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The DNA damage response (DDR) has emerged as a critical tumour suppressor pathway responding to cellular DNA replicative
stress downstream of aberrant oncogene over-expression. Recent studies have now implicated the DDR as a sensor of oncogenic
virus infection. In this review, we discuss the mechanisms by which tumour viruses activate and also suppress the host DDR. The
mechanism of tumour virus induction of the DDR is intrinsically linked to the need for these viruses to promote an S-phase
environment to replicate their nucleic acid during infection. However, inappropriate expression of viral oncoproteins can also activate
the DDR through various mechanisms including replicative stress, direct interaction with DDR components and induction of reactive
oxygen species. Given the growth-suppressive consequences of activating the DDR, tumour viruses have also evolved mechanisms to
attenuate these pathways. Aberrant expression of viral oncoproteins may therefore promote tumourigenesis through increased
somatic mutation and aneuploidy due to DDR inactivation. This review will focus on the interplay between oncogenic viruses and the
DDR with respect to cellular checkpoint control and transformation.
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Innate tumour suppression in response to oncogenic stress
includes the well-characterised ARF-mediated activation and
stabilisation of p53 (Zindy et al, 2003; Christophorou et al, 2006;
Efeyan et al, 2006) and the cellular DNA damage response (DDR)
that is activated following oncogene-induced replicative stress
(Halazonetis et al, 2008). As first recognised by Halazonetis, Bartek
and colleagues, tumour cells often display an activated DDR as
evidenced by foci of DDR signaling proteins such as 53BP1 and
activated ATM (DiTullio et al, 2002). This work led to the
landmark papers by Bartkova et al (2005) and Gorgoulis et al
(2005), which demonstrated that acute over-expression of onco-
genes caused replicative stress that was sensed by the ATR
signaling pathway as well as double-stranded breaks recognised by
the ATM pathway. Not long after the initial characterisation of
these pathways, the functional significance of the DDR activation
was revealed by genetic studies indicating that ATM and Chk2
were critical tumour suppressors downstream of oncogenes
including H-RasV12, Mos, Cdc6, and cyclin E (Bartkova et al,
2006; Di Micco et al, 2006). Mechanistically, these data linked the
well-studied DDR signalling pathway and known tumour suppres-
sor functions of its components, including activation of check-
points and p53-mediated apoptosis and senescence, to an
oncogene-induced replicative stress. Although much of the initial
work on the DDR pathway in tumour suppression has focused on
cellular oncogenes, a recent body of literature indicates that viral
oncogenes also engage the DDR.

Approximately, 20% of all cases of human cancer have an
infectious aetiology, with B80% of those being viral (Bouvard
et al, 2009) (Table 1). For example, Epstein-Barr virus (EBV) is
nearly uniformly present in African Burkitt’s lymphoma and
AIDS-associated non-Hodgkin’s lymphomas (Rickinson and
Kieff, 2006). Kaposi’s sarcoma-associated herpesvirus (KSHV) is
responsible for Kaposi’s sarcoma (KS) and primary effusion
lymphomas commonly diagnosed in AIDS patients (Mesri et al,
2010). Furthermore, human papillomavirus (HPV) infection is
central to the development of cervical cancer and is a major
contributor to the global cancer burden (Moody and Laimins,
2010). Recently, several studies have revealed the tumour-
suppressive role of the DDR in response to viral oncoproteins.
A unique aspect of these interactions is the interplay between the
virus and the host with respect to virus replication vs aberrant
induction of growth control genes and inhibition of apoptosis.
This review will focus on complex interactions between tumour
viruses and the host DDR and outcomes that promote or prevent
virus-induced tumourigenesis.

VIRAL ONCOPROTEINS PROVOKE A TUMOUR-
SUPPRESSIVE DDR

The replication of tumour viruses is intrinsically linked to their
ability to drive cell proliferation. Most of these viruses infect
quiescent cells driving re-entry into the cell cycle to promote
an environment conducive for viral nucleic acid replication. The
consequences of such aberrant induction of cell proliferation
include increased replicative stress, similar to that of cellular
oncogene activation, leading to induction of the DDR. However,
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direct viral oncoprotein activation of the DDR also occurs through
multiple mechanisms discussed below.

Tumour viruses activate the DDR by inducing cellular
hyper-proliferation

Small DNA tumour viruses antagonise the transcriptionally
repressive Rb family of proteins to promote E2F-driven cellular
proliferation. Uncontrolled E2F activity has been shown to activate
an ATM-dependant growth-suppressive DDR (Powers et al, 2004;
Rogoff et al, 2004). HPV E7 and SV40 large T antigen are classic
examples of viral oncoproteins targeting Rb by direct disruption of
the interaction with E2F thereby increasing S-phase promoting E2F
family members to drive cellular DNA replication (DeCaprio et al,
1988; Dyson et al, 1989; Munger et al, 1989; Cheng et al, 1995;
Zalvide and DeCaprio, 1995). In recent work, E6 and E7 over-
expression has been shown to induce replicative stress in primary
keratinocytes suggesting that potent loss of growth control
through E7-mediated Rb antagonism drives uncontrolled origin
firing leading to damaged DNA that may contribute to cervical
cancer pathogenesis (Bester et al, 2011). Similarly, SV40 large
T antigen is sufficient to activate an ATM-induced DDR (Boichuk
et al, 2010). However, as described later, SV40 large T antigen
activates the DDR through multiple mechanisms including those
independent of Rb interaction (Boichuk et al, 2010). Although the
polyomavirus SV40 does not cause human cancer, the recently
described Merkel cell polyomavirus (MCV or MCPyV) has been
found clonally integrated in Merkel cell carcinomas (MCC) (Feng
et al, 2008) and expresses a truncated large T antigen in these
tumours lacking the capacity to replicate viral DNA (Shuda et al,
2008). These mutant large T antigens still retain the ability to
perturb cell growth through Rb antagonism and likely activate the
DDR providing selective pressure for mutations in DDR genes and
downstream signalling leading to MCC.

EBV infection of human B cells in vitro transiently activates an
ATM-dependant DDR. EBV immortalises primary human B cells
in culture mimicking physiological activation and survival signals,
which when constitutively active is capable of driving B-cell
lymphomas in vivo in the immune-suppressed. Recent work on
EBV-infected primary human B cells indicates that early latent
oncoprotein expression drives cellular hyperproliferation and
activates ATM and downstream DDR checkpoints (Nikitin et al,
2010). Interestingly, inhibition of ATM and its downstream kinase

Chk2 early in infection markedly increases the efficiency of
transformation suggesting that the DDR blocks early events in
EBV-mediated B-cell outgrowth. DDR activation by EBV correlates
with heightened activity of the major viral trans-activator EBNA2
as measured by expression of EBNA2-dependant targets such as c-
Myc and CD23. Both EBNA2 activity and DDR activation wane
through infected cell divisions as EBNA2 transcriptional repres-
sors, including EBNA3C, are activated. The genetic loss of
EBNA3C, in fact, promotes an uncontrolled period of hyper-
proliferation that induces high-level ATM activation (Nikitin et al,
2010). Therefore, EBV has evolved to provoke a DDR owing to its
need to drive B-cell proliferation, which is then limited by full
expression of its latent viral oncoproteins in immortalised
lymphoblastoid cell lines (Figure 1).

Studies of the related g-herpesvirus, KSHV, identified similar
perturbations of the DDR signalling pathway. KSHV infects B cells
and endothelial cells and can promote the development of primary
effusion lymphomas and KS, two common cancers in AIDS
patients (Mesri et al, 2010). Although the study of early events in
KSHV de novo infection of primary cells has been limited, KSHV
infection of immortalised endothelial cells in vitro induces the
ATM signalling pathway (Koopal et al, 2007). Indeed, expression
of the KSHV latent viral cyclin D homologue (v-cyclin) alone
activates ATM. Moreover, investigation of KS tumours revealed
activation of the DDR in early (patch), but not late (nodular), KS
lesions (Koopal et al, 2007). Similar to EBV, elevated levels of DDR
marks are likely induced by robust cellular proliferation. However,
the downregulation of the DDR in advanced KS tumours is likely
due to selection for mutations in the pathway allowing tumour cell
survival.

Hepatitis B virus (HBV), which causes acute and chronic liver
diseases, including cirrhosis and hepatocellular carcinoma, pro-
motes cellular proliferation and the DDR through the pleiotropic
oncoprotein HBx. Heterologous expression of HBx increases
cytosolic Ca2þ levels leading to activation of Pyk2 and c-Src
kinases (Klein and Schneider, 1997) and, ultimately, activation of
Ras/Raf/MEK/ERK pathways. HBx expression can also promote
p38MAPK pathway activation which upregulates E2F-dependant
gene expression (Wang et al, 2008). Constitutive activation of these
signalling pathways leads to activation of the ATR arm of the DDR
pathway (Wang et al, 2008). The consequences of this activation,
such as induction of S-phase arrest, are actually beneficial for virus
replication despite being tumour suppressive (Zheng et al, 2011).

Table 1 Human oncogenic viruses and their interactions with the host DNA damage response

Oncogenic
virus Tumors associated with virus infection Oncoproteins involved in DDR References

EBV Burkitt’s lymphoma, post-transplant lymphoma,
non-Hodgkin’s/diffuse large B cell lymphomas,
nasopharyngeal carcinoma, gastric carcinoma

EBNA2/LP-DDR (Nikitin et al, 2010)
EBNA1-ROS-DDR (Gruhne et al, 2009a)
EBNA3C B early DDR (Nikitin et al, 2010)
EBNA3CBChk2,p53 (Choudhuri et al, 2007; Yi et al, 2009)
EBNA3CB G2/M checkpoint (Gruhne et al, 2009b; Parker et al, 2000)
LMP1BATM (Gruhne et al, 2009b)

KSHV Kaposi’s sarcoma, primary effusion lymphoma v-cyclin-ATM (Koopal et al, 2007)
LANA-myc-DDR (Liu et al, 2007)
LANA:p53 (Chen et al, 2010; Friborg et al, 1999)

HPV Cervical cancer, ovarian cancer E6,E7-repl stress-DDR (Bester et al, 2011)
E7:pATM (Moody and Laimins, 2009)
E6Bp53 (Scheffner et al, 1990)

HBV Hepatocellular carcinoma HBV-ATR (Wang et al, 2008; Zhao et al, 2008a)
HBx-Ras-DDR (Klein and Schneider, 1997)
HBx B p53 (Wang et al, 1994)

HTLV I ATL TaxBDNA-PK (Durkin et al, 2008)
TaxBChk1/Chk2 (Park et al, 2004; Park et al, 2006)
TaxBp53 (Ariumi et al, 2000; Pise-Masison et al, 2000)

Abbreviations: ATL¼ adult T-cell leukaemia; DDR¼DNA damage response; EBV¼ Epstein –Barr virus; HBV¼ hepatitis B virus; HPV¼ human papillomavirus; HTLV-I¼ human
T-lymphotropic virus type I.
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Direct viral protein activation of the ATM/Chk2
signaling pathway

Beyond the growth suppressive functions of the DDR, DNA repair
and activation of checkpoints may be beneficial for the replication
of tumour viral genomes. Oncogenic viruses have therefore
developed mechanisms to activate specific components of the
DDR pathway, while strictly preventing downstream induction of
apoptosis. Recent work indicates that SV40 large T antigen can
serve as both a substrate for the ATM kinase as well as its direct
upstream activator through binding the Nbs1 component of the
ATM-activating Mre11/Rad50/Nbs1 complex (Wu et al, 2004;
Boichuk et al, 2010). ATM activation is actually necessary for viral
DNA replication (Zhao et al, 2008b). However, as discussed below,
the growth-suppressive consequences of ATM activation are
attenuated downstream by large T antigen enabling SV40-infected
cell survival.

HPV-infected cells display increased, but non-canonical ATM
pathway activation. In particular, HPV oncoprotein-expressing
undifferentiated keratinocytes display an activated DDR charac-
terised by ATM, Chk1, Chk2, and H2AX phosphorylation (Moody
and Laimins, 2009). However, upon differentiation of these cells,
which increases virion genome replication, an additional set of
ATM targets is phosphorylated including Nbs1 (Moody and
Laimins, 2009). Interestingly, E7 was demonstrated to associate
with the activated Ser1981-phoshorylated form of ATM indepen-
dent of differentiation or other viral proteins (Moody and Laimins,
2009). Therefore, direct association between E7 and phospho-
ATM, HPV episome amplification, and viral-induced replicative

stress are all capable of activating the DDR and it remains unclear
which of these activities is critical in regulating HPV pathogenesis
(Moody and Laimins, 2009).

DDR activation through viral oncoprotein-mediated
mitotic effects

Tumour viruses perturb normal cell cycle control in order to
establish a constitutive S phase-like environment in which cellular
factors are present required for viral replication. One consequence
of this constitutive S-phase induction is inappropriate entry into
mitosis, which activates DDR checkpoints including those
triggered by Chk2 (Sato et al, 2010; Stolz et al, 2010). It was
previously shown that KSHV v-cyclin expression promotes
polyploidy and cytokinesis defects (Verschuren et al, 2002) and
was subsequently confirmed by Ojala and colleagues that v-cyclin
expression promotes amplification of centrosomes and intra-S-
phase growth arrest (Koopal et al, 2007). Moreover, chemical
inhibition of ATM/Chk2 led to aberrant mitoses and mitotic
catastrophe in v-cyclin-expressing cells (Koopal et al, 2007).

In order to successfully transform cells, SV40 large T antigen
targets the spindle assembly checkpoint component Bub1 leading
to ATM/ATR activation (Cotsiki et al, 2004; Hein et al, 2009).
Similarly, the high-risk HPV16 E6 and E7 proteins have been well
documented to increase genomic instability by deregulating
mitosis through the induction of multipolar spindles and
centrosome duplication (Duensing et al, 2000). Specifically,
E7 binding to nuclear mitotic apparatus protein 1 appears to
deregulate normal chromosome alignment during prometaphase
(Nguyen and Munger, 2009). More recently, E7 was observed
to upregulate Polo-like kinase 4 (PLK4) expression leading to
centriole multiplication (Korzeniewski et al, 2011). Therefore,
multiple viral oncoproteins perturb mitosis through diverse
mechanisms leading to an activated DDR.

Tumour viruses activate the DDR through induction
of reactive oxygen species (ROS)

Elevated levels of reactive oxygen species can activate DDR
pathways and may result in mutagenesis during oncogenic virus
infection promoting tumourigenesis. Several tumour virus onco-
proteins have been shown to increase ROS levels. For example,
HTLV-1 Tax expression in fibroblasts or T cells induced a ROS-
dependant DDR, although the mechanism by which ROS was
induced remains unknown (Kinjo et al, 2010). Recently, Masucci
and colleagues found that the EBV protein EBNA1 induced ROS
levels and consequently ATM-dependant DDR activation and
ultimately chromosomal aberrations (Gruhne et al, 2009a).
Interestingly, EBNA1 induced ROS through upregulation of the
mRNA encoding the catalytic subunit of the leukocyte NADPH
oxidase NOX2, which directly promotes ROS accumulation
(Gruhne et al, 2009a). A more recent study suggests that this
EBNA1-driven ROS accumulation may promote telomere dysfunc-
tion, another known molecular signal for DDR activation
(Kamranvar and Masucci, 2011). Given that EBNA1 is expressed
in all EBV-positive tumour cells, its ability to induce ROS may
promote tumourigenesis.

VIRAL PROTEINS SUPPRESS THE DDR TO PROMOTE
TUMOURIGENESIS

With the explicit purpose of providing an environment for virus
replication, several tumour virus oncoproteins mitigate the
growth-suppressive function of the DDR through altering down-
stream signalling events. However, the consequences of suppres-
sing the DDR include aneuploidy and increased mutagenesis,
which are major drivers of tumourigenesis. Tumour viruses have
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Figure 1 Interplay between viral oncoproteins and the host DDR. Viral
oncoproteins activate cellular oncogenes (green arrows top level) in order
to enter or re-enter the cell cycle, thereby inducing replicative stress and
causing DNA single-stranded breaks (ssDNA). ssDNA and DNA double-
stranded breaks (DSB) generated during repair of single-stranded DNA
recognised by ATR and ATM kinases, respectively, which master regulate
downstream signalling (all targets not shown), including activation of Chk2
and p53. Tumour virus oncoproteins modulate the function of DDR
components by activating (green arrows) or suppressing (shown in red)
their expression or activity.
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been well characterised to antagonise the function of the p53
tumour suppressor and more recently several viruses have been
shown to target upstream checkpoint kinases as well.

Tumour virus suppression of downstream DDR signalling
components

The small DNA tumour viruses SV40 and HPV have been well
characterised for their ability to transform cells through perturb-
ing activation of the DDR downstream target p53 (Kress et al,
1979; Lane and Crawford, 1979; Scheffner et al, 1990, 1993). This
activity is thought to be a requirement for cell survival following
aberrant S phase induction due to Rb antagonism by T Ag and E7
as described above. Although large DNA tumour viruses generally
do not directly promote p53 degradation or abolish its function,
the KSHV latent protein LANA and EBV latent protein EBNA3C
have been shown to modulate p53 activity through direct
association (Friborg et al, 1999; Yi et al, 2009; Chen et al, 2010).
Other tumour viruses also directly antagonise p53 function
including the HBV oncoprotein HBx, which both inhibits p53
DNA-binding activity and sequesters p53 in the cytoplasm thereby
suppressing apoptosis (Wang et al, 1994, 1995; Elmore et al, 1997;
Takada et al, 1997). HTLV-1 Tax suppresses p53 by directly
antagonising its trans-activating function through both NFkB-
dependant and NFkB-independent pathways (Ariumi et al, 2000;
Pise-Masison et al, 2000; Miyazato et al, 2005). Although many
tumour viral oncoproteins have been shown to associate with p53,
the extents to which these activities contribute to pathogenesis
remain unclear.

Viral oncoproteins directly target DDR checkpoint kinases

Upstream of p53 and cell cycle checkpoints are a series of DNA
damage-sensing and signal-relaying kinases (Figure 1). Several
viral oncoproteins directly target these upstream kinases through a
number of mechanisms ultimately attenuating their function. For
example, the HTLV-1 Tax oncoprotein directly binds to and
inhibits signalling downstream of both Chk1 and Chk2 checkpoint
kinases (Park et al, 2004, 2006; Gupta et al, 2007) as well as the
upstream DNA damage-sensing DNA-PK (Durkin et al, 2008).
Interestingly, Tax was also demonstrated to sequester the DDR
components MDC1, DNA-PK and BRCA1 at artificial Tax-induced
foci of pseudo-DNA damage as a unique mechanism to perturb
endogenous DDR signalling pathways (Belgnaoui et al, 2010). Not
unexpectedly, Tax expression attenuated ATM-downstream signal-
ling leading to faster release of the G1/S checkpoint in response to
ionising radiation (Chandhasin et al, 2008).

EBV attenuates DDR activity through indirect and also possibly
direct mechanisms. As described above, at an early stage during
EBV infection of primary B cells, an EBNA2-promoted, c-Myc-
driven period of cellular hyperproliferation activates the DDR.
Through subsequent cell divisions, the viral EBNA3C protein is
expressed, which attenuates EBNA2 activity, hyperproliferation,
and ultimately DDR activation (Nikitin et al, 2010). Therefore, as
EBV-immortalised cells grow out in vitro, the DDR is no longer
activated.

Under circumstances where EBV oncoproteins are aberrantly
expressed, as evidenced in heterologous expression studies in
EBV-negative B cells, DDR pathways can be directly attenuated.
Specifically, Robertson and colleagues have observed a direct
interaction between EBNA3C and Chk2 leading to decreased Chk2
activity, which may also contribute to DDR attenuation during
primary B cell outgrowth (Choudhuri et al, 2007). Another study
identified the latent membrane protein LMP1 as an inhibitor of
ATM signalling due to transcriptional down-regulation of ATM
upon LMP1 over-expression (Gruhne et al, 2009b). Under certain
circumstances, such as in Hodgkin’s lymphoma or nasopharyngeal
carcinoma where LMP1 is expressed at high levels and may be

important for cell survival, this activity may contribute to
tumourigenesis due to the inability of ATM to trigger checkpoints
and mediate efficient DNA repair.

Viral oncoproteins perturb mitotic checkpoint signalling

Mitotic checkpoints are often provoked by viral oncoprotein
promotion of cell cycle progression. Therefore, in order for these
viruses to replicate in the infected cell, signalling downstream of
the G2/M checkpoint must be attenuated. Several oncogenic
viruses encode proteins that precisely target this checkpoint with
potentially catastrophic consequences on the karyotype of surviv-
ing cells. HTLV-1 Tax expression abolishes cellular mitotic
checkpoints by directly targeting and prematurely activating the
anaphase-promoting complex (Liu et al, 2005), as well as
suppressing the spindle assembly checkpoint protein Mad 1 (Jin
et al, 1998) resulting in highly aneuploid ATL cells. Similarly, the
EBV EBNA3 proteins are capable of inhibiting the canonical G2/M
checkpoint through suppression of p27 levels or activity depending
on the cell type (Parker et al, 2000; Wade and Allday, 2000; Knight
and Robertson, 2004). In addition, EBNA3C is capable of
suppressing the effects of mitotic poisons in part through
decreasing the levels of the spindle assembly checkpoint protein
BubR1 (Leao et al, 2007; Gruhne et al, 2009b). The consequence of
bypassing the mitotic checkpoint and DDR signalling downstream
is the accumulation of aneuploid cells that can promote
tumourigenesis through copy number amplification of oncogenes
or loss of tumour suppressors.

CONCLUSIONS

In order to propagate their genomes, human tumour viruses
induce robust cellular DNA replication that can lead to a
replicative stress-activated host tumour-suppressive DDR.
Although replicative stress is a common consequence of tumour
virus infection, different strategies are used by these viruses to
overcome the host DDR. Small DNA tumour viruses drive cellular
DNA replication activating the host DDR, but also encode
inhibitors of DDR downstream effectors such as HPV E6 or
polyomavirus large T antigens that suppress p53. Activation of the
host DDR induces S-phase arrest and allows such viruses to
replicate in an S-phase like environment with the proper milieu of
cellular replication factors. However, as p53 is a merging point of
several tumour-suppressive pathways, its inhibition by viral
proteins enables these viruses to avoid induction of p53-induced
apoptosis or senescence. Inadvertent integration of viral genomes
generates cells that produce DDR-provoking oncoproteins in the
absence of viral replication. For example, MCV integrants express
a truncated T antigen capable of Rb association, but not viral DNA
replication (Feng et al, 2008). The consequences of such a scenario
is the rapid proliferation of pre-malignant cells within which
mutations in DDR components can be selected or, if still
expressed, viral proteins can promote genomic instability by
continuously inhibiting checkpoint function. It is these cells, which
are far from the intentional output of the initial virus infection,
that drive tumourigenesis.

The interplay between large DNA tumour viruses, such as EBV
and KSHV, with the DDR is somewhat different. These viruses can
replicate their episomes during the proliferation of latently
infected host cells and only under specific circumstances (i.e. host
cell differentiation) do they replicate genomes lytically to produce
progeny virions. In order to ensure an environment that allows
latent viral episome replication, viral oncoproteins promote S phase
and cell proliferation. Similar to small DNA tumour viruses,
these activities can lead to replicative stress and DDR activation.
However, it is likely that with more complex genomes, the
large DNA tumour viruses are able to attenuate the amount of
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replicative stress generated to maintain a successful latent
infection. Such is the case for EBV, where an initial DDR-
activating burst of proliferation is driven by the viral proteins
EBNA2/EBNA-LP. Subsequently, expression of the EBNA3C
protein attenuates EBNA2 transcriptional activity and DDR
activation enabling long-term latency establishment (Nikitin
et al, 2010). It is only in the inadvertent case when mutations in
DDR components are generated by replicative stress and coupled
with aberrantly over-expressed viral proteins such as EBV EBNA1
or EBNA3C or in the case of KSHV LANA or v-cyclin that these
viruses might drive genomic instability and tumourigenesis.
Importantly, this is not productive for the virus, but is rather a
by-product of a highly evolved set of mechanisms aimed to drive
cell proliferation enabling virus replication.

It is also worth noting that during lytic viral DNA replication,
the nuclear sites of viral DNA synthesis often recruit DDR factors
and also activate the DDR. These factors can either be beneficial
for replication as is the case for ATM signalling in g-herpesviruses
(Tarakanova et al, 2007; Bouvard et al, 2009; Li et al, 2011) and
papillomaviruses (Moody and Laimins, 2009) or detrimental as in
the case of the ATM-activating Mre11/Rad50/Nbs1 proteins
precluding processing of adenovirus DNA ends before packaging
(Stracker et al, 2002). Therefore, the DDR can serve quite distinct
functions depending on the molecular nature of the DNA damage
and need for recombination and repair during genome replication.

In summary, the DDR can be activated directly by aberrant
expression of oncoproteins, cellular or viral, or as a consequence of

cellular proliferation-induced replicative stress. DNA tumour
virus-driven cellular transformation occurs as a by-product of
the virus promoting the cell cycle in order to establish an
appropriate environment with the requisite DNA replication
machinery and repair factors necessary for viral DNA replication.
Similarly, viruses such as HTLV-1 must activate the infected T-cell
in order to promote a favourable environment for proviral DNA
integration. However, in the inadvertent setting such as following
aberrant integration of viral genomes where loss of normal viral
replication function occurs or other changes lead to increased viral
oncoprotein expression, a constitutively activated DDR is trig-
gered. DDR signalling typically limits viral oncogenesis, but also
provides selective pressure for mutations in DDR signalling
components that promote tumourigenesis. The delicate balance
between virus replication, latency, and the extent of activation of
the DDR ultimately dictates whether an infected cell will give rise
to a productive cycle generating progeny virions or a tumour.
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