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A B S T R A C T   

Plasmalogens are a class of phospholipids containing vinyl ether linked aliphatic groups at the sn-1 position. 
Plasmalogens are known to contain 16- and 18-carbon aliphatic groups at the sn-1 position. Here, we reveal that 
the human neutrophil plasmenylethanolamine pool uniquely includes molecular species with very long carbon 
chain (VLC) aliphatic groups, including 20-, 22- and 24-carbon vinyl ether linked aliphatic groups at the sn-1 
position. We identified these novel VLC plasmalogen species by electrospray ionization mass spectrometry 
methods. VLC plasmalogens were only found in the neutrophil plasmenylethanolamine pool. During neutrophil 
activation, VLC plasmenylethanolamines undergo myeloperoxidase-dependent oxidation to produce VLC 2-chlor
ofatty aldehyde and its oxidation product, 2-chlorofatty acid (2-ClFA). Furthermore, plasma concentrations of 
VLC 2-ClFA are elevated in human sepsis. These studies demonstrate for the first time VLC plasmenylethanol
amine molecular species, their myeloperoxidase-mediated chlorolipid products and the presence of these 
chlorolipids in human sepsis.   

1. Introduction 

Plasmalogens are a subclass of glycerophospholipids characterized 
by a vinyl ether bond linking the aliphatic group at the sn-1 position. 
These lipids are present in cell membranes and lipid rafts of many cell 
types including neutrophils, monocytes, cardiac cells, endothelial cells, 
and smooth muscle cells [1–5]. The plasmalogens, plasmenylethanol
amine and plasmenylcholine, are predominantly present in ethanol
amine (PE) and choline (PC) glycerophospholipid pools, respectively. 

The sn-1 position of plasmalogens have been characterized to contain 
C16:0 (C indicates carbon and XX:Y indicates the # of carbons: # of 
double bonds), C18:0, and C18:1 aliphatic groups. Additionally, the 
LIPIDMAPS consortium include C20:0 plasmalogens in their mass 
spectral library and they have been shown in human red blood cells [6]. 

During neutrophil activation, myeloperoxidase (MPO)-derived HOCl 
targets the sn-1 vinyl ether bond of plasmalogens resulting in 2-chloro
fatty aldehyde (2-ClFALD) release [7]. 2-ClFALDs are readily oxidized to 
2-chlorofatty acids (2-ClFA), which are stable metabolites. The most 
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common 2-ClFALDs and 2-ClFAs identified are C16:0 and C18:0 species 
and these chlorinated lipids have been associated with inflammatory 
conditions such as endotoxemia, atherosclerosis, and myocardial 
infarction [8–10]. Moreover, increased plasma 2-ClFA levels are asso
ciated with acute respiratory distress syndrome and 30-day mortality in 
sepsis patients [11]. Chlorinated lipids elicit diverse cellular effects 
including the induction of neutrophil chemotaxis and neutrophil 
extracellular trap formation [12,13], endothelial dysfunction [14,15], 
and activation of monocyte apoptosis [16]. Additionally, these lipids 
have antibacterial properties against E.coli [17]. Since chlorolipids and 
their precursor plasmalogens are important in the milieu of oxidative 
stress and sepsis, the present study was designed to determine the pos
sibility of novel molecular species of chlorolipids and their precursor 
plasmalogens. 

2. Materials and Methods 

2.1. Neutrophil and monocyte preparations 

Human neutrophils were isolated from healthy donors as previously 
described [17] and approved by St. Louis University IRB protocol 9952. 
Human monocytes, purchased through Gulf Coast Regional Blood Cen
ter, were isolated as previously described [18]. 

2.2. Human plasma specimens and analysis 

Sepsis plasma samples were obtained from subjects admitted to the 
intensive care unit (ICU) with suspected infection and acute organ 
dysfunction (sepsis) on the day of ICU admission (day 0) and days 2 and 
7 if subjects remained in the ICU. The cohort has been previously 
described [19]. The cohort study is approved by the University of 
Pennsylvania institutional review board (IRB protocol #808542) and all 
subjects or their proxies provided informed consent to participate. 
Control healthy plasma samples were obtained at Saint Louis University 
under IRB protocol 26646. Plasma concentrations were compared be
tween healthy control subjects and sepsis subjects by Wilcoxon rank sum 
test. For visualization, we display each VLC species by quartile of 16:0 
2-ClFA. 

2.3. Lipid analysis 

Neutrophil lipids were extracted by modified Bligh Dyer extraction 
using lipid class internal standards as previously described [20–22]. 
Lipid-specific mass spectrometry scan parameters are included in 
Table S1. 2-Chloro-[d4]-hexadecanal and 2-chloro-[d4]-hexadecanoic 
acid were used as internal standards for 2-ClFALD and 2-ClFA mea
surements, respectively [13,23]. 2-ClFALD, dried lipid extracts were 
incubated with Amplifex Keto reagent (SCIEX; catalog no. 4465962) as 
described with the reagent and quantified by LC-MS. 2-ClFA species in 
the lipid extracts and plasma were measured as previously described 
[11,24]. 

Lipidomics were performed using parallel reaction monitoring with a 
Q Exactive mass spectrometer equipped with a Vanquish UHPLC System 
(Thermo Scientific). Lipids were separated on an Accucore™ C18 col
umn 2.1 × 150 mm (Thermo Scientific) with mobile phase A comprised 
of 60% acetonitrile, 40% water, 10 mM ammonium formate, and 0.1% 
formic acid and mobile phase B comprised of 90% isopropanol, 10% 
acetonitrile with 2 mM ammonium formate, and 0.02% formic acid. 
Initial conditions were 30% B with a discontinuous gradient to 100% B 
at a flow rate of 0.260 ml/min. Shotgun lipidomics were performed on 
both the total lipid extract to quantitate sphingomyelin, ceramide, and 
PC and fluorenylmethoxycarbonyl-Cl derivatized PE species, as 
described previously [25]. Samples were analyzed using ESI/MS/MS 
(TSQ Quantum Ultra, Thermo Scientific). FA from human neutrophil 
lipid extracts were determined as 2,3,4,5,6-pentafluorobenzoyl ester 
derivatives as previously described [24,26]. Fatty alcohol 

concentrations from neutrophil lipid extracts were determined via 
derivatization with 2,3,4,5,6-pentafluorobenzoyl chloride, as previously 
described [27]. 

3. Results and discussion 

3.1. Identification of VLC plasmalogens 

We investigated the presence of VLC plasmalogens in neutrophil 
lipid extracts using high resolution MS and shotgun lipidomics. Novel 
VLC molecular species of plasmenylethanolamine were detected using 
both lipid mass spectrometry methods (Fig. 1). High-resolution MS 
chromatograms for PE P-24:1/18:1 (P indicates plasmalogen and XX:Y/ 
XX:Y indicate sn-1/sn-2 constituents), PE P-24:1/18:2, PE P-22:1/18:1, 
and PE P-22:1/18:2 species (Fig. 1A) and their representative fragments 
(Fig. 1C) confirm the presence of these VLC plasmenylethanolamine 
molecular species. The fragment ion for glycerol phosphoethanolamine 
(m/z 196) and the ethanolamine phosphate ion (m/z 140) confirm they 
are PE species, while loss of the sn-2 acyl chain ketene from [M − H]- (m/ 
z 518 for 22:1 species and m/z 546 for 24:1 species), neutral loss of the 
sn-2 fatty acid group from [M − H]- (m/z 500 for 22:1 species and m/z 
528 for 24:1 species), and the fatty acid ion confirm the respective sn-1 
and sn-2 composition. Plasmalogens are acid-labile [28,29]. Chro
matographic peaks from the novel molecular species of plasmenyle
thanolamines were not observed following HCl vapor exposure (Fig. 1B). 
Diacyl PE (18:0/20:4) was not altered by acid treatment. Additionally, 
thin layer chromatography (TLC)-purified neutrophil PE lipids and 
whole lipid extracts of neutrophils were acid treated and 
plasmalogen-derived FALD species were detected by mass spectrometry 
following Amplifex derivatization (Fig. 1D). TLC-purified plasmenyle
thanolamines consist of 6.8% and 6.6% 22:1 and 24:1 FALD, respec
tively. Interestingly, the percentages of FALD species liberated from 
TLC-purified plasmenylethanolamine and neutrophil whole lipid ex
tracts were nearly identical, suggesting that the majority of VLC plas
malogens exist in the plasmenylethanolamine pool. Shotgun lipidomics 
was also employed as an alternative strategy to identify these novel 
plasmenylethanolamine molecular species. The spectra with respective 
m/z for fluorenylmethoxycarbonyl-derived plasmenylethanolamines 
before and after acid treatment are shown in Fig. 1E. Acid treatment led 
to the selective disappearance of plasmenylethanolamine molecular 
species. Plasmenylethanolamine molecular species in neutrophil lipid 
extracts were quantified using liquid chromatography with Q-Exactive 
MS/MS detection (Table 1). Similar quantitative results for these plas
menylethanolamine molecular species were determined using shotgun 
lipidomics (Table S2). 

Previous studies have shown that 66% of human neutrophil phos
pholipids consist of plasmenylethanolamines while only 9% consist of 
plasmenylcholines [30]. We did not detect VLC plasmenylcholine mo
lecular species in human neutrophils. Our limit of detection for plas
menylethanolamine is ~1 ng for each molecular species containing a 
24:1 VLC as the vinyl ether group (Fig. S1). Under these conditions we 
did not detect VLC plasmenylethanolamine molecular species in any 
other tissues and cells tested including monocytes, endothelial cells, 
epithelial cells, and heart tissue. This finding may indicate distinct 
functions of VLC plasmenylethanolamines in neutrophils. It has long 
been known that plasmalogens have structural roles in membrane 
integrity [31–33]; therefore, it is possible that VLC plasmenylethanol
amines may provide additional membrane stabilizing or destabilizing 
properties during phagocytosis that require further investigation. Lodhi 
et al. demonstrated that the inhibition of ether lipid synthesis resulted in 
neutrophil apoptosis and endoplasmic reticulum stress [34]. Moreover, 
blocking ether lipid synthesis in peroxisomes led to neutropenia in mice 
[34]. Thus, the presence of these VLC plasmenylethanolamines may also 
be associated with the viability of the neutrophils. 

We also quantified ceramides, sphingomyelin, fatty acid, and fatty 
alcohols to determine the abundance of VLC aliphatic groups in the 
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neutrophils and monocyte lipidomes (Table S3). 22:1 and 24:1 con
taining FA were found in low abundance compared to 16:0 and 18:0 FA. 
Neutrophil PE and PC diacyl molecular species containing 22:1 and 24:1 
aliphatic groups were found at lower concentrations compared to levels 
of VLC plasmenylethanolamines (Table S3 and Table 1). 24:1 containing 
sphingomyelin and ceramide molecular species were detected in both 
monocytes and neutrophils (Table S3). 

3.2. VLC chlorolipid production in activated neutrophils 

We have previously shown that the vinyl ether bonds of plasmalogen 
species are targeted by MPO-derived HOCl to produce chlorolipids [7]. 
Neutrophils stimulated with PMA produce 16:0 and 18:0 2-ClFALD and 
2-ClFA [8,13]. We hypothesized that the novel VLC plasmenylethanol
amine molecular species may also get oxidized to produce VLC 
2-ClFALD and 2-ClFA during neutrophil activation. Indeed, 
PMA-activated neutrophils showed significant increases in 22:1 
2-ClFALD, 24:1 2-ClFALD, 22:1 2-ClFA and 24:1 2-ClFA (Fig. 2A and B). 

Additionally, both 2-ClFALD and 2-ClFA production were reduced by 
MPO inhibition by 3-amino-1,2,4-triazole. This result demonstrates that 
novel VLC chlorolipid production is MPO dependent. We examined 
plasmenylethanolamine molecular species levels following PMA acti
vation of neutrophils. Concomitant with the appearance of VLC chlor
olipids during neutrophil activation were increases in LPE molecular 
species containing predominantly C18:1, C18:2 and C20:4 fatty acids 
suggesting they are derived from VLC plasmenylethanolamine molecu
lar species. Lysoplasmenylethanolamine molecular species were not 
detectable. 

Fig. 1. Identification of novel very long chain plasmenylethanolamine molecular species. Lipids were extracted from 2 x 106 neutrophils and analyzed for 
plasmenylethanolamine molecular species by PRM using QE MS/MS as described in “Materials and Methods”. Chromatograms of selected plasmenylethanolamine 
molecular species and respective MS/MS spectra of each plasmenylethanolamine is shown in A and C. B shows the chromatographs of the same sample as A following 
treatment with HCl vapors (90 s). D) TLC-purified neutrophil ethanolamine glycerophospholipids and whole lipid extracts of neutrophils from 3 different donors 
(red) were exposed to concentrated HCl vapors for 90 s. Amplifex derivatized FALD (the product of plasmalogen treatment with HCl vapors) was determined using 
PRM QE MS/MS. Percentage of each FALD molecular species is calculated compared to total FALD measured. Numbers within brackets indicate the % of FALD 
molecular species identified in TLC-purified ethanolamine glycerophospholipids. (E) Neutrophil ethanolamine glycerophospholipids were derivatized with 
fluorenylmethoxycarbonyl-Cl and subjected to shotgun lipidomics. Plasmenylethanolamine molecular species were identified by exposing lipid extracts to HCl vapor 
for 90 s. The PE molecular species with their respective m/z are indicated in the table. The x-axis is m/z. (For interpretation of the references to colour in this figure 
legend, the reader is referred to the Web version of this article.) 

Table 1 
Quantification of plasmalogens in neutrophils. Plasmenyletha
nolamine molecular species in human neutrophil lipid pool were 
determined by QE MS/MS using PRM as described in “Materials 
and Methods”. ND indicates not detected. Values are mean ±
SEM for n=9.  

Molecular Species ng/106 neutrophils 

PE(P-16:0/18:1) 291.59 ± 10.24 
PE(P-16:0/18:2) 97.84 ± 4.34 
PE(P-16:0/20:4) 240.29 ± 9.64 
PE(P-18:0/18:1) 289.27 ± 9.59 
PE(P-18:0/18:2) 316.24 ± 13.53 
PE(P-18:0/20:4) 598.81 ± 24.37 
PE(P-18:1/18:1) 315.06 ± 11.41 
PE(P-18:1/18:2) 84.45 ± 6.54 
PE(P-18:1/20:4) 128.58 ± 6.78 
PE(P-20:0/18:1) 37.39 ± 3.74 
PE(P-20:0/18:2) 42.47 ± 3.49 
PE(P-20:0/20:4) 78.14 ± 3.51 
PE(P-22:0/18:1) 8.63 ± 1.83 
PE(P-22:0/18:2) ND 
PE(P-22:1/18:1) 38.02 ± 1.43 
PE(P-22:1/18:2) 57.41 ± 1.43 
PE(P-22:1/20:4) 64.88 ± 3.35 
PE(P-24:1/18:1) 42.78 ± 4.92 
PE(P-24:1/18:2) 64.73 ± 3.54 
PE(P-24:1/20:4) 72.24 ± 4.61  
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3.3. Elevation of plasma VLC 2-ClFA in human sepsis 

Human sepsis patients have previously been shown to have elevated 
plasma 16:0 and 18:0 2-ClFA concentrations compared to healthy, non- 
septic controls. Moreover, 2-ClFA levels were associated with acute 
respiratory distress syndrome of sepsis patients [11]. Accordingly, we 
examined the novel VLC 2-ClFA species in human sepsis plasma. Plasma 

concentrations of 24:1 2-ClFA, 20:1 2-ClFA, 20:0 2-ClFA and 22:1 
2-ClFA were significantly elevated in sepsis patient plasma compared to 
healthy controls (Fig. 3). For visualization, we display the sepsis subjects 
by quartile of measured plasma 16:0 2-ClFA to emphasize the hetero
geneity among the sepsis population. Between 21 and 26% of the sepsis 
population had detectable VLC species. Statistical comparisons are be
tween the healthy controls and all four quartiles as an aggregate by 

Fig. 2. MPO-dependent chlorolipid production in PMA-activated neutrophils. 2 x 106/ml neutrophils were treated with (red) or without 200 nM PMA (black) 
for 30 min at 37 ◦C. Neutrophils were also treated with 10 mM 3-amino-1,2,4-triazole for 5 min prior to treatments with 200 nM PMA (green). 2-ClFALD (A), 2-ClFA 
(B) and LPE (C) molecular species were measured as described in “Materials and Methods”. ****p<0.0001 for comparisons between neutrophils treated with PMA to 
controls; **, ***, and ****p<0.01, 0.001, and 0.0001, respectively for comparisons between PMA treated and PMA treated with 3-amino-1,2,4-triazole pretreatment. 
Statistics were performed using ANOVA with Tukey multiple comparison test, error bars for ± SD, Data represents n=3 for A & B, and n=4 for C. (For interpretation 
of the references to colour in this figure legend, the reader is referred to the Web version of this article.) 

Fig. 3. VLC 2-ClFA in human sepsis. 2-ClFAs were analyzed from plasma of healthy controls (n=31) and septic patients (n=371) by LC/MS as described in 
“Material and Methods”. For sepsis plasma, quartiles were determined by 2-ClPA levels with Q1 (0-0.088 nM), Q2 (0.088-0.272 nM), Q3 (0.275-0.745 nM) and Q4 
(0.763-6.297 nM). p values for comparisons between healthy control and sepsis levels by 2-sample Wilcoxon rank-sum Mann-Whitney test. 
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Wilcoxon rank sum test. 
2-ClFALD and 2-ClFA have been shown to induce multiple effects on 

cells such as endothelial dysfunction, monocyte apoptosis, neutrophil 
chemotaxis, and NETosis [8,14,16]. Most of these effects are deleterious 
to host cells. However, they may also serve as antibacterial compounds, 
which is beneficial during infection [17]. We speculate that VLC 
2-ClFALD and 2-ClFA species may also cause cellular effects that need 
further investigation. Furthermore, plasma VLC 2-ClFA levels in sepsis 
may associate with specific outcomes during sepsis compared to long 
chain 2-ClFA molecular species, which may be attributed to their pre
cursors being specifically localized to the neutrophils. 

4. Conclusions 

We have discovered VLC plasmenylethanolamine molecular species 
with C22:1 and C24:1 at the sn-1 position. They are uniquely found in 
neutrophils. These VLC plasmenylethanolamine molecular species un
dergo MPO-dependent oxidation to produce VLC chlorolipids, which are 
significantly elevated in human sepsis patients. These observations 
warrant further study of VLC plasmenylethanolamine biosynthesis, their 
specific roles in neutrophils and the clinical importance of VLC chlor
olipids in inflammation and sepsis. 
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