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ABSTRACT Burkholderia cenocepacia is able to cause infections in cystic fibrosis patients.
B. cenocepacia phage Paku has a 42,727-bp genome sharing a phiKMV-like genome
arrangement. T7-like tail components were identified in parallel with a tyrosine integrase,
suggesting that Paku might exhibit a temperate lifestyle, an atypical feature for an
Autographiviridae phage.

urkholderia cenocepacia is an opportunistic pathogen that is found in the environment

and is known to cause infections in cystic fibrosis (CF) patients that are difficult to treat,
because of its antibiotic resistance and possession of multiple virulence determinants (1).
Research has been conducted to better understand B. cenocepacia as a pathogen, in hopes
of increasing CF patients’ life expectancy (2). We are interested in understanding the genomic
diversity of B. cenocepacia phages in order to develop phage therapy for controlling this
bacterium.

Bacteriophage Paku was isolated from a soil sample obtained in 2018 in Lincoln, Nebraska,
using Burkholderia cenocepacia Gllla as the host. The soil sample was filtered (0.2-um pore
size), plaque purified three times, and propagated on B. cenocepacia using the soft agar
overlay method as described previously (3). DNA was purified by the modified Wizard kit
protocol described by Summer (4). DNA libraries were prepared with 300-bp inserts with a
Swift 2S Turbo kit and sequenced with a MiSeq Nano system using 500-cycle v2 chemistry.
The total of 17,386 raw reads were quality controlled using FastQC (www.bioinformatics
.babraham.ac.uk/projects/fastqc) and trimmed with the FASTX-Toolkit v0.0.14 (http://
hannonlab.cshl.edu/fastx_toolkit). The genome was assembled with SPAdes v3.5.0
(5), resulting in a single contig with 65.0-fold coverage. The genome was closed bioinfor-
matically based on alignment to another contig with a different opening. Annotation was
done on the Center for Phage Technology (CPT) Galaxy-Apollo phage annotation platform
(https://cpt.tamu.edu/galaxy-pub) (6-8). This process was broken into two parts, with the
structural annotation done by GLIMMER v3 (9) and MetaGeneAnnotator v1.0 (10). tRNAs
were detected with ARAGORN v2.36 (11) and tRNAScan-SE v2.0 (12). The functional anno-
tation was completed by use of InterProScan v5.48 (13), BLAST v2.9.0 (14), TMHMM v2.0 Al Catimine P Leye Uik
(15), HHpred (16), LipoP v1.0 (17), and SignalP v5.0 (18). BLAST searching against the NCBI Chicago

nonredundant and Swiss-Prot databases (19) was utilized. A genome-wide DNA sequence Copyright © 2022 Rezene et al. This is an
open-access article distributed under the terms

similarity ar.\aly5|s was peﬁormed by !:JrogressweMauve v2.4 (20). All tools were run with o et e e i T e A
default settings unless otherwise specified. International license.

Phage Paku has a 42,727-bp genome with a coding density of 95.6% and a GC content Address correspondence to Mei Liu,
of 61.9%. The precise genome termini could not be determined by PhageTerm (21). In total, meiili@aniicdi

55 protein-coding genes and 1 tRNA gene were predicted. NCBI taxonomy has placed Paku The authors declare no conflict of interest.
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in the subfamily Okabevirinae; however, it shares only ~30% nucleotide identity with other Accepted 12 March 2022
members of this subfamily and thus would likely constitute its own genus in this group. Published 28 March 2022
Paku shares 31 proteins (BLASTp, E value of <107%) with Burkholderia phage Bp-AMP4
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(GenBank accession number HG796221) and 30 proteins with Burkholderia phages Bp-AMP1,
Bp-AMP2, Bp-AMP3, and AMP1 (GenBank accession numbers HG793132, HG796219, HG796220,
and MN191861, respectively) and also shares a phiKMV-like genome arrangement in which the
phage RNA polymerase is located in the central portion of the genome. Multiple T7-like tail
components were identified in Paku, including homologs of the T7 tail fiber protein gp17
and tail tubular protein gp12. The endolysin of Paku contains an N-terminal signal-arrest-
release (SAR) sequence, with the spanin complex directly downstream of the endolysin
gene. A tyrosine integrase was identified, raising the possibility that Paku might exhibit a

temperate lifestyle, an atypical feature for an Autographiviridae phage.

Data availability. Paku's genome was deposited in GenBank with accession num-
ber MZ326863. The associated BioProject, SRA, and BioSample accession numbers are
PRJNA222858, SRR14095249, and SAMN18509701, respectively.
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