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Abstract
The synergistic targeting of DNA damage and DNA repair is a promising strategy for the development of new
chemotherapeutic agents for human lung cancer. The DNA interstrand cross-linking agent BO-1509, a derivative of
3a-aza-cyclopenta[α]indene, was synthesized and combined with the phosphoinositide 3-kinase (PI3K) inhibitor
LY294002 to treat human lung cancer cells. Our results showed that the BO-1509 and LY294002 combination
synergistically killed lung cancer cells in culture and also suppressed the growth of lung cancer xenografts in mice,
including those derived from gefitinib-resistant cells. We also found that LY294002 suppressed the induction of
several DNA repair proteins by BO-1509 and inhibited the nuclear translocation of Rad51. On the basis of the
results of the γH2AX foci formation assays, LY294002 apparently inhibited the repair of DNA damage that was
induced by BO-1509. According to the complete blood profile, biochemical enzyme analysis, and histopathologic
analysis of major organs, no apparent toxicity was observed in mice treated with BO-1509 alone or in combination
with LY294002. Our results suggest that the combination of a DNA cross-linking agent with a PI3K inhibitor is a
feasible strategy for the treatment of patients with lung cancer.
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Introduction
DNA-damaging agents have been used to treat various cancers,
including lung cancer, since World War II [1]. Numerous
bifunctional DNA-damaging agents, including platinum complexes
(cisplatin and oxaliplatin) and nitrogen mustards (mustine, chlor-
ambucil, and melphalan), are still widely used in the treatment of a
variety of cancers [2,3]. These bifunctional alkylating agents induce a
variety of DNA lesions, including DNA interstrand cross-links (ICLs)
that subsequently generate double-strand breaks (DSBs), stop DNA
synthesis, and trigger cell death [4]. Several novel ICL-inducing
agents are under development for use as cancer therapeutics [5].
However, various signaling pathways and repair mechanisms that
comprise the DNA damage response (DDR) are activated to
counteract the effects of DNA damage [6]. Many studies have
shown that enhanced DNA repair activity contributes to chemother-
apeutic resistance [1,4,7]. Thus, the targeting of DNA repair is a
promising approach for the development of new chemotherapeutic
agents that are capable of overcoming drug resistance [8].
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The PI3K/AKT pathway has been well characterized as a
signaling pathway that promotes cell survival [9]. Numerous
studies have also shown that the PI3K/AKT signaling pathway
regulates the Mre11-Rad50-Nbs1 (MRN) complex and the
Rad51 protein, which are essential components of DSB repair,
through homologous recombination (HR) and nonhomologous
end joining (NHEJ), respectively [10-13]. In response to DNA
damage, the protein ataxia-telangiectasia mutated (ATM), which
is a member of the PI3K family of serine-threonine kinases,
phosphorylates the Nbs1 component of the MRN complex
[14,15]. Recently, great emphasis has been placed on developing
inhibitors of this pathway with the goal of improving
therapeutic efficacy [16]. Many specific inhibitors of PI3K
isoforms have been used in clinical trials [11,16-19]. LY294002,
the first synthetic inhibitor that targets all of the isoforms of
P110, displays little or no selectivity for individual isoforms of
PI3K and ATM [16,20]. LY294002 has been studied in
preclinical ovarian, colon, pancreatic, and nasopharyngeal cancer
models [17,21-24]. LY294002 has also been used in combina-
tion with chemotherapeutic agents and ionizing radiation
[18,25-27]. Although the use of LY294002 is limited because
of its toxicity and low solubility, it has been used extensively in
various in vitro and in vivo systems to evaluate the biologic
significance of PI3K [16].
We have previously designed and synthesized several series of

bifunctional alkylating agents that were found to have potent activity
against a variety of cancer xenograft models [28-30]. Among these
agents, the compound BO-1012 (Figure W1A), which is a bis
(methylcarbamate) derivative of 3a-aza-cyclopenta[α]indene, was
shown to have potent therapeutic efficacy against inherited resistance
H460 cells and bladder cancer cells with acquired cisplatin resistance
(NTUB1/P) in nude mice when used in combination with arsenic
trioxide [31]. Another derivative, BO-1090, was found to be effective
against a variety of oral cancer cells both in vitro and in vivo [30].
Compound BO-1012 displays potent therapeutic efficacy and was
selected as a lead compound for further development as an antitumor
agent. However, this agent was not suitable for large-scale preparation
because of the explosive and severely hazardous properties of methyl
isocyanate, which was used to introduce the bis(methylcarbamate)
functional group into the final product. For lead optimization, we
synthesized compound 3-(4-methoxyphenyl)-9H-pyrrolo[1,2-a]in-
dole-1,2-diyl)bis(methylene) bis(ethylcarbamate) (BO-1509) (Figure
W1), which bears a bis(ethylcarbamate) group and can be prepared in
large amounts. Notably, we found that BO-1509 possessed the ability
to kill various cancer cell lines.
ICLs formed by bifunctional alkylating agents are usually repaired

by a complex pathway [32]. The combination of a PI3K inhibitor
with an anticancer agent is therefore believed to increase the efficacy
of the drug or to decrease drug resistance [33,34]. In this study, we
investigated the anticancer activity of BO-1509 in combination with
LY294002 against non–small cell lung cancer (NSCLC), which
accounts for approximately 80% of lung cancer cases [35]. More than
half of patients with NSCLC have epidermal growth factor receptor
(EGFR) mutations and are promisingly treated with tyrosine kinase
inhibitors (TKIs), such as erlotinib or gefitinib [36-39]. Unfortu-
nately, the emergence of resistance to targeted therapeutics occurs
nearly in all patients in a short period [40]. Therefore, in this study,
we demonstrated that the combination of BO-1509 with LY294002
significantly suppressed the growth of several lung cancer cell lines,
including EGFR-mutant NSCLC lines, PC9 and PC9/gef B4 cells,
both in vitro and in vivo.

Materials and Methods

Cell Lines and Cell Culture
H460 and A549 cells were obtained from the American Type

Culture Collection (Manassas, VA). Gefitinib-sensitive (PC9) and
gefitinib-resistant (PC9/gef B4) cells were kindly provided by
Dr Chih-Hsin Yang (Department of Oncology, National Taiwan
University Hospital, Taipei, Taiwan) [41]. CL1-5, CL83, and CL25
cells were provided by Dr Pan-Chyr Yang (Department of Internal
Medicine, National Taiwan University Hospital, Taipei, Taiwan)
[42]. A549 cells were maintained in Dulbecco's modified Eagle's
medium. All other cells were cultured in RPMI 1640 supplemented
with 10% FBS and incubated at 37°C in 5% CO2. The characteristics
of these cell lines are listed in Table W1.

Chemicals
BO-1509 (3-(4-methoxyphenyl)-9H-pyrrolo[1,2-a]indole-1,2-

diyl)bis(methylene) bis(ethylcarbamate) was synthesized as previously
described [28]. The PI3K inhibitor LY294002 was purchased from
Cayman Chemical Company (Ann Arbor, MI).

Drug Treatment and Cytotoxicity Assays
For the cytotoxicity assays, 3000 cells were seeded into each well

of a 96-well plate, incubated overnight at 37°C, and then treated for
72 hours with various concentrations of BO-1509, LY294002, or a
combination of both compounds. At the end of the treatment, 20 μl
of Alamar Blue solution (AbD Serotec, Kidlington, United
Kingdom) was added to each well and then incubated for 6 hours.
Cell viability was assessed by measuring the absorbance at 570 and
600 nm according to the manufacturer's instructions. The
concentration of drug that resulted in a 50% inhibition of cell
growth (IC50) was determined for each drug, and the combination
index (CI) was determined using the CompuSyn software (version
1.0.1; CompuSyn, Inc, Paramus, NJ) and the median effect
principle and plot [43]. The IC50 values were presented as means ±
SD of three independent experiments.

Western Blot Analysis
Western blot analysis was performed as previously described [29]

and was adopted to determine the intracellular protein levels in
response to drug treatment. Briefly, cells were harvested after drug
treatment and lysed in electrophoresis sample buffer. Proteins were
then electrophoretically separated on a sodium dodecyl sulfate–
polyacrylamide gel and transferred onto polyvinylidene difluoride
membranes (Amersham Biosciences, GE Healthcare Bio-Sciences
Corp, Piscataway, NJ). Protein-conjugated membranes were incu-
bated with primary antibodies overnight at 4°C and then incubated
with HRP-conjugated anti-rabbit or anti-mouse secondary antibody
for 1 hour at room temperature. Western blot signals were visualized
by chemiluminescence using SuperSignal West Pico chemilumines-
cence reagent (Pierce, Rockford, IL). Antibodies against AKT,
phospho-AKT, Mre11, and FANCD2 were obtained from Santa
Cruz Biotechnology (Dallas, TX), whereas antibodies against Nbs1,
phospho-Nbs1 (pNbs1), Rad50, Rad51, and β-actin were from
Genetex (San Antonio, TX). Antibodies against caspase-3, caspase-7,
and poly(ADP-ribose) polymerase (PARP) and secondary antibodies
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against rabbit and mouse Ig were purchased from Cell Signaling
Technology (Danver, MA). The anti-γH2AX antibody was obtained
from Millipore (Billerica, MA).

Apoptosis Assays
The induction of apoptosis by the treatment of cells with BO-

1509, LY294002, or a combination of both agents was detected by
flow cytometry using 4′,6-diamidino-2-phenylindole (DAPI) staining
(1 μg/ml; Merck Millipore, Darmstadt, Germany) and the Annexin
V–FITC Apoptosis Detection Kit (Calbiochem, La Jolla, CA)
according to the manufacturer's instructions.

Immunofluorescence Staining
Immunofluorescence staining was used to detect the formation of

γH2AX foci and the nuclear translocation of Rad51 as previously
described [30,31]. The nucleus was counterstained with DAPI. After
staining, cells were examined using a confocal microscope (LSM 510;
Carl Zeiss Microscopy Ltd, Cambridge, United Kingdom). Cells with
at least five γH2AX foci in the nucleus were considered to be positive
for the formation of γH2AX foci [44].
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Figure 1. Activation of repair proteins in BO-1509–treated lung
cancer cells. H460, A549, PC9, and PC9/gef B4 cells were
treated with various concentrations (10-80 μM) of BO-1509 for
24 hours. The levels of the DNA repair proteins in cell lysates
were analyzed by Western blot analysis. β-Actin was included
as a loading control.
Mouse Xenograft Models
The use of mouse xenograft models for the analysis of tumor

suppression followed the guidelines approved by the Institutional
Animal Care and Utilization Committee of the Academia Sinica
(Taipei, Taiwan). Six-week-old male BALB/c nude mice were
obtained from the National Laboratory Animal Center (Taipei,
Taiwan) and housed in a specific pathogen-free environment under
controlled conditions of light and humidity as previously described
[30,31]. To generate the xenografts, tumor cells (approximately 3 ×
106 to 5 × 106 cells) suspended in 100 μl of phosphate-buffered
saline were inoculated subcutaneously into the flank region of mice.
When the tumor size reached approximately 100 mm3, mice were
randomly divided into four groups and treated with vehicle, BO-1509
(5 mg/kg body weight), LY294002 (40 mg/kg body weight), or a
combination of both BO-1509 and LY294002. BO-1509 and
LY294002 were prepared in 0.9% saline containing 8% DMSO, 6%
Tween-80, and 16% cremophor [25]. BO-1509 was injected
intravenously (i.v.) five times on alternate days (days 0, 2, 4, 6,
and 8), whereas LY294002 was given by intraperitoneal (i.p.) injection
everyday for 9 days. Tumor volume (mm3) was measured using
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Figure 2. Suppression of BO-1509–mediated activation of DNA
repair proteins in various lung cancer cells. H460, A549, PC9, and
PC9/gef B4 cells were treated with 20 μM BO-1509 or 40 μM
LY294002 alone or in combination for 24 hours. The levels of the
DNA repair proteins in the cell lysates were analyzed by Western
blot analysis. β-Actin was included as a loading control.
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calipers and calculated according to the following formula: tumor
volume = (length × width2)/2.

Whole Blood, Biochemical Parameters, and Histopathology
The effects of the drug treatment on the biochemical and cellular

characteristics of the blood and on the histopathology of various
organs were analyzed as previously described [30]. Briefly, 1 day after
the last i.v. injection, hematological and biochemical parameters and
the histopathology of the liver, kidney, lung, and spleen in mice
treated with BO-1509 and LY294002 were examined at the Taiwan
Mouse Clinic and the Pathology Core of the Institute of Biomedical
Sciences at the Academia Sinica, respectively.
Results

DNA Damage Response in Lung Cancer Cells Treated
with BO-1509
Because BO-1509 is a newly synthesized DNA cross-linking agent

(Figure W1), we measured the cytotoxicity of BO-1509 in several
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various concentrations of BO-1509 for 24 hours. Because most of
the cells remained intact, we then examined the levels of several
proteins involved in HR and NHEJ repair (Figure 1). Mre11 was
induced in a concentration-dependent manner in H460 cells but
was not significantly induced in other cell lines. Although the
protein levels of Nbs1 were only slightly increased upon treatment
with BO-1509, protein levels of pNbs1, the active form of Nbs1,
were significantly elevated in all four cell lines examined. BO-
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Figure 4. Synergistic killing with BO-1509 and LY294002. H460, A549, PC9, and PC9/gef B4 cells were treated for 72 hours with various
concentrations of BO-1509 and LY294002 either alone or in combination. Cell viability was determined using the Alamar Blue assay. The
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increase in FANCD2 protein levels was only observed in BO-
1509–treated H460 and PC9/gef B4 cells. These results revealed
that the modulation of levels of several repair proteins in response
to DNA damage varied in different lung cancer cell lines treated
with BO-1509.

Suppression of BO-1509–Induced DNA Repair Proteins
by LY294002

PI3K signaling is one of the upstream regulatory pathways of the
DDR [45]. Because BO-1509 treatment caused DNA damage and
activated various repair molecules in different cells, we conducted
experiments to determine whether the BO-1509–activated DNA
repair components could be suppressed by the PI3K inhibitor
LY294002 [46]. As shown in Figure 2, BO-1509 treatment resulted
in an increase in pNbs1 and Rad51 that was suppressed by LY294002
at 40 μM in H460, A549, PC9, and PC9/gef B4 cells. In H460 cells,
the BO-1509–induced up-regulation of Mre11 and FANCD2 was
also suppressed by LY294002. Consistent with the results shown in
Figure 1, there was no significant change in the protein levels of
Rad50. By treatment of H460 cells with BO-1509, we also observed
significantly increased Rad51 foci in nuclei by immunofluorescence
staining (Figure 3A), implying that Rad51 was translocated into
nuclei in response to BO-1509–induced DNA injury. However,
LY294002 significantly reduced the Rad51 foci in the nucleus in BO-
1509–treated H460 cells (Figure 3A). Similar findings were
demonstrated in CL1-5 cells (Figure W2). Furthermore, we isolated
nuclei and performed Western blot analysis to confirm the inhibitory
effects of LY294002 on Rad51 translocation into nuclei. As shown in
Figure 3B, Rad51 was remarkably increased in nuclear fraction of cells
treated with BO-1509 alone, whereas BO-1509–enhanced Rad51 in
nuclei was significantly suppressed by LY294002. These results
indicate that inhibition of PI3K signaling by LY294002 counteracted
the BO-1509–induced activation of DNA DSB repair machinery in
various cell types.

Synergism between BO-1509 and the PI3 Kinase
Inhibitor LY294002

While we observed a suppression of the DDR by the PI3K
inhibitor LY294002, we next conducted experiments to monitor the
cytotoxic effects of the combination treatment of BO-1509 and
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LY294002 in H460, A549, PC9, and PC9/gef B4 cells. These studies
generated IC50 values of LY294002 for each of the following cell
lines: H460 (111.2 ± 15.1 μM), A549 (28.4 ± 4.3 μM), PC9 (56.9 ±
1.1 μM), and PC9/gef B4 (31.3 ± 3.8 μM). As shown in Figure 4, the
CIs were below 1 for all of the cell lines that were examined,
indicating that the synergistic killing activity of the combination
treatment of BO-1509 with LY294002 was cell line independent.
Furthermore, we observed a significant increase in the number of
apoptotic cells (Annexin V–positive population in the bottom and
top right quadrants of the plot) in H460 cells co-treated with BO-
1509 and LY294002 for 72 hours in comparison to cells treated
with the individual drugs alone (Figure 5A). However, among
apoptotic executive proteins, such as caspase-3, caspase-7, and
PARP, we only observed significant increase of cleaved caspase-3 in
H460 cells co-treated with BO-1509 and LY294002 compared to
those treated with BO-1509 alone. Similar results using PC9 cells
were shown in Figure W3. Therefore, we may infer that com-
bination treatment with BO-1509 and LY294002 also triggers other
death mechanisms. These results therefore indicate that inhibition of
PI3K signaling enhanced the cytotoxic effect of BO-1509 in lung
cancer cell lines.
Accumulation of DNA Damage by LY294002 in
BO-1509–Treated Cells

The level of γH2AX is a well-documented hallmark of DNA
double-strand breakage [47]. Using γH2AX as a biomarker, we used
immunofluorescence staining and Western blot analysis to determine
the effect of LY294002 on the repair of BO-1509–induced DNA
damage. Because BO-1509 is a direct DNA-damaging agent, we
therefore treated H460, PC9, and PC9/gef B4 cells for 2 hours and
then incubated them with or without LY294002. In this study,
γH2AX foci were used as an indicator of DNA damage. γH2AX-
positive cells, which were designated as having more than five γH2AX
foci per nucleus, were remarkably increased in H460, PC9, and PC9/
gef B4 cells after treatment with BO-1509 for 2 hours followed by
incubation in drug-free medium for 24 hours (Figure 6, A–C).
However, the frequency of γH2AX-positive cells declined when these
cells were incubated with drug-free medium for longer periods of up
to 72 hours. γH2AX-positive cells at 72 hours were not apparently
reduced in cells treated with both BO-1509 and LY294002 but
significantly higher than those without LY294002 treatment
(Figure 6, A–C). These results indicate that LY294002 suppresses
the repair of BO-1509–induced DNA damage. Western blot assays
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consistently showed elevated protein levels of γH2AX in H460, PC9,
and PC9/gef B4 cells treated with the combination of BO-1509 and
LY294002 for 72 hours in comparison to cells treated with BO-1509
alone (Figure 6, D–F). These results support the idea that LY294002
interferes with DNA repair and increases DSB damage in BO-1509–
treated lung cancer cells.

Increased Antitumor Activity of BO-1509 by LY294002
in Mice Xenografted with Lung Cancer Cells

Because we observed a synergistic cytotoxicity of BO-1509 with
LY294002 in H460, A549, PC9, and PC9/gef B4 cells in vitro, we
further investigated the therapeutic efficacy of the combination
treatment of BO-1509 and LY294002 in mouse xenograft models.
When the subcutaneously implanted tumor size reached approxi-
mately 100 mm3 for H460 cells, 70 mm3 for PC9 and PC9/gef B4
cells, and 200 mm3 for A549 xenografts, mice were treated with BO-
1509 (5 mg/kg i.v., every other day times five), LY294004 (40 mg/kg
i.p., 10 times daily), or a combination of both compounds [BO-1509
(5 mg/kg i.v., every other day times five) + LY294004 (40 mg/kg i.p.,
10 times daily)]. As shown in Figure 7A, BO-1509 alone significantly
suppressed the tumor burden by approximately 50% to 70%, whereas
the effects of LY294002 alone on the suppression of the tumor
burden were limited, except in PC9/gef B4–xenografted mice where
an approximate 40% suppression was observed. In contrast, when
BO-1509 was combined with LY294002, tumor growth was further
suppressed in all of the tumor mouse xenografts with the exception of
the PC9-xenografted mice (Figure 7A). Although PC9 cells were the
most BO-1509–resistant cells in the in vitro cytotoxicity assay system,
they showed the greatest suppression by BO-1509 in the mouse
xenograft model.
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Figure 7. Therapeutic effects of BO-1509 and LY294002, either alone or in combination, in various lung cancer cells. (A) Suppression of
tumor growth. Nude mice bearing H460, A549, PC9, or PC9/gef B4 cells were treated with vehicle, BO-1509 (5 mg/kg i.v., every other day
times five), LY294002 (40 mg/kg i.p., 10 times daily), or the combination of BO-1509 and LY294002. The tumor size was determined as
described in the Materials and Methods section. Student's t-test was used to determine the significance of the differences between the
drug-treated group and vehicle group. *P b .05, **P b .01, and ***P b .001. (B) Immunohistochemical staining of cleaved caspase-3. H460
tumors 24 hours after the last treatment protocol were harvested, sectioned, and stained with an antibody against cleaved caspase-3.
(C) Lung tissue section. Twenty-nine days after transplantation, lung tissues from mice exposed or not to the drug treatments were
harvested and examined by staining with hematoxylin and eosin (H&E).
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On the 10th day of treatment (24 hours after the final
treatment), the drug-treated H460-xenografted tumors were
harvested and subjected to histopathologic examination. Using
an antibody targeting the cleaved form of caspase-3, we observed a
remarkable increase in active caspase-3 in tumor tissue harvested
from mice treated with a combination of BO-1509 and
LY294002 (Figure 7B). In contrast, little cleavage of caspase-3
was detected in tumor sections from mice treated with either BO-
1509 or LY294002 alone. We also performed histopathologic
examinations of various organs harvested from H460-xenografted
mice on the 29th day. Significant metastasis was observed in the
lungs of vehicle control (80%)–treated mice and mice treated with
BO-1509 (67%) or LY294002 (80%) alone. In contrast, no
metastatic foci were observed in the lungs of mice co-treated with
BO-1509 and LY294002 (Figure 7C). We followed the combination-
treated mice for 63 days and did not observe metastasis in
the lungs.

Limited Adverse Effects of the Combination Treatment
of BO-1509 and LY294002 in Xenografted Mice

Severe body weight reduction was not observed in any of the
treatment groups (Figure W4). To determine whether our treatment
regimen causes severe adverse effects, we performed histopathologic
examinations of various organs harvested from H460-xenografted
mice treated with BO-1509, LY294002, or both BO-1509 and
LY294002 on the 10th day of treatment. No major pathologic or



Table 1. Blood Profiles on the 10th Day in BALB/c Nude Mice Treated with BO-1509, LY294002, or Both BO-1509 and LY294002.

Blood Parameters Unit Control LY294002 BO-1509 BO-1509 + LY294002

WBCs 103/μl 3.06 ± 0.20 2.37 ± 0.20 1.80 ± 0.10 2.13 ± 0.60
Neutrophils 103/μl 1.16 ± 0.10 1.27 ± 0.10 1.06 ± 0.10 1.48 ± 0.40
Lymphocytes 103/μl 1.55 ± 0.20 0.81 ± 0.10 0.44 ± 0.10 0.32 ± 0.10
Monocytes 103/μl 0.18 ± 0.01 0.15 ± 0.05 0.22 ± 0.04 0.25 ± 0.06
Eosinophils 103/μl 0.05 ± 0.01 0.06 ± 0.01 0.02 ± 0.01 0.03 ± 0.00
Basophils 103/μl 0.12 ± 0.02 0.07 ± 0.00 0.03 ± 0.00 0.03 ± 0.00
RBCs 106/μl 10.32 ± 0.30 10.53 ±0.10 8.22 ± 0.30 7.96 ± 0.20
Hemoglobin g/dl 15.85 ± 0.70 16.25 ± 0.10 12.73 ± 0.50 12.40 ± 0.10
Hematocrit % 54.13 ± 1.60 54.1 ± 0.70 43.14 ± 1.10 41.50 ± 0.50
Mean cell volume Fl 52.46 ± 0.30 51.5 ± 0.30 52.70 ± 0.50 52.20 ± 0.70
Mean cell hemoglobin Pg 15.36 ± 0.40 15.40 ± 0.09 15.40 ± 0.16 15.63 ± 0.30
Mean corpuscular hemoglobin concentration g/dl 29.30 ± 0.50 29.90 ± 0.30 29.30 ± 0.40 29.93 ± 0.44
RBC distribution width % 20.32 ± 0.40 20.90 ± 1.00 18.46 ± 0.80 18.83 ± 0.70
Platelets 103/μl 847 ± 79 783 ± 86 1227 ± 298 1242 ± 151

Various blood parameters were measured in the blood of BALB/c nude mice on the second day after the end of treatment. Data indicate the means ± SD.
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inflammatory changes were observed in the heart, kidney, lung, liver,
or spleen by either macroscopic or microscopic examination (Figure
W5). We also determined the complete blood profile and analyzed
specific blood enzymes to determine whether any toxicity was present.
As summarized in Table 1, mice treated with BO-1509, LY294002,
or both BO-1509 and LY294002 showed leukocytopenia to varying
degrees. Treatment of mice with LY294002 did not have any
deleterious effects on the hematopoietic system because the red blood
cell (RBC) count and hemoglobin concentration showed minimal
changes. In contrast, the RBC count and hemoglobin concentration
decreased by approximately 20% in mice treated with BO-1509 alone
or with the combination of BO-1509 and LY294002.

Although thrombocytopenia is one of the most common toxic
effects of DNA-alkylating agents, BO-1509 alone or in combination
with LY294002 did not show thrombocytopenia; rather, a slight
increase was observed in the number of platelets. However, mice
treated with LY294002 showed slight thrombocytopenia. We also
measured the levels of the biochemical enzymes alanine aminotrans-
ferase, aspartate aminotransferase (AST), lactate dehydrogenase
(LDH), glucose, and blood urea nitrogen in mice treated with
vehicle, BO-1509, LY294002, and the combination of BO-1509 and
LY294002. As shown in Table 2, AST levels were slightly increased in
mice treated with LY294002, whereas LDH levels were increased in
the sera of the combination-treated mice. These results indicate
limited toxicity for BO-1509 applied alone and in combination with
LY294002 in mice.
Discussion
Derivatives of 3a-aza-cyclopenta[a]indenes are synthetic bifunc-
tional alkylating agents that induce ICLs in DNA and are
Table 2. Blood Enzymes on the 10th Day in BALB/c Nude Mice Treated with BO-1509
LY294002, or the Combination of BO-1509 and LY294002.

Enzyme Unit Control LY294002 BO-1509 BO-1509 + LY294002

AST U/l 60.0 ± 10.0 75.6 ± 17.8 60.0 ± 6.3 67.3 ± 2.5
Alanine

aminotransferase
U/l 33 ± 2.0 31.6 ± 2.5 28.6 ± 1.0 27.3 ± 6.3

LDH U/l 381 ± 50 463 ± 117 473 ± 8 695 ± 155
Blood urea

nitrogen
mg/dl 23.2 ± 0.2 25.0 ± 5.8 18.6 ± 1.3 17.7 ± 3.1

Glucose (GLU-P) mg/dl 160 ± 1 172 ± 23 145 ± 19 132 ± 5

Various blood enzyme activities were measured in the blood of BALB/c nude mice on the second da
after the end of treatment. Data indicate the means ± SD.
,

y

potent anticancer agents [30,31]. ICLs may cause replication-
dependent DSB formation in DNA [4,48]. Cells undergo
apoptosis if DNA DSBs are not repaired [4]. BO-1509 was
synthesized through lead optimization of BO-1012, which was
previously reported to have potent antitumor activity both in vitro
and in tumor xenograft models. In the present study, we found
that BO-1509 was more cytotoxic to H460 cells than BO-1012
(IC50 = 63.8 μM) [28].
We also demonstrated that treatment of various human lung

cancer cells with BO-1509 resulted in an increase in γH2AX protein
(a well-established marker of DNA DSB) levels together with nuclear
foci formation. Multiple repair pathways, including HR and NHEJ
[4], are activated in response to the formation of DSB. In the four
lung cancer cell lines examined, BO-1509 treatment activated Nbs1
and enhanced the expression and nuclear translocation of Rad51.
However, the response of other repair components, such as Mre11
and FANCD2, to BO-1509–induced damage was different in
different cell lines. The MRN complex functions as a DNA damage
sensor [49], where FANCD2, a member of Fanconi anemia family that
is an inherited genomic instability disorder, coordinates HR, nucleotide
excision repair, and mutagenic translesion synthesis [50,51]. However,
it is unclear why they have differential responses to DNA damage in
different cell lines and it warrants our further investigation. LY294002,
an inhibitor of PI3K signaling, significantly suppressed BO-1509–
activated DNA repair protein levels and synergistically enhanced the
cytotoxicity of BO-1509 in all of the cell lines that were studied.
Inhibition of DNA repair pathway regulatory signaling is therefore a
rational strategy for cancer treatment.

It has been reported that PI3K mediates the activation of ATM to
facilitate DNA repair when DNA damage is induced by ionizing
radiation [52]. LY294002 has been evaluated in various cell lines for
its ability to inhibit all major subclasses of PI3K and PI3K-like kinases
(ATM, ataxia telangiectasia and rad3 related, and DNA-dependent
protein kinase) [27]. Furthermore, LY294002 has been used either
alone or in combination with different chemotherapeutic drugs in
in vitro and in preclinical studies [21,23,26,53]. These studies have
shown that LY294002 can overcome the problem of drug resistance
[53] and increase the efficacy of individual drugs in mouse tumor
xenograft models [25,26]. Our present study has shown that
LY294002 is able to enhance the killing effects of BO-1509. We
also demonstrated that LY294002 mediates its effects through
suppression of Nbs1 and Rad51, which are involved in the HR repair
pathway [54-57]. In addition, Nbs1 is not only a core member of the
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MRN complex that tethers DSB ends and recruits other proteins to
conduct HR and NHEJ repair [7,58,59] but also plays specific roles
in the activation of ATM and its downstream targets to trigger a
second wave of repair [60].
In the present animal study, LY294002 alone did not induce any

significant tumor reduction, with the exception of the PC9/gef B4
xenografts. In contrast, LY294002 enhanced the antitumor activity of
BO-1509 in various lung cancer xenografts. The main goals of
synergistic therapeutics are to decrease the dose of the individual
drugs, reduce toxicity, minimize or delay the induction of drug
resistance, and overcome the problem of drug resistance [61], and
combination drug therapies have frequently been used for the
treatment of a variety of cancers. Hematopoietic toxicity is major side
effect of DNA-alkylating agents [62,63]. Similar to other alkylating
agents, the treatment of mice with BO-1509 alone or in combination
with LY294002 resulted in a moderate suppression of bone marrow–
derived cells (i.e., a decrease in white blood cells (WBCs), RBCs, and
hemoglobin). Although most alkylating agents cause a decrease in
platelet count [62,63] as one of their side effects, BO-1509 did not
suppress the platelet count. Furthermore, no major pathologic
changes were observed in mice treated with the drugs alone or in
combination. The combination of BO-1509 and LY294002
suppressed tumor metastasis, which is a crucial determinant of
chemotherapy failure. Because LY294002 is not suitable for clinical
use, the therapeutic efficacy of BO-1509 combined with other
clinically approved PI3K inhibitors warrants further investigation.
Lung cancer is a major cause of cancer death and accounts for

approximately 13% of all cancer deaths around the world because of
its high incidence and mortality rates [64]. NSCLC contributes to
approximately 85% of all lung cancers [38,65]. DNA-damaging
drugs such as cisplatin, carboplatin, mitomycin C, and paclitaxel are
typically the first lines of treatment for NSCLC, either alone or in
combination [38,66]. However, less than 30% of patients respond to
platinum-based chemotherapy. The main reason for the nonrespon-
siveness of chemotherapeutic agents in NSCLC is the intrinsic
resistance to chemotherapy and radiation therapy [31]. Currently,
TKIs such as gefitinib and erlotinib work well in patients who possess
an EGFR deletion mutation in the Leu-Arg-Glu-Ala motif in exon 19
or a point mutation in exon 21 [67]. However, progression-free
survival is only approximately 12 months, and acquired resistance
frequently develops in the treated patients [68,69]. In the present
study, the combination of BO-1509 and LY294002 significantly
suppressed the growth of gefitinib-resistant PC9/gef B4 lung cancer
cells and blocked tumor metastasis. These results suggest that this
alternative therapeutic strategy may have the potential to serve as a
third-line regimen against lung cancer.
In summary, our present study has shown that the combination of

a DNA ICL agent with a PI3K inhibitor that inhibits DNA repair
may be a feasible strategy to treat lung cancer, even for patients with
acquired resistance to targeted therapy.
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Table W1. The Characteristics of NSCLC Lines Used in This Study

Cell Line EGFR TP53 Kras EGFR-TKI Response
H460 WT WT Q61H Intrinsic resistant
A549 WT WT G12S Intrinsic resistant
CL1-5 WT R248W WT Intrinsic resistant
PC9 Exon 19 deletion WT WT Sensitive
PC9/gef B4 Exon 19 deletion WT WT Resistant (slug overexpression)
CL83 WT ND WT Intrinsic resistant
CL25 Exon 19 deletion C135Y WT Sensitive
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Figure W1. Chemical structure of BO-1509 and its activity on the induction of DNA interstrand cross-links. (A) The chemical structure of
BO-1509 derived from BO-1012. (B) The DNA cross-linking activity of BO-1509 was analyzed by alkaline agarose gel electrophoresis.
Melphalan was included for comparison. SS, single strand.
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Figure W2. Inhibition of BO-1509–mediated Rad51 foci formation in the nuclei of CL1-5 cells. H460 cells grown on chamber slides were
treated 20 μMBO-1509 for 2 hours, followed by treatment with or without 40 μMLY294002 for 24 hours. At the end of the incubation, the
cells were fixed and stained with a primary antibody against Rad51 and an Alexa Fluor 488–conjugated secondary antibody (green). Nuclei
were counterstained with DAPI (blue).
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Figure W3. Increased apoptotic cell death PC9 cells treated with the combination of BO-1509 and LY294002. (A) Flow cytometry analysis
of apoptotic cell death. PC9 cells were treated with BO-1509 (20 μM) and LY294002 (40 μM) together or alone for 48 hours. The numbers
in the right corner indicate the percentage of apoptotic cells. (B) Activation of apoptosis-executing proteins. PC9 cells were treated with
BO-1509 and LY294002 together or alone for 24 hours. The cleaved forms of caspase-3, caspase-7, and PARP were detected by Western
blot analysis. β-Actin was included as a loading control.
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FigureW4. Body weight changes in tumor-bearing mice treated with BO-1509, LY294002, or the combination of BO-1509 and LY294002.
(A) H460 cells. (B) A549 cells. (C) PC9 cells. (D) PC9/gef B4.
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Figure W5. Acute and delayed toxicity of BO-1509, LY294002, and the combination of BO-1509 and LY294002 in various organs in nude
mice. Different organs and tumors were harvested from nude mice treated with drugs on the 10th day of the experiment. Histopathologic
sections from organs were stained with H&E and scanned. Scale bar, 500 μm.
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