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Abstract

Background: The number of publicly available metagenomic experiments in various environments has been
rapidly growing, empowering the potential to identify similar shifts in species abundance between different
experiments. This could be a potentially powerful way to interpret new experiments, by identifying common
themes and causes behind changes in species abundance.

Results: We propose a novel framework for comparing microbial shifts between conditions. Using data from one of
the largest human metagenome projects to date, the American Gut Project (AGP), we obtain differential abundance
vectors for microbes using experimental condition information provided with the AGP metadata, such as patient
age, dietary habits, or health status. We show it can be used to identify similar and opposing shifts in microbial
species, and infer putative interactions between microbes. Our results show that groups of shifts with similar effects
on microbiome can be identified and that similar dietary interventions display similar microbial abundance shifts.

Conclusions: Without comparison to prior data, it is difficult for experimentalists to know if their observed changes
in species abundance have been observed by others, both in their conditions and in others they would never
consider comparable. Yet, this can be a very important contextual factor in interpreting the significance of a shift.
We’ve proposed and tested an algorithmic solution to this problem, which also allows for comparing the
metagenomic signature shifts between conditions in the existing body of data.
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Introduction
Communities of microbial species have co-evolved
within a number of microenvironments, both outside
and inside of larger organisms. For example, humans do
not produce all the enzymes necessary to metabolize the
spectrum of nutrients they take in as food, and the gut
environment, through some uncertain mechanism, per-
mits microbes that metabolize nutrients for the host in
exchange for non-essential products to effectively be

permanent yet dynamic co-habitants. However, patho-
genic microbes can also occupy niches in the human
body and often come with unwanted consequences for
the host. The link between pathogenic microbes and
acute conditions (e.g., diarrhea) has long been known
but, in part, current studies are exploring whether or
not chronic conditions may be due to changes in micro-
bial communities. By cataloging microbial composition
in these environments, we hope to better understand
what role they may play in an array of physiological pro-
cesses and diseases.
Changes in relative microbial abundance, known as dif-

ferential abundances (DA), are a common measure of mi-
crobial variability and a starting point for understanding
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how certain mutualistic or pathogenic species may con-
tribute to vital functions or diseases. Thus, changes in the
relative abundance of microbial species could either cause
or correlate with certain diseases, either by removing sym-
biotic microbes or by introducing hostile/non-beneficial
microbes. And although a metagenomic experiment can
quantify the shift in species abundance, interpreting its
potential relevance and significance relies in part upon
putting the newly observed shift within the context of pre-
viously observed shifts.
Metagenomic studies can be motivated by several

goals, including the discovery of novel microbial genes
of interest [1, 2], validation of metabolic hypotheses [3–
5], profiling of the relationship between microbial com-
munity composition and variation in environmental or
geographic parameters [6, 7] and assessment and com-
parison of the global metabolic complement found in
one or more habitats [8–12]. In particular, there has
been a substantial increase in examining potential asso-
ciations between microbial changes and either chronic
or late-onset human disease [13].
However, in human gut microbiome studies it is often

the case that the composition of the microflora varies
greatly depending on variables that are not directly re-
lated to a studied disease or condition, such as geo-
graphical location or project. The public availability of
metagenomic data provides a powerful opportunity to
corroborate the significance of microbial changes by
searching for similar changes, thus showing robustness.
The conditions in which the changes observed could ei-
ther help corroborate one’s observations (e.g., if the ex-
periment was a similar experiments) or could raise
interesting questions (e.g, if the experiment was very dif-
ferent, yet yielded similar results).
Meta-analytic approaches are useful to identify statisti-

cally significant changes, but are likely limited when it
comes to understanding the biological significance of
microbial changes [14]. Nonetheless, identifying similar
and opposing shifts in species abundance accelerates
both one’s confidence in the robustness of the results
and biological interpretation of the changes.

The gut microbiome
Although the number of experiments that could be ana-
lyzed is growing rapidly (Figs. 1 and 2), because they lack
standardized meta-data and annotations describing
which sets belong to experimental groups and which to
control groups, automatically determining this is still an
open problem. However, the American Gut Project
(AGP) [15] is one of the largest studies conducted to
date and has a highly structured description of potential
covariates, such as dietary preferences, so we chose the
AGP subset for analysis.

The gut microbiome also has the advantage that it has
been studied in a variety of contexts and has been shown
to change in a range of diseases. Gastrointestinal tract
and metabolic diseases have been studied particularly ex-
tensively, but the effect of gut microbes seems to be
broader than that: it has been suggested that it might be
implicated in autoimmune, mental, and cardiovascular
diseases as well. Rheumatoid arthritis (RA) and inflam-
matory bowel disease (IBD) [16–18] diarrhea [19] as well
as antibiotic treatment were shown to decrease the
microbiota diversity. Further, obesity, metabolic syn-
drome, and type II diabetes [7, 11, 20–22], colitis [23,
24], colorectal cancer [25] have all been shown to be as-
sociated with changes in microbiome. There is some evi-
dence that the microbiome might be implicated in
autism spectrum disorders and cardiovascular disease,

Fig. 1 The percentage of publications in PubMed containing the
word “metagenomics” per year is growing rapidly relative to the
overall growth of PubMed

Fig. 2 Growth of metagenomics data in ENA
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but the exact nature of this link has not been established
([26–28].
Factors that have been shown to affect the microbiome

composition of the human gut include diet, geographical
location, culture, and genetics [11, 29–36]. Specifically,
there seems to be a great difference between the West-
ern and plant-based diet, to the point of distinguishing
human gut ‘enterotypes’ based mostly on prevalence of
taxa that are associated with these diets. Consumption
of salt can increase the prevalence of specific genes in
the gut [37].
Changes in the gut microbiome also occur during late

pregnancy [38]. Route of delivery affects the initial gut
microbiome [39, 40], and the samples from infant gut
cluster more readily with samples from human vagina
than adult gut [41]. The largest changes are seen within
the first three years of life [31, 41–45].
Aging has also been shown to change the gut micro-

biota, specifically to increase the number of ‘subdomin-
ant species’ [42].
Thus, a number of connections between microbiome

changes in the gut and human health have been estab-
lished. Part of the growing scientific interest in metage-
nomics studies is the therapeutic potential for
intervention. If we can establish and understand links
between species presence and/or relative abundance and
human disease, there are a number of safe and inexpen-
sive ways the microbiome could be altered in an attempt
to alter the course of the disease. Potential clinical applica-
tions include supplementation of beneficial bacteria to
supplement or help regulate host metabolism, metabolize
molecules that might be problematic within the human di-
gestive tract, and identifying microbes that might serve as
natural competitors to harmful species.

Metagenomics resources
Along with the rush to sequence microbial genomes
within their environment, a number of bioinformatics
resources were developed for storage, functional and
taxonomic analysis, visualization, and retrieval of data.
There are a number of repositories where users can
store and browse metagenomic data: Community Cyber-
infrastructure for Advanced Microbial Ecology Research
and Analysis CAMERA (no longer operating, but the
data is still available through iMicrobe) [46], Integrated
Microbial Genomes and Metagenomes IMG/M ([47]
Metagenomics-Rapid Annotations using Subsystems
Technology MG-RAST ([48]), and EBI Metagenomics
([49]). They offer storage of sequencing data, as well as
processing and basic functional and taxonomic analyses.
Raw sequencing reads may be stored in databases like
SRA or ENA. SEED and KEGG databases are often used
as the reference for the functional components of the
metagenome.

Taxonomic abundance change (i.e., differential abun-
dance between conditions), can be analyzed with
MEGAN, Dendroscope3, LEfSe [50], ANCOM [[51]. as
well as a number of dedicated R packages (Phyloseq,
metagenomeSeq,, and MaAsLin [52], BhGLM [53], as
well as R packages primarily used for RNA-Seq data and
adapted to microbiome analysis (DESeq2, edgeR [54],
limma-voom [55] and web applications (Metastats);
QIIME and MEGAN aim to integrate many analysis
steps into a pipeline, which may also include functional
analysis. QIIME is a widely-used and rich suite of tools
for command-line analysis and visualization of sequen-
cing metagenomics data that also integrates other tools
[56]. Building on top of some of the previously men-
tioned tools, Nephele offers a web interface and the abil-
ity to compare the uploaded data to a data from a
selected body site from Human Microbiome Project [12,
57]). A specific type of analysis may also be performed
with eudysbiome - an R package whose flag concept is
the dichotomous character of host-microbe interaction,
or MetaMIS, which simulates the interactions between
microbes in a group of samples across time.
While many of these packages can aid investigators in

identifying species that change between two conditions
of interest, they are focused on many pairwise compari-
sons and lacking in the ability to compare entire vectors
of changes. By focusing on comparing these vectors of
differential abundance, DA shifts, our tool empowers re-
searchers to both build confidence in their results by
comparing to similar experiments and gain novel insight
into microbiome changes by comparing to other shifts
associated with perturbations and pathologies.

Mnemonic
We present a tool, MNEMONIC (MetageNomic Experi-
ment Mining to create an OTU Network of Inhabitant
Correlations), whose main goal is to calculate microbial
shifts occurring in different conditions and then com-
pare those shifts between the conditions, thereby asses-
sing the similarity of conditions in terms of how the
microbiome changes. It allows for the exploration of dif-
ferent shifts, as well as cross-referencing those changes
with literature association data and microbial traits. One
can also provide their own data and compare their shifts
to the shifts that we observe in the AGP data.
MNEMONIC is a python package and is publicly available
for download at https://gitlab.com/wrenlab/mnemonic. It
uses the publicly available data from the EBI Metage-
nomics portal by fetching microbial count data for the
samples within the American Gut Project. To model the
differential abundance between groups of samples it uses
the R package edgeR. For other tasks, python was used.
One type of question that can be tackled with this

approach is which taxonomic groups shift in the same
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or opposite direction as a response to a certain con-
dition and whether there are other conditions that a
similar change is seen in. Conceivably such shared
shifts in microbiome may indicate that similar mecha-
nisms are in play. For example a certain dietary habit
might influence the host microbiome in a specific
way, favoring certain species over other. A now
highly-abundant species might influence the host’s
health state eliciting or reducing an immune response
from the host, or affecting the host via a product of
microbial metabolism. Diseases may have a common
cause in terms of the microbiome composition and
function that, if evaluated, may allow a researcher to
form hypotheses on whether a certain condition may
be improved with a treatment that is commonly used
for another.
Another example of a hypothesis that can be addressed

is evaluating which taxonomic groups shift with - or op-
posite to - each other regularly and would allow to make
statements about the interactions between the microbes
themselves.
To the best of our knowledge, no other software has

been described that is capable of comparing and visual-
izing shifts between the differential abundance vectors
between conditions.
In addition to this novel functionality, MNEMONIC is

also capable of bringing publicly available information as
a context for a new study. For example, if a researcher
plans a study on how the microbiome changes in dia-
betic people as compared to the non-diabetic people,
MNEMONIC can provide a summarization of the re-
sults for this comparison from the AGP data. This is
very useful for validating, as well as contrasting, the re-
sults of a new study.

Methods and implementation
Metagenomics data
There are two major approaches to obtaining metagen-
ome data. One is amplification of bacterial 16S rRNA
hypervariable regions, followed by amplicon sequencing
and assigning the sequences to specific operational taxo-
nomic units (OTUs). This approach can detect bacteria
only. The hypervariable region may not be specific to a
species, therefore sometimes only allows annotation to a
higher taxonomic level. Gene presence in the sample
cannot be obtained directly from the DNA, and can only
be estimated based on the OTU presence.
Another common approach is whole genome shotgun se-

quencing. WGS provides information about the full DNA
sequence in the sample, therefore allowing for a more ac-
curate, as well as more sensitive [58]. species annotation. It
can also identify sequences form kingdoms other than bac-
teria. Is however more expensive and requires a high cover-
age [59] and the analysis is computationally heavier. WGS

also allows to directly map DNA sequences to a gene refer-
ence database for functional profiling.

Data characterization
EBI’s repository was chosen as the primary source of
data for the project. As of today, it is a home to over
1500 public projects, with more than 90,000 samples
from various environments, among which the most
abundant are human digestive system, soil, rhizosphere,
rumen of ruminal animals, water bodies, etc. The API
for EBI Metagenomics portal is under development
[https://github.com/ProteinsWebTeam/ebi-metage-
nomics]. The data was acquired from the EBI Metage-
nomics portal with the aid of the MGPortal data
retrieval script [https://github.com/ProteinsWebTeam/
ebi-metagenomics]. The sample metadata was down-
loaded from the American Gut repository [https://
github.com/biocore/American-Gut]. The American Gut
Project is the main source of data for MNEMONIC.
From the project metadata, we extracted 139 variables
that could be coerced into numeric data, assigned them
to 5 major categories, as well as 273 VioScreen-derived
variables, and used them for further modeling of abun-
dance changes (Figs. 3 and 4).
The ProTraits database annotates microbial species

with variables that relate to their metabolism, phenotype,
or ecosystem. The annotations were obtained by the
means of text-mining of the scientific literature, and
contain both pre-defined variables and novel variables
inferred from the text. The predictions are augmented
with comparative genomics, gene pattern similarities,
codon usage, proteome composition and co-occurrence
in the metagenomic data. The original dataset provides
information on the probability that there is a link

Fig. 3 AGP metadata categories
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between the taxon and the trait in question. It contains
3046 species that overlap with the AGP dataset, that can
be annotated with 424 variables [60]. In this project, we
download the binarized dataset with the cutoff at 0.9
from the ProTraits website [http://protraits.irb.hr].
EBI metagenomics database also provides the func-

tional data, in the form of GO category annotation,
paired with the corresponding OTU counts for sample.
To evaluate the consistency of the OTU count data ob-
tained from EBI, we compared the results obtained from
the OTU matrix and GO matrix in terms of distances
between samples that had both annotations. If the
results are similar, the matrices obtained with either of
the method should also be similar. A Mantel test was
performed on affinity matrices calculated from both
sources. A correlation of 0.25 on 10,439 samples from
various environments was significant (p < 0.001), estab-
lishing that there is resemblance between the two

similarity matrices. More importantly, the permutation
determined that the similarity is non-random.
Another way to evaluate the data is to compare the

similarities between taxonomic groups to a similarities de-
rived from a permuted dataset, based on the OTU count
data. Logically, the similarities within a higher-level taxo-
nomic group (e.g. within a genus) should be higher than
those of a sample of the same size of random taxa derived
from the permuted table (species from mixed genera). We
indeed do observe this behavior for all taxonomy level
from kingdom to species (Fig. 5).

Differential abundance matrix
To determine differentially abundant taxa for each of
the metadata variables in the AGP’s metadata matrix, we
first eliminated samples with fewer than 10,000 mapped
16S reads and taxa with fewer than 1 mapped read
across all AGP samples. The primary reason for

Fig. 4 Distributions of selected AGP metadata variables. Both age (a) and frequency of sugary sweet consumption (b) show a wide range of
values enabling re-analysis. For variables involving frequencies of a given activity, such as dietary consumption, data was re-coded in terms of
frequency per day (thus, a value of 1.0 in Fig. 4b indicates daily sugary sweet consumption)

Fig. 5 Mean similarity within taxonomic levels. “size” is equal to log(number of species). The transformation of counts has been applied with
relation to taxonomic units
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excluding low-abundance taxa from further analysis was
that we are interested in differential abundance vectors
(i.e., the ordered set of fold-changes for differentially
expressed taxa) for particular conditions, rather than indi-
vidual taxa per se. As mean abundance of an OTU de-
creases, so too does the magnitude and variance of
fold-changes for those OTUs, making it more difficult to
stably compare conditions in terms of their overall shifts.
After these filtering steps, the differential abundance

matrix was constructed as follows. For each metadata
variable in the AGP:

1. Samples with missing values for the metadata
variable were dropped.

2. A univariate negative binomial model was fit
between the OTU count matrix and the metadata
variable using the edgeR package [61]. The model is
of the simple form: Count ~ MetadataVariable.

3. From the model, the magnitude and significance of
each OTU’s univariate association between
abundance and that metadata variable were
obtained using edgeR’s generalized likelihood ratio
test (glmLRT).

After repeating this procedure for each metadata vari-
able, the results are concatenated into a single matrix.
The result of this procedure can be conceptualized as a
matrix of fold-changes for each OTU and experimental
condition. This matrix of measures of differential abun-
dance, or “shifts”, can then be used to determine the
similarity between each condition’s abundance changes,
or between a query “shift” and the database of AGP differ-
ential abundance vectors. Such matrices are fit for each
level of the taxonomy (e.g., species, genus, phylum, etc)
after collapsing the input abundance matrix to the appro-
priate level by summing the counts of all child taxa.

Results
The MNEMONIC package allows users to query and
generate analyses of AGP and EBI metagenomic abun-
dance data and differential abundance vectors, as well as
compare user-provided data or shifts to public datasets.
Figure 6 presents the most abundant phyla in the AGP
dataset, among which are Firmicutes, Proteobacteria,
and Bacteroidetes. This is consistent with the previously
reported findings. Figure 7 shows a clustermap of
diet-related terms between food metadata variables in
the AGP and 20 differentially abundant microbial taxa
within this term set. Microbial abundance associated
with food terms results in clusters reflective of dietary
considerations. The effect of refined sugar-containing di-
ets on the microbiome has been well-characterized, even
after controlled for obesity [62]. Similarly, we see foods
with related nutritional content like sugar-related food

terms including sugary sweets, frozen dessert, and sugar
sweetened drinks cluster closely. Recent studies have
shown microbial shifts associated with meat-containing
diets and vegetarian diets, reflecting the clustering
shown in Fig. 7 [63]. While meat terms like red meat,
poultry, and seafood are closely related terms in the den-
drogram, their closest related terms like eggs, vegetable
and grain suggest food processing, and food terms indi-
cating minimal processing, have a notable effect on mi-
crobial abundance. This effect also extends to other
foods with limited processing also typically considered
part of a healthy diet - vegetable, whole grain, olive oil,
and home-cooked meals are closely clustered terms in
the dendrogram. This type of change in microbial abun-
dance has been previously shown in dysbiosis resulting
from diets containing processed food additives like diet-
ary emulsifiers [64].
Also of note is that probiotics and lactose have similar

DA shifts and are grouped somewhat closely, possibly
indicating that lactose-annotated samples were capable
of lactose metabolism. This effect on microbial abun-
dance is then observed in samples annotated with
probiotic use, which is often used to confer lactose me-
tabolizing bacteria in the case of lactose intolerance.
This type of alleviation of lactose intolerance has been
previously shown in studies like Vonk et al. using pro-
biotic yogurt [65].
Nitrogen-restricted diets are also known to promote

healthy aging in mice, possibly via improving microbial
community structure [66], and a variety of diseases are

Fig. 6 Most abundant phyla in AGP dataset. Globally, within the
AGP data, we observe that the most abundant phyla are Firmicutes,
Proteobacteria, and Bacteroidetes. This is consistent with previously
reported results

Perz et al. BMC Bioinformatics 2019, 20(Suppl 2):96 Page 64 of 149



correlated in severity or occurrence with microbial diversity;
either directly, such as colon cancer [67] and systemic lupus
erythematosus [68], or inversely, such as inflammatory
bowel disease [69] and rheumatoid arthritis [70]. To assess
whether dietary effects were associated with changes in mi-
crobial diversity in the AGP, we correlated the ACE metric
[71] for microbial diversity with the frequency of consump-
tion of various dietary items. Figure 8 shows that higher

consumption of high-protein items is broadly associated
with decreased microbial diversity, whereas consumption of
probiotics, fruits and vegetables, and milk products is associ-
ated with increased diversity. This is consistent with previ-
ous findings showing that a high-protein diet decreases
microbial diversity compared with a balanced protein/carbo-
hydrate diet [72], fruit, legume, and vegetable-rich “agrarian”
diets increase gut microbial diversity [73].

Fig. 7 AGP food differential abundance vectors cluster dietary terms by metabolic content. Each value in the heatmap represents the log-fold-
change of each species-term combination, normalized across rows by Z-score. Feature selection on genera was performed by identifying the 20
genera most capable of dividing terms into 2 clusters using the ANOVA F-statistic. The resulting clustering of diet-related terms broadly divides
dietary differential abundance vectors into protein-rich, simple carbohydrate, and complex carbohydrate clusters
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In order to further assess the role of metabolic
changes during microbiome-associated diseases, we ob-
tained a matrix of predicted metabolic roles and other
traits of microbial species from the ProTraits database
[60] and correlated those predicted probabilities with the
vector of log2 fold changes for AGP differential abun-
dance vectors. We found that dietary fruit consumption
was associated with a significant increase in OTUs anno-
tated with fructose metabolism, whereas red meat con-
sumption was significantly associated with increases in
microbes annotated with metabolism of amino acids includ-
ing aspartate and glutamate, as well as alkaline phosphatase
and lipase C14 metabolic activity (Additional file 1).
We then applied this analysis to diabetes mellitus (DM;

Fig. 9) and inflammatory bowel disease (IBD; Fig. 10), and
found that whereas both were associated with significant
increases in glycogen-metabolizing microbes, DM was

also marked by an increase in metabolism of the mono-
saccharide ribose and disaccharide cellobiose, as well as
the sorbitol, which is often used as a sugar substitute, and
a decrease in maltose metabolism. Decreasing maltose
metabolism has been reported in literature to improve
blood glucose after sugar challenge and reduction in malt-
ase activity is a desired effect in anti-diabetic therapies
such as trigonelline [74, 75]IBD was associated with in-
creases in starch and beta-galactosidase activity. Broadly,
then, both disorders are marked by a shift of the micro-
biome towards carbohydrate metabolism.
There is increasing amount of epidemiological evidence

that the microbiome might be involved in the develop-
ment of late-onset autism. Antimicrobial therapy seems to
precede the symptoms [76] and a subsequent vancomycin
therapy can alleviate the symptoms short-term [77]. It has
been proposed that some gut microbes may produce

Fig. 8 Protein-rich foods are associated with decreased microbial diversity in the AGP. For each AGP sample, the Abundance-covered Coverage
Estimator (ACE) metric of microbial alpha diversity was computed using the scikit-bio Python package (https://github.com/biocore/scikit-bio), and
the resulting vector compared to each dietary metadata variable using Spearman’s correlation. A high or low rho indicates a respective increase
or decrease in microbial diversity is associated with increased frequency of consumption of this type of food within the AGP
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neurotoxins that would make the autism symptoms worse
[78]. Many autism patients also exhibit GI tract problems
during the onset of the disease which often persisting [79,
80]. In AGP samples, we observe an increase in some spe-
cies associated with poor water quality (Bacillus flexus,
Kocuria palustris), and food poisoning (Campylobacter
uroelyticus, Clostridium perfringens) (Fig. 11) [81]. Cam-
pylobacter ureolyticus has been shown to be increased in
Crohn’s disease and other GI symptoms [82]. Autistic chil-
dren have been reported to have elevated levels of ammo-
nia in stool [83], a compound which K. palustris can
degrade well [patent no CN103103141-A]. Kocuria species
have been reported to be contributing to brain abscess

and meningitis, as well as a cause of urinary tract infec-
tions [84, 85]. Some of the bacteria that showed up are
seemingly unrelated to the condition, like Xylophilus
ampelinus (a plant pathogen). Most of the bacteria
decreased in ASD are non-pathological, environmental
species: Pseudoxanthomonas mexicana, Pseudomonas
citronellolis, Blastomonas natatoria, with the exception of
Staphylococcus haemolyticus, which is a known hospital
pathogen [86].

Discussion
The widespread availability of public metagenomic data
enables new data to be interpreted within the context of

Fig. 9 ProTraits metabolic traits associated with diabetes. The differential abundance vector of log2FCs per species in diabetes was correlated with the vector
of probabilities for association of each OTU with that metabolic property as provided by the ProTraits classifier. Only significant (p < 0.05) associations are
shown. A positive correlation coefficient thus indicates an increase in abundance of OTUs predicted or known to metabolize the given metabolite
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prior experiments. As more data is collected, more and
more accurate statements can be formulated about the
interactions within the microbiome, as well as between
the microbes and the environment. As of today however,
despite the fact that there are many samples available
publicly spanning different environments, the data may
prove somewhat selective. Some conditions are repre-
sented by a single project, some lack a ‘control’, or a suit-
able comparison; some are just lacking the sample
annotation needed to draw any conclusions.

Moreover, there are a plethora of confounding factors
which cannot always be controlled for. For example, hu-
man subjects find it difficult to stick to a strict diet,
which introduces higher variability in the dietary input,
which in turn changes the microbiome in a more convo-
luted way. We also have highly variable - individually
and between each other - behavioral patterns. We differ
genetically and with respect to background, which have
also been shown to affect the gut microbiome. Finally,
most of the variables - notably diet-related - are
self-reported, which makes the data prone to a bias intro-
duced by many observers, as well as simple forgetfulness.
All of the factors mentioned above limit the applicabil-

ity of the method we propose. That said, the American
Gut Project is a source of highly standardized informa-
tion about the samples, and there is a decent number of
samples in it. We also expect the trend in data accumu-
lation to stay increasing. In a few years, there will be
more data available, and this will widen the bottleneck
we’re faced with currently.
Being still a relatively young field, metagenomics suf-

fers from the lack of standardized methods for data ana-
lysis, as is the case with e.g. gene expression analysis.
The EBI analysis pipeline is an example of a proposed
standardized solution for metagenomics data analysis up
to converting the raw data to counts of different taxa or
genes. Using such a pipeline allows us to minimize the bias
introduced by technical variability. The choice of methods
for downstream analysis is less obvious. There have been ef-
forts undertaken to compare different computational tools

Fig. 10 ProTraits metabolic traits associated with IBD. The differential abundance vector of log2FCs per species in IBD was correlated with the
vector of probabilities for association of each OTU with that metabolic property as provided by the ProTraits classifier. Only significant (p < 0.05)
associations are shown. A positive correlation coefficient thus indicates an increase in abundance of OTUs predicted or known to metabolize the
given metabolite

Fig. 11 Changes in microbial species in autism spectrum disorder patients

Perz et al. BMC Bioinformatics 2019, 20(Suppl 2):96 Page 68 of 149



to each other and evaluate the performance of any individ-
ual method for differential abundance calculation, cluster-
ing, etc. The modeling strategy we used in MNEMONIC
seems to be performing well, but may not be optimal. One
caveat of using gene expression analysis tools for metage-
nomics data is that, because of the sequencing technology
limitations, the latter is compositional and does not repre-
sent absolute counts, which in turn implies that data is not
independent [87, 88]. This characteristic will cause many
standard statistical tools to yield false positive results. The
data is also more sparse than the RNA-seq counts, which
further complicates modeling [89]. However, despite diffi-
culties associated with the analysis of metagenomics data,
studies consistently show that some signal can be achieved
even using simple statistical methods, and is strong enough
to overcome the technical bias [41, 90].
In addition to these issues, without a gold standard, we

cannot quantitatively evaluate the performance of the ap-
proach and are relegated mostly to “sanity checks” (i.e., rep-
licating findings well-established by others). Lastly, when
studying metagenomics in the context of human gut, it is
not clear, in most cases, whether the observed or potential
changes in microbiome are the cause of a pathology, the ef-
fect, or just accidental. It could also be the case that they
contribute both to the cause and the effect, with potential
complex interactions and feedback loops, and the interplay
of host condition and microbiota composition converges,
over time, to a recognizable disease state. For example,a pa-
tient with rheumatoid arthritis might go grocery shopping
less frequently because of the pain it causes them to walk
to the grocery store, resulting in a less diverse or otherwise
changed diet and, in turn, changes in microbiome. And per-
haps the microbiome changes, in turn, exacerbate their
health issues, resulting in a cycle of less frequent shopping
and worsened condition.
One should be also wary when interpreting results

from a metagenomics experiment in a certain context.
As an example, dysbiosis is widely defined as a generic
disturbance of the “correct” microbiome [91] and seems
to be associated with a variety of diseases. Interestingly,
different diseases seem to have a similar pattern of
change with respect to the ‘healthy’ microbiome [90].
However, it’s been suggested that the host-microbiome
interactions may be much more complex and that the
term is not only overly general, but also misleading [92].
Even with so many factors influencing the microbial
composition, it may be possible to define a ‘healthy’
human gut microbiome or a ‘core’ gut microbiome, but
necessarily with tolerance to the relatively high group or
individual variation.

Conclusion
We present an approach to help interpret new metage-
nomics experiments, specifically as an algorithmic means

of searching for similar “shifts” that have been reported
within public metagenomic repositories in terms of differ-
ential microbial abundance between conditions. The ques-
tion itself is important to establish whether a newly
observed change in the microbiome has been seen before
and, if so, under what conditions. This is important in
interpreting new results, as a merely descriptive report of
changes in microbial fractions does not answer the ques-
tion about what that change might mean in terms of its
potential relevance to the host. If our observations of
microbial abundance shifts are similar to others, then the
nature of their experiments informs us as to how to inter-
pret ours. For example, examining the experiments that
led to similar microbiome changes might yield a unifying
theme such as changes in dietary composition (salt, pro-
tein, fat, sugar, etc), immune activation/repression, or re-
sponse to stress. In turn, if we are studying diseases, then
similar shifts might lend themselves to testable hypotheses
regarding causality. Alternatively, if no previous experi-
ments are highly similar, then knowing this enables us to
claim our observations are novel.
The main limitation of this report is that we cannot

yet automatically (algorithmically) detect from the
meta-data alone which samples within an experiment
are control and which ones experimental. In some cases,
there may be only controls (e.g., a survey of microbial
abudance), or there may be multiple comparisons that
involve either different experimental perturbations or
multiple time-points for one perturbation. The AGP en-
abled us to bypass this limitation for now by focusing on
one that came with well-annotated structure. In the
future, for the potential for this approach to be fully re-
alized, the reporting of experimental vs control condi-
tions needs to be easy to recognize algorithmically. One
solution would be to require increased structure to the
meta-data reporting in new microbial experiments, but
another would also be to increase our ability to algorith-
mically extract the necessary values from a free-form de-
scription either in the meta-data or publication itself.

Additional file

Additional file 1: Association of fruit and meat consumption with metabolic
variables. Dietary fruit consumption is associated with a significant increase in
OTUs annotated with fructose metabolism, whereas red meat consumption
was significantly associated with increases in microbes annotated with
metabolism of amino acids, alkaline phosphatase, and lipase C14 metabolic
activity. (PNG 70 kb)
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