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Abstract
The human pathogens  and Yersinia pseudotuberculosis Yersinia enterocolitica
cause enterocolitis, while  is responsible for pneumonic,Yersinia pestis
bubonic, and septicaemic plague. All three share an infection strategy that
relies on a virulence factor arsenal to enable them to enter, adhere to, and
colonise the host while evading host defences to avoid untimely clearance.
Their arsenal includes a number of adhesins that allow the invading pathogens
to establish a foothold in the host and to adhere to specific tissues later during
infection. When the host innate immune system has been activated, all three
pathogens produce a structure analogous to a hypodermic needle. In
conjunction with the translocon, which forms a pore in the host membrane, the
channel that is formed enables the transfer of six ‘effector’ proteins into the host
cell cytoplasm. These proteins mimic host cell proteins but are more efficient
than their native counterparts at modifying the host cell cytoskeleton, triggering
the host cell suicide response. Such a sophisticated arsenal ensures that
yersiniae maintain the upper hand despite the best efforts of the host to
counteract the infecting pathogen.

 
This article is included in the F1000 Faculty

 channel.Reviews

 Steve Atkinson ( ), Paul Williams ( )Corresponding authors: steve.atkinson@nottingham.ac.uk paul.williams@nottingham.ac.uk
 Atkinson S and Williams P. How to cite this article: Yersinia virulence factors - a sophisticated arsenal for combating host defences

  2016, (F1000 Faculty Rev):1370 (doi: )[version 1; referees: 2 approved] F1000Research 5 10.12688/f1000research.8466.1
 © 2016 Atkinson S and Williams P. This is an open access article distributed under the terms of the Copyright: Creative Commons Attribution

, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.Licence
 The author(s) declared that no grants were involved in supporting this work.Grant information:

 Competing interests: The authors declare that they have no competing interests.

 14 Jun 2016, (F1000 Faculty Rev):1370 (doi: ) First published: 5 10.12688/f1000research.8466.1

  Referee Status:

 Invited Referees

 version 1
published
14 Jun 2016

 1 2

 14 Jun 2016, (F1000 Faculty Rev):1370 (doi: First published: 5
)10.12688/f1000research.8466.1

 14 Jun 2016, (F1000 Faculty Rev):1370 (doi: Latest published: 5
)10.12688/f1000research.8466.1

v1

Page 1 of 10

F1000Research 2016, 5(F1000 Faculty Rev):1370 Last updated: 14 JUN 2016

http://f1000research.com/channels/f1000-faculty-reviews/about-this-channel
http://f1000.com/prime/thefaculty
http://f1000.com/prime/thefaculty
http://f1000research.com/articles/5-1370/v1
http://f1000research.com/articles/5-1370/v1
http://f1000research.com/channels/f1000-faculty-reviews
http://f1000research.com/channels/f1000-faculty-reviews
http://f1000research.com/channels/f1000-faculty-reviews
http://dx.doi.org/10.12688/f1000research.8466.1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.12688/f1000research.8466.1
http://f1000research.com/articles/5-1370/v1
http://dx.doi.org/10.12688/f1000research.8466.1
http://dx.doi.org/10.12688/f1000research.8466.1
http://crossmark.crossref.org/dialog/?doi=10.12688/f1000research.8466.1&domain=pdf&date_stamp=2016-06-14


Introduction
Across an infection timeline, the host and invading bacterial patho-
gen each vie for supremacy. At any given time, either may have 
the upper hand, but the final outcome of this battle ultimately 
determines the fate of the host. The triggered host response will 
aim to reduce the infectivity of the pathogen, but in order to stay 
one step ahead many bacterial species have evolved sophisticated 
strategies to ensure they can successfully cause infection following 
colonisation.

The three human pathogens belonging to the genus Yersinia 
employ a range of virulence factors that confer efficient adherence 
to host cells/tissues and subvert host cell functions. This mini-
review highlights the key virulence factors that constitute the viru-
lence arsenal of Yersinia spp. and how such a sophisticated suite 
of biological weapons enables these pathogens to combat host 
defences.

Yersinia pseudotuberculosis, Yersinia pestis, and Yersinia ente-
rocolitica are highly adaptable psychrotrophic primary human 
pathogens. Y. pseudotuberculosis and Y. enterocolitica cause 
self-limiting gastric infections. Y. pestis is a recently evolved near-
identical subclone of Y. pseudotuberculosis1,2 with approximately 
98% identity at the DNA level. Its strategy for transmission relies 
on the colonisation of rat fleas, which then carry Y. pestis between 
the rodent host and humans3. Once inside the human host, Y. pestis 
can cause bubonic, pneumonic, and septicaemic plague with 
mortality rates approaching 100% without antibiotic treatment4. 
The World Health Organisation considers Y. pestis a ‘re-emerging’ 
pathogen that, worryingly, is capable of acquiring resistance to mul-
tiple antibiotics5 and is also a serious potential bioterrorism threat. 
The differences in lifestyle and virulence between Y. pseudotuber-
culosis and Y. pestis are mostly attributable to minor genomic dif-
ferences on the respective chromosomes and the presence of two 
additional virulence plasmids that Y. pestis possesses.

The Yersinia type three secretion system
The key Yersinia virulence determinants and certainly the most 
comprehensively studied are those secreted via a type three secre-
tion system (T3SS). To evade host innate immunity and to enable 
the pathogen to replicate and propagate extracellularly, all human 
pathogenic Yersinia species harbour an approximately 70 kb vir-
ulence plasmid. Located on this plasmid is a set of genes whose 
transcription is activated by temperatures of 37°C in the presence 
of millimolar concentrations of calcium, conditions representing 
the mammalian host. These genes code for the T3SS ‘nanoma-
chine’, a hypodermic needle-like structure (the injectisome) and 
the translocon, which forms a pore across the host cell membrane 
(Figure 1). Along with a combination of regulators and chap-
erones, the T3SS’s primary function is to inject multiple toxic 
Yersinia effector proteins (Yops) directly into the eukaryotic host 
cell cytosol. Once inside, they subvert host cell signalling pathways 
and trigger a pre-programmed metabolic chain reaction that results 
in apoptosis6,7. Yops also inhibit phagocytosis and block cytokine 
production.

The structure of the T3SS needle and translocon
Structurally, the base of the injectisome is composed of a number 
of proteins that adopt a cylindrical architecture similar to that of the 

flagellar basal body8 that are directed to the membrane by the secre-
tion (Sec)-dependent pathway9. The injectisome incorporates two 
membrane rings termed the MS (membrane and supramembrane) 
and OM (outer membrane) rings. These are connected to five inte-
gral membrane proteins that play a role in exporting proteins10,11  
(Figure 1). The export apparatus itself is flanked by YscQ, which 
facilitates the binding of the ATPase YscN and the secretion  
substrate-chaperone complexes12. YscN provides the proton motive 
force necessary for driving the secretion of the Yop effectors9,13,14.

Protruding into the extracellular space from the basal body is a 
hollow needle formed by the helical polymerisation of YscF pro-
tein subunits9,15,16. YscF is exported and polymerised in a T3SS- 
dependent manner along with YscP, a protein akin to a molecular 
ruler that determines the length of the needle and limits its size17–19. 
It has recently been shown that fully formed T3SS needles form 
clusters on the bacterial cell surface and new needles appear to 
localise to these clusters rather than being randomly distributed20 
(Figure 2). The needle tip is capped with LcrV21,22, a protein that 
directs the formation of a pore or ‘translocon’23. The translocon 
consists of a tripartite protein pore, which is inserted into host 
cell membranes and drives the translocation of Yop effectors into 
the host target cell cytoplasm. The pore is composed of the trans-
membrane proteins YopB and YopD23 and the injectisome tip com-
plex LcrV24–26. Bacteria lacking the tip and translocon proteins are 
able to secrete effectors into the extracellular environment but are 
defective in translocating Yops into host cells27–29.

Chaperones facilitate the formation and operation of 
the T3SS
Given the complexity of the T3SS, part of its sophistication relates 
to its in-built ability to discriminate between structural and secre-
tion substrates, providing strict order to ensure the needle is assem-
bled and polymerised before translocon and Yop effector secre-
tion30. Such ordering requires specific chaperones, typically small 
protein dimers that protect the target T3SS protein from degrada-
tion31,32 and prevent premature oligomerisation24 and also ushering 
into the injectisome. These T3SS chaperones are usually subdivided 
into three classes: class I chaperones bind the Yop effector proteins 
and often share high structural conservation, class II chaperones 
associate with the translocon proteins YopB, YopD, and LcrV, and  
class III chaperones tend to form heterodimers and associate with 
structural components of the injectisome.

The Yop effectors
The Yop effector proteins are virulence factors synthesised in the 
bacterial cytoplasm and secreted through the T3SS needle and 
translocon into eukaryotic target cells (Figure 1). Four of these 
(YopE, YopT, YpkA, and YopH) are involved in disrupting the 
normal activities of the cytoskeleton and, apart from YopH, also 
target an important group of eukaryotic cell signalling compo-
nents, the RhoA family of small GTPases that direct cytoskeletal 
rearrangements necessary for phagocytosis. YopE is a func-
tional mimic of eukaryotic GTPase-activating proteins (GAPs)33 
and disrupts the actin cytoskeleton34–36, resulting in the inhibi-
tion of phagocytosis by macrophages. YopT suppresses RhoA- 
mediated signalling by cleaving the post-translationally modified 
Rho GTPases37, which ultimately prevents the formation of the 
phagocytic cup for bacterial internalisation, and inhibits the assembly 
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Figure 1. Assembly of the type three secretion system (T3SS) needle. The needle is fixed into the bacterial inner and outer membrane 
and protrudes from the surface to penetrate the host membrane. The translocon forms a channel through the host membrane and the 
Yop effectors are transferred into the host from the bacterial cytoplasm via the needle and translocon (a). The needle protrudes from the 
bacterial surface prior to host cell penetration (b, c arrowed). Salmonella typhimurium T3SS needles isolated from the bacterial membrane (d).  
(a) adapted from 133, (b) reproduced with permission and taken from reference 56, (c) reproduced with permission and taken from  
reference 16, and (d) reproduced from reference 134.

of focal adhesion complexes required for the development of pseu-
dopodia and macrophage migration38,39. YpkA (YopO in Y. ente-
rocolitica) associates with RhoA family proteins40,41 and inhibits  
phagocytosis42,43 by binding to and phosphorylating actin that is 
used as bait by Y. enterocolitica to titrate out host regulators respon-
sible for actin polymerisation44. YopH is multi-functional and dis-
rupts pathways involved in both innate and adaptive immunity and 
is essential for the virulence of Y. pestis, Y. pseudotuberculosis, and 

Y. enterocolitica in mice45–47. YopH inhibits autophagy following 
binding of invasin or YadA (see next section) to β1-integrins48 and 
also blocks phagocytosis in macrophages49,50 by dephosphorylating 
focal adhesion complex proteins, which disrupts the link to the actin 
cytoskeleton51,52.

The remaining two effectors (YopJ and YopM) down-regulate ele-
ments of the immune system, such as inflammation and leukocyte 

a

b

c

d
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factors have been identified that play a variety of roles in host cell 
attachment prior to effector protein injection. In each case, attach-
ment is not their exclusive function and not all are present or active 
 in all three of the human pathogens. However, a combination of 
these proteins confers the ability to adhere to and invade host cells 
or bind sufficiently to ensure successful T3SS delivery of Yops.

Invasin
Invasin is a chromosomally encoded protein that mediates attach-
ment to and entry into host cells by Y. pseudotuberculosis and 
Y. enterocolitica75, although in Y. pestis it is a pseudogene and 
therefore inactive76 (Figure 3). Invasin promotes small intestine epi-
thelial cell internalisation by binding to host cell target receptors 
known as β1-integrins77 that present on the host cell surface. 
Integrins form clusters upon invasin binding, and the result is 
the rearrangement of the host cell cytoskeleton. This promotes 
phagocytosis and ultimately internalisation of the bacteria into the 
epithelial cells. In fact, invasin has a significantly greater (up to 
100 times) affinity for some integrins than its natural ligand, 
fibronectin78, and such strong associations are believed to be major 
contributing factors to the efficiency of internalisation and Yop 
delivery into host cells.

Invasin expression is regulated by both temperature and pH in 
Y. enterocolitica79,80. The invasin gene is maximally expressed at 
26°C, peaking during late exponential/early stationary phase with 
lower expression levels observed at 37°C. This apparent contradic-
tion, since invasin is required for infection at 37°C, was resolved 
when Pepe et al. revealed that the expression of invasin at 37°C 
was restored to levels seen at 26°C when the pH was reduced to 
5.5. It has been suggested that rather than an experimental artefact, 
the expression of invasin at ambient temperatures could prepare the 
bacteria for infection following ingestion and promote rapid tran-
scytosis through the epithelia81,82. The pH effect is not evident in 
Y. pseudotuberculosis, suggesting that the mechanisms of regula-
tion of invasin expression may differ between the two species83. 
Two regulators have been found to be important for invasin expres-
sion: RovA, required for the positive regulation of invasin, and 
YmoA, required for negative regulation83–85. Both RovA and YmoA 
recognise the promoter region of invasin and compete for binding. 
Once RovA is bound, it appears to prevent YmoA from binding, 
thus inhibiting negative regulation of invasin86,87. The expression of 
rovA is itself regulated by temperature via RovM, which acts as a 
repressor of rovA expression under inducing growth conditions88.

YadA
After crossing the intestinal epithelium, the major adhesin  
responsible for Yersinia contact with cells of the submucosa is 
the virulence plasmid-encoded protein YadA (recently reviewed 
by Mühlenkamp et al.89) (Figure 3). YadA expression is induced  
at or above 37°C90,91, and under these conditions it is so abundant 
that it can virtually coat the entire outer surface of the bacterial 
cell92. Interestingly, despite YadA’s utility and abundance, Y. pestis 
possesses an inactive yadA pseudogene due to a single nucleotide 
deletion that results in a frame-shift mutation93 (Figure 3). Although 
Y. pestis does not produce a functional YadA protein, the chro-
mosome carries two orthologues, YadB and YadC. Also found in  
Y. pseudotuberculosis, these two proteins are not thought to play 

Figure 2. Type 3 secretion system (T3SS) needles (circled) appear 
to cluster together as they form at the cell surface. Reproduced 
from reference 20.

recruitment53–57. YopJ (YopP in Y. enterocolitica) is a serine/ 
threonine/lysine acetyltransferase that catalyses the acylation of 
kinases, inhibiting their ability to activate the release of NF-Kβ, 
which would otherwise induce pro-inflammatory cytokine 
production58–62. Recently, YopJ was also shown to play an  
important role in inhibiting caspase-1 in activated macrophages63.

YopM is translocated into macrophages64 and may also be able to 
self-deliver into some human cells65, yet it has no known enzymatic 
activity66 and its true function has yet to be elucidated. Inside 
eukaryotic cells, YopM may interact with and stimulate cellular 
kinases67 and is thought to localise to the nucleus68–70, where it 
may influence the expression of a range of genes, down-regulating 
many pro-inflammatory cytokines65,71, counteract the innate 
immune system by promoting depletion of natural killer cells in the 
liver, spleen, and blood72, and also prevent pyroptosis by binding to 
caspase-1, inhibiting its activity73,74.

Yersinia surface adhesins
For yersiniae to efficiently deliver Yops into the host, it is essen-
tial that they adhere to the host cell surface and remain in close 
association during the delivery process. To ensure that this is 
possible, the yersiniae produce virulence factors in addition to the 
T3SS. An active T3SS can deliver effector proteins into the host 
cell cytosol only if the bacterial cells make direct contact with, 
and bind tightly to, the host cell surface. Over the last 30 years, 
several chromosomally or plasmid-encoded protein virulence 
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Figure 3. Virulence factors found on the surface of Yersinia pseudotuberculosis, Yersinia enterocolitica (a), and Yersinia pestis (b) Ail, YadB, 
and YadC are shared by all three pathogens – YadB and YadC are absent from panel (a) for clarity – while Pla is unique to Y. pestis. YadA 
and invasin are important adhesins in Y. pseudotuberculosis and Y. enterocolitica but are not expressed by Y. pestis. Reproduced from 
reference 95.

a role in adherence but may contribute to host cell invasion. They 
may also be required for full virulence and lethality in bubonic  
but not pneumonic plague in mouse infection models94.

YadA is a non-fimbrial adhesin95 belonging to the trimeric 
autotransporter adhesin family members, which are usually referred 
to as obligate homotrimeric proteins. The protein is shaped like a 
lollipop, with an N-terminal globular head domain connected by a 
coiled-coil stalk to a C-terminal anchor domain embedded in the 
outer membrane92. YadA has multiple functions but as an adhesin 
may act as a docking system, allowing the injectisome of the T3SS 
to come into contact with the target cell membrane to deliver the 
Yop effector proteins96.

Until recently, it was thought that YadA bound only to the large 
proteins of the extracellular matrix – collagen, fibronectin, and 
laminin – which in turn bind β1-integrins97–99. However, Keller 
et al.100 recently discovered that YadA-mediated adhesion may be 
facilitated by a broad range of host cell receptors and in the absence 
of β1-integrins may facilitate Yop injection via αV integrins as 
well as other unidentified cofactors. Y. enterocolitica YadA also 
binds leukocytes in a β1-integrin-independent manner during 
systemic infection101, all of which suggests that YadA has the 
potential to target a broad range of cell types to ensure efficient 
Yop delivery.

The collagen-binding activity of YadA in Y. enterocolitica is an 
absolute requirement for pathogenicity; however, YadA is not 
essential for virulence in Y. pseudotuberculosis97. YadA mediates 
adhesion to a number of cell types, including epithelial cells 
and macrophages, and can act as a haemagglutinin97. In Y. pseu-
dotuberculosis, YadA promotes the invasion of epithelial cells 
and is interchangeable with the activity of invasin102, although 
Y. enterocolitica YadA is not as efficient an invasin as that of 

Y. pseudotuberculosis103. YadA also mediates bacteria-bacteria 
autoagglutination, since the head domain has an affinity for 
itself92. This self-affinity also promotes the formation of densely 
packed microcolonies that may promote antiphagocytic activity in 
Y. enterocolitica. YadA also binds to intestinal mucus104 and plays 
a major role in conferring serum resistance105–107.

Ail
The ail locus is chromosomally located and encodes a 17 kDa 
surface-associated protein (Figure 3) that is thermally regulated, 
being maximally expressed at 37°C108,109. In Y. enterocolitica, 
Ail-directed adhesion to host cells shows more specificity than 
invasin, as it allows invasion of some cell lines, such as human 
laryngeal epithelial type 2 (HEp-2), human endometrial (HEC-
1B), and Chinese hamster ovary (CHO) cells, but no invasion of 
Madin-Darby canine kidney (MDCK) cells110. Both laminin and 
fibronectin are known targets for Y. pestis Ail binding111 and vit-
ronectin is actively recruited to the Y. pestis surface through the 
activities of Ail112. Interestingly, Y. pseudotuberculosis Ail is 
unable to promote the attachment and invasion phenotypes when  
expressed in Escherichia coli113. As with invasin, Ail-mediated 
tight attachment to host cells presumably ensures that Yop deliv-
ery is rapid and efficient114. Aside from its adhesive properties, Ail  
also confers resistance to serum killing115 in all three human path-
ogenic yersiniae. It is apparent that Ail plays a more prominent  
role in the virulence of Y. pestis, which is presumably owing to the 
fact that the other prominent virulence factors contributing many 
of the Ail functions in Y. pseudotuberculosis and Y. enterocolitica  
are dysfunctional.

Psa – the pH6 antigen
The chromosomally encoded pH6 antigen (Psa) was originally 
identified in Y. pestis as a surface antigen expressed at mamma-
lian body temperatures at pH values similar to those found in 
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phagolysosomes116. It was subsequently found to cause the agglu-
tination of erythrocytes113,117. Further investigation revealed a cell 
surface complex composed of aggregates of a 15 kDa protein 
(PsaA) that requires two regulators, PsaE and PsaF, for maximal 
induction118,119. PsaA possesses a flexible fimbrial structure that is 
highly expressed during macrophage infection120. Biochemical 
examination of Psa reveals that it binds to β1-linked galacto-
syl residues in glycosphingolipids121, mainly of the type found in 
apolipoprotein-B-containing lipoproteins in human plasma, such 
as low-density lipoprotein (LDL) and in lipid rafts in macrophage 
membranes122. Furthermore, Psa acts as a bacterial Fc receptor, 
binding human immunoglobulin (IgG) but not reacting with rabbit, 
mouse, or sheep IgG123. As with the other adhesins, the activities 
of Psa appear to mediate Yop secretion. Y. pseudotuberculosis 
and Y. enterocolitica both produce a surface protein analogous 
to Psa but it is referred to as MyfA. Both Psa and MyfA coat the 
bacterial surface with a fibrillar matrix120,124 and in Y. pseudotu-
berculosis MyfA promotes attachment to tissue culture cells and 
haemagglutination113.

Y. pestis plasmid-specific virulence factors
Apart from the T3SS virulence plasmid, two other plasmids, 
pPCP and pMT (sometimes referred to as pFra) that are unique to 
Y. pestis, possess additional virulence factors. pPCP encodes the  
plasminogen activator Pla protease/adhesin (Figure 3). Pla converts 
plasminogen to plasmin125,126, which then degrades extracellular 
matrices and confers on Y. pestis the ability to rapidly invade the 
host and migrate to lymphatic tissues127,128. The over-activation of 
plasmin results in laminin and fibrin clot degradation, exacerbat-
ing migration across host barriers129, which is further compounded 
by the activities of Pla as an adhesin and an invasin130,131. pMT is 

responsible for the production of a murine toxin that is required 
during the colonisation of fleas132.

Concluding remarks
Over the last three decades, a considerable amount of detailed 
knowledge has accumulated that has enabled us to understand how 
the yersiniae colonise tissues and combat host defences during 
infection. While the Yersinia T3SS is perhaps the best understood 
system of its kind, many questions remain unanswered. For 
example, fully elucidating the function of YopM will offer an 
important step change, as will understanding more clearly the glo-
bal molecular mechanisms that underpin the regulatory relation-
ships that must exist between the T3SS system and the adhesins. 
It is also important to try to understand the relationships that exist 
between the different adhesins, how they compensate for each other, 
and which environmental signals dictate their site-specific expres-
sion. Finally, although the structures of many of the adhesins have 
been elucidated, there is certainly a need to better understand how 
they interact with different host ligands. While significant progress 
has been made in defining this sophisticated and finely tuned arse-
nal of virulence determinants, much more work is required to fully 
appreciate the success of the yersiniae as pathogens.
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