and TdP is associated with
Ik, blockade activity at the therapeutic level [23]. The concern leads to significant amount of
drugs being withdrawn from the market or even never entering the market [24]. Some medica-
tions prolong QT interval but carry relatively low risk of TdP, such as amiodarone. Amiodar-
one has been reported to affect L-type Ca®" channel and SR Ca®" cycling [25,26]. It is possible
that the effects of amiodarone on Ca** homeostasis lead to anti-arrhythmic property with rela-
tively less torsadogenic effects. The mechanisms can be explained partially by the effects of SR
Ca’* blockade on suppressing inducibility of TdP. SR Ca** homeostasis can also be one of the
targets to manage TdP clinically.

Limitations

There are still some limitations in this study. We mapped only the epicardium of hearts and
were not able to recognize some arrhythmias when EADs initiated from mid-myocardium,
sub-endocardium or outside of mapping field. Purkinje-ventricular escape rhythm after AV
node ablation depended on the level of ablation, and the escape rate was different among the
hearts. Because of cardiac memory, the rate of escape rhythm might affect APD and the in-
ducibility of TdP.

Conclusion

In this AVB and long QT rabbit model, inhibition of SR Ca** cycling reduces the inducibility
of TdP. The mechanism might be suppression of secondary Ca; rise, although inhibition of SR
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Ca" cycling does not shorten APD. Nifedipine further inhibits the inducibility of TdP. These
results indicate that both SR Ca®* cycling and I¢, are important in EAD genesis.
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