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Abstract

Purpose: We introduce and evaluate deep learning methods for weakly supervised segmentation
of tumor lesions in whole-body fluorodeoxyglucose-positron emission tomography (FDG-PET)
based solely on binary global labels (“tumor” versus “no tumor”).

Approach: We propose a three-step approach based on (i) a deep learning framework for image
classification, (ii) subsequent generation of class activation maps (CAMs) using different
CAM methods (CAM, GradCAM, GradCAM++, ScoreCAM), and (iii) final tumor segmenta-
tion based on the aforementioned CAMs. A VGG-based classification neural network was
trained to distinguish between PET image slices with and without FDG-avid tumor lesions.
Subsequently, the CAMs of this network were used to identify the tumor regions within images.
This proposed framework was applied to FDG-PET/CT data of 453 oncological patients with
available manually generated ground-truth segmentations. Quantitative segmentation perfor-
mance was assessed for the different CAM approaches and compared with the manual ground
truth segmentation and with supervised segmentation methods. In addition, further biomarkers
(MTV and TLG) were extracted from the segmentation masks.

Results: A weakly supervised segmentation of tumor lesions was feasible with satisfactory per-
formance [best median Dice score 0.47, interquartile range (IQR) 0.35] compared with a fully
supervised U-Net model (median Dice score 0.72, IQR 0.36) and a simple threshold based seg-
mentation (Dice score 0.29, IQR 0.28). CAM, GradCAM++, and ScoreCAM yielded similar
results. However, GradCAM led to inferior results (median Dice score: 0.12, IQR 0.21) and
was likely to ignore multiple instances within a given slice. CAM, GradCAM++, and
ScoreCAM yielded accurate estimates of metabolic tumor volume (MTV) and tumor lesion gly-
colysis. Again, worse results were observed for GradCAM.

Conclusions: This work demonstrated the feasibility of weakly supervised segmentation of
tumor lesions and accurate estimation of derived metrics such as MTV and tumor lesion
glycolysis.
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1 Introduction

Contrast-enhanced computed tomography (CT) remains the backbone for oncological staging,
whereas 18-fluordesoxyglucose ([18F]-FDG) positron emission tomography (PET)/CT hybrid
imaging plays a central role in the detection of distant metastatic disease.1 In addition to the
detection of tumor spots, FDG-PET provides essential functional information about the tumor
metabolism.2 For instance, the maximum standardized uptake value (SUV) for FDG of primary
tumors is a prognostic biomarker for survival in non-small cell lung cancer.2 In addition to the
maximum SUV, state-of-the-art metrics for assessing tumor burden also include the metabolic
tumor volume (MTV) and total lesion glycolysis (TLG).3 Although this information is, in prin-
ciple, available in routine examinations, the evaluation can imply the manual analysis of a large
number of single lesions and thus proves to be problematic in everyday clinical practice and in
the exploration of large cohorts. Computer-aided automatic detection and segmentation of tumor
lesions is therefore of great importance in PET/CT imaging. In recent years, significant progress
has been made in the automatic analysis of medical images, mainly due to the emergence of deep
learning methods.4,5 Deep learning models have already been successfully applied for the detec-
tion and segmentation of tumor lesions.6 Established approaches are mostly based on supervised
learning schemes7 that use a large amount of manually voxel-wise annotated ground-truth
data. However, acquiring ground-truth data, in particular for many small tumor lesions, is time
consuming and requires an enormous manual labeling effort of an experienced radiologist.
Advances in machine learning are pointing to methods that allow learning with a smaller amount
of annotated training data.8 Whereas semi- and self-supervised learning try to boost performance
by utilizing unlabeled data, weakly supervised learning reduces the complexity of the label and
therefore simplifies the collection of ground-truth annotations. Following the second approach,
the location of objects in natural images can be learned to a limited extent from a weaker anno-
tation such as a classification of the imaged object of interest, instead of an actual voxel-wise
mask (i.e., the full positional information).9 Previous studies demonstrate the potential of weakly
supervised segmentation based on bounding boxes,10 scribbles,11 or image level class labels.12 In
this work, we propose a framework for weakly supervised segmentation of tumor lesions in full-
body PET/CT images of patients with cancer. Thus, only a binary slice-by-slice specification of
whether malignant tissue is present or not is used as a weak supervision signal. A convolutional
neural network (CNN) acts as a classifier. Subsequently, a threshold-based analysis of class acti-
vation maps (CAM) is utilized to generate the segmentation mask. We evaluate our proposed
approach for different CAM methods and compare its performance in predicting TLG and MTV
with supervised segmentation approaches for PET/CT images of oncological patients with lung
cancer, lymphoma, and malignant melanoma.

1.1 Related Work

The use of CAM for weakly supervised object detection and segmentation has been reported,
including in the medical imaging domain. Afshari et al. proposed a FCN architecture for PET
lesion segmentation based on bounding boxes and the unsupervised Mumford-Shah segmenta-
tion model.13 Nguyen et al.14 used GradCAM paired with a ResNet50 to segment uveal mela-
noma lesions in MRI images. Subsequently, after applying a conditional random field, they
trained a U-Net on predicted segmentation masks, which achieved Dice scores similar to the
supervised counterpart. Recently, Eyuboglu et al.15 proposed a weakly supervised method that
uses a BERT language model16 to extract regional abnormality labels from free-text radiology
reports of PET/CT examinations. Subsequently, they trained a CNN-based classifier on these
labels to automatically detect if there are abnormalities in a certain anatomical region.

2 Materials and Methods

2.1 Dataset

In this study, we included full body PET/CT scans of 453 oncological patients (195 females, 258
males) acquired between 2013 and 2016 from an ongoing PET/CT registry study in our
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hospital.17 The distribution of oncological diagnoses was as follows: 50% lung cancer, 18%
lymphoma, and 32% malignant melanoma. The median age was 64 years (19–95 years). All
examinations were performed using standardized protocols including state-of-the-art CT with
an intravenous contrast agent (Biograph mCT, Siemens Healthineers, Germany). [18F]-FDG
was applied as the PET tracer. The registry study was approved by the Ethics Committee of
the University of Tübingen, reference number 064/2013B01.

2.1.1 Pre-processing

Voxel-wise SUVs were computed from attenuation corrected PET images.18 SUV images were
pre-aligned and resampled to the resolution of the corresponding CT images by means of linear
interpolation (spatial resolution of 2 × 2 × 3 mm, in-slice shape 256 × 256). To evaluate the per-
formance of the model, a subject level train-validation-test split (60%–20%–20%) was used. All
tumor lesions were manually annotated by an experienced radiologist in a slice-by-slice manner
(Fig. 1). A slice-wise binary label, which indicates if malignant tissue is present or not, was
derived from the segmentation masks as a weak supervision signal.

2.1.2 Data description

The median tumor volume was 46.5 ml [interquartile range (IQR) 158.4 ml]. Overall, only
13.5%–14% of the training/test set image slices contained malignant tissue. As shown in
Fig. 2, the right skewed distribution of the tumor size within slices reflects a dominance of slices
with small tumor proportions.

2.2 Methods—Weakly Supervised Tumor Segmentation

First, we describe the proposed method for weakly supervised segmentation. A detailed descrip-
tion of the network architecture as well as the derivation of the utilized CAM methods is given.
Finally, we summarize the training routine, the baseline methods and the evaluation
methodology.

2.2.1 Weakly supervised segmentation

The purpose of weakly supervised segmentation is to achieve a well-performing segmentation
model without the need for manually annotated ground-truth segmentation masks. Weak labels
(e.g., class labels or bounding boxes) are typically easy to gather and correlate directly with the
segmentation mask. Our framework generates a segmentation mask prediction in three separate
steps. First, a tumor classification network is trained with the provided slice-level binary labels
(tumor/no tumor). Second, CAM methods are used to identify regions that are relevant to the
networks decision. An adaptive unsupervised threshold-based image segmentation is applied to
the region proposed by the CAM algorithm, yielding the tumor segmentation.

Fig. 1 Exemplary PET/CT slice with high SUV uptake next to the hilum of the right lung. The right
image shows the manually annotated segmentation mask as red overlay to the PET image.
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Architecture. For the slice-wise classification task, a CNN with VGG-16 base architecture19

was utilized. The weights of the network were pretrained on Imagenet.20 By removing the first
max-pooling layer of the network, the size of the final feature map was increased to 32 × 32. Pre-
processed PET and CT image slices form the two input channels of the network. The output of
the network yields the probability of the slice containing one or more FDG-avid tumor lesions.

Class activation maps. Neural networks form a class of highly non-linear functions, and
there is no general recipe for explaining the relevance of input features for the final prediction.
One common approach is to visualize the saliency of regions of the input image with respect to
the prediction of a CNN. These saliency maps are called CAM9 (Fig. 3). Four different estab-
lished methods to derive CAMs were compared in this study.

The classic CAM9 algorithm requires a specific network architecture with a single fully con-
nected layer following the final global average pooling layer of the convolutional part of the
network. The activation map M for class c is computed as the dot product between feature map
Ak with k filters of the last convolutional layer of the network and weights w for class c from the
fully connected layer:

Fig. 3 Proposed processing routine. First, a binary tumor classifier is trained in a supervised man-
ner on PET/CT data. Then a class activation map is computed based on the classifier. Finally,
threshold based segmentation is performed on the PET images within the region proposed by the
CAM.

Fig. 2 Distribution of the tumor size for slices with malignant tissue. Slices with small sized tumors
are dominating.
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EQ-TARGET;temp:intralink-;e001;116;735Mc ¼
X
k

wc
kAk: (1)

Compared with CAM, GradCAM21 shows more flexibility regarding the network architec-
ture. CAM Mc is computed by scaling corresponding feature map A of the last convolutional
layer with the gradients of prediction ŷ for class c with respect to the elements of A via
backpropagation followed by global average pooling:

EQ-TARGET;temp:intralink-;e002;116;653δc ¼ 1

N
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h

X
w
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: (2)

Subsequently, the linear combination between δc and feature map Ak is calculated to
compute Mc:

EQ-TARGET;temp:intralink-;e003;116;580Mc ¼ max

�X
k

δckA
k; 0

�
: (3)

GradCAM lacks performance if multiple instances of the same class occur within one image
as the focus on one object of class c is enough to yield the corresponding prediction.22 Often only
fragments of the object are considered as these are already sufficient for an accurate classifi-
cation. This is particularly relevant in tumor segmentation, in which multiple tumor spots
regularly appear on a single slice.

GradCAM++22 tackles this problem by weighting the non-negative gradient of the last
convolutional layer with respect to a specific class:

EQ-TARGET;temp:intralink-;e004;116;448Mc ¼
X
h

X
w

αkchw · max

�
∂ŷc
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�
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where αkchw is defined as
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with i and j indexing over the slice dimensions.
ScoreCAM,23 just like CAM, does not rely on gradients to derive a CAMM. The input image

B is perturbed with the predicted, up-sampled, and normalized feature maps A. For each of these
disturbed images, new feature maps A 0 are computed by forward passes through the network. All
A 0 are subtracted from the original feature map A of the input image B. A subsequent softmax
operation yields weights αc of the following linear combination:

EQ-TARGET;temp:intralink-;e006;116;251Mc ¼ max

�X
k

αckA
k; 0

�
: (6)

Adaptive threshold. By applying a CAM-method-specific CAM-threshold tm to the
CAMs, a binary regional candidate mask for the tumor area is derived. Thresholded CAMs are
upscaled from 32 × 32 pixels to the original image size by means of nearest neighbour
interpolation.

The segmentation mask is subsequently derived by selecting all positions with values larger
than a method-specific but fixed percentile qm of the SUV distribution inside the masked region.
Data-specific hyperparameters in the form of CAM-thresholds and intensity percentiles were
determined empirically on the training and validation sets. The percentile qm was empirically
determined by performing grid search on the training data with 20 linearly spaced values
between 20 and 50. The threshold value tm was determined in the same manner with ten linear
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spaced values from 0.1 to 0.9. The best values were determined by maximizing the Dice score on
the validation data.

Segmentation routine. The complete segmentation routine is presented in the algorithm
below.

2.3 Baselines

To evaluate the performance of our method, we compared our results with two baselines: a sim-
ple global threshold-based segmentation method and a fully supervised U-Net-CNN model.4

2.3.1 Global threshold

A global threshold based on a fixed SUV percentile was applied to all images in which the
classification network predicts a tumor. The percentile was again empirically determined by
performing a grid search on the training data with 20 linearly spaced values between 20 and
50 and choosing the one that yielded the highest Dice score.

2.3.2 Supervised UNET

We compared our approach with a standard UNET4 segmentation model trained in a supervised
manner on image slices. Our architecture consists of four double convolution layers in both,
having the decoder and encoder with skip connections between all levels.

2.3.3 Training

As described above, a modified VGG1619 backbone was used as the tumor classification net-
work. Data augmentation, including slice-wise scaling, rotations, translations, and contrast
changes, was applied.24 The model was implemented using the deep learning framework
PyTorch (1.7.1).25 The network was trained for 50 epochs using a SGD optimizer with a momen-
tum of 0.9,26 a learning rate of 0.001, and a batch size of 64. To consider class-imbalance, a
weighted cross entropy loss (w ¼ 7.7) was used.

Algorithm 1 CAM Segmentation

Input: PET/CT slice X, Percentile qm , Adaptive Threshold tm ;

1: Predict class ŷ of X (Does X contain a tumor or not?);

If ŷ is tumorous then

H = CAM(X)

Else

return Empty segmentation mask

End

2: H 0← Mask all values ≥tm ;

3: Upscale H 0 from 32x32 pixels (size of the CAM) to the size of X ;

4: H 00←X⊙H 0;

5: t q← Calculate the percentile qm of H 00;

6: Segmentation mask = H ≥ t q ;

Output: Segmentation mask;
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The baseline U-Net model was trained on 2D image slices with a batch size of 64 for 200
epochs using the ADAM optimizer27 (β1 ¼ 0.9, β2 ¼ 0.999) with an initial learning rate of
5e − 5. Again, a weighted (w ¼ 7.7) cross entropy loss was used. The same data augmentation
for the classifier was used.

A dedicated GPU (Tesla V100, NVIDIA, Santa Clara) was used for accelerated computing.

2.3.4 Statistical analysis

All results are reported with median and IQR. Additionally for all segmentation methods,
intra-class correlations (two-way, agreement) between ground truth annotation and prediction
were computed. A global significance level of 0.05 was used.

2.4 Evaluation

Our proposed framework and the baselines were evaluated for 90 test subjects. The metrics 3D
Dice score (compared with manual ground truth), MTV, and TLG deviation were computed for
each patient.

The Dice score is defined as

EQ-TARGET;temp:intralink-;sec2.4;116;317

2jA ∩ Bj
jAj þ jBj ;

where A and B are the sets of voxels inside the ground truth and predicted segmentation mask,
respectively. The MTV quantifies the volume of tumor regions with high metabolism. TLG is
defined as the product of the mean SUV and MTV.28

3 Results

3.1 Weakly Supervised Tumor Segmentation

The following threshold values (tm) were derived for CAM, GradCAM, GradCAM++, and
ScoreCAM activation maps: 0.3, 0.2, 0.3, and 0.4, respectively. The following SUV percentile
thresholds (qm) were applied: 0.31 for CAM, 0.35 for GradCAM, 0.32 for GradCAM++, and
0.31 for ScoreCAM. Fig. 4 depicts the activation maps based on the four different methods and
the corresponding segmentation for a sample slice with a tumor.

3.1.1 Dice score

Overall, the supervised U-Net model showed the best performance with a median Dice score of
0.72 (IQR 0.36) (Fig. 5). ScoreCAM and CAM produced the best results of all weakly

Fig. 4 PET with ground truth segmentation, corresponding activation map based on the four CAM
methods, extracted segmentation and corresponding CT for a sample slice with a tumor.
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supervised methods with a median Dice score of 0.47 (IQR 0.35) and 0.46 (IQR 0.35), respec-
tively. GradCAM++ performed slightly worse with a median Dice score of 0.42 (IQR 0.30).
GradCAM, which achieved a median Dice score of 0.12 (IQR 0.21), showed significantly worse
results. The global threshold method achieved a median Dice of 0.29 (IQR 0.28).

3.1.2 Evaluation of MTV

The supervised U-Net again showed the best results for the MTV estimation with a median
difference of 17 ml (IQR 27 ml). Small tumors were slightly overestimated (Fig. 6). ScoreCAM
(median difference 27 ml, IQR 48 ml), GradCAM++ (median difference 24 ml, IQR 48 ml), and
CAM (median difference 26, IQR 68 ml) provided similar results. GradCAM again revealed
inferior results with a median difference of 30 ml (IQR 76 ml). For all weakly supervised meth-
ods, an overestimation of small tumors and underestimation of large tumors was observed. This
characteristic was most prominent in GradCAM and CAM. Using the global threshold baseline
method also yielded a strong overestimation of smaller tumors and an underestimation of larger
tumors (median difference 44 ml, IQR 92 ml). Those results are further validated by the ICC
compared with the manual ground truth segmentation, which showed very similar scores and
confidence intervals for CAM, GradCAM++, and ScoreCAM. GradCAM in contrast showed a
significantly lower ICC (Table 1). Again, the supervised U-Net showed the highest scores and
smallest confidence intervals, whereas the global threshold performed worse than CAM,
GradCAM++, and ScoreCAM.

3.1.3 Evaluation of TLG

Tumor lesion glycolysis was predicted accurately by all methods except for GradCAM. Again,
the supervised U-Net yielded the best results with a median TLG deviation of 50 g (IQR 110 g).
No significant over- or underestimation was observed. (Fig. 7) ScoreCAM (median deviation of
99 g, IQR 285 g), GradCAM++ (median deviation 108 g, IQR 267 g), and CAM (median
deviation 101 g, IQR 219 g) again achieved closely similar results. GradCAM (median deviation
112 g, IQR 482 g) showed the highest error with overall underestimation of TLG. In general

Fig. 5 Per subject Dice scores for the weakly supervised segmentation methods (blue) and the
supervised baselines (red).
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underestimation of TLG of large tumors was observed; no overestimation of the TLG of small
tumors occurred. The global threshold showed the largest variance for TLG estimation, again
induced by marked overestimation of small lesions (median difference 167 g, IQR 524 g); how-
ever, there was less underestimation of larger lesion compared with the weakly supervised meth-
ods, which results in a higher ICC score due to less overall systematic error.

4 Discussion

In this study we introduced, evaluated, and compared methods for weakly supervised segmen-
tation of FDG-avid lesions in whole-body FDG-PET images. We established that, using CAMs
with subsequent thresholding, weakly supervised segmentation is feasible with satisfactory accu-
racy. Compared with an upper baseline (a fully supervised UNET) and a lower baseline (a global
threshold), we found that CAM, GradCAM++, and ScoreCAM yielded good overall segmen-
tation accuracy whereas the use GradCAM led to inferior results. Overall, image-derived

Fig. 6 Comparison between true and estimated MTV. All units in ml.

Table 1 Intra class correlation for estimated and real MTV/TLG.

MTV (ml) TLG (g)

ICC 95%-CI p-value ICC 95%-CI p-value

CAM 0.64 [0.50, 0.74] <0.001 0.85 [0.77, 0.90] <0.001

GradCAM 0.55 [0.39, 0.67] <0.001 0.40 [0.19, 0.57] <0.001

GradCAM++ 0.64 [0.48, 0.73] <0.001 0.79 [0.66, 0.86] <0.001

ScoreCAM 0.64 [0.50, 0.75] <0.001 0.82 [0.71, 0.88] <0.001

Threshold 0.59 [0.45, 0.71] <0.001 0.88 [0.83, 0.92] <0.001

UNET 0.94 [0.91, 0.96] <0.001 0.99 [0.98, 0.99] <0.001
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parameters MTV and TLG extracted from these segmentations correlated well with the ground
truth values extracted from manual segmentation using CAM, GradCAM++, and ScoreCAM.
Again, the use of GradCAM yielded higher deviations.

The results of this study are relevant for a wide range of segmentation tasks in the medical
imaging domain in which the generation of sufficient labeled training data is associated with
high effort and cost. Using weak supervision—e.g., as in this study by only providing binary
labels on an image level—this effort can be reduced significantly. Our results can thus contribute
to more efficient training data generation and thus wider application of machine learning meth-
ods in the medical imaging domain.

The contribution of our study beyond existing work is the application to whole body FDG
PET data and the detailed comparison of different CAM techniques. We found that CAM,
GradCAM++, and ScoreCAM are suitable CAM methods for weakly supervised segmentation
as they capture the tumor lesions within PET images, and thus the inferior performance of
weakly supervised segmentation using GradCAM can be explained by the known and previously
described property of GradCAM to highlight only the few small regions that are relevant for the
network output, leading to systematic underestimation of target regions within the image22

The main limitation of class activation mapping-based segmentation as implemented in this
study is the necessity of two thresholds—one on the CAM to identify the target area and one on
the PET image to define the segmentation. Our results show that this works well on FDG-PET
data due to the generally higher signal intensity of tumor lesions compared with background
tissue. However, generalization to other medical imaging modalities such as CT or MRI, in
which lesion intensity is less discriminative, might be limited. Future work will expand the use
of class activation mappings to further datasets, including CT or MRI images. To this end,
research should focus on methods that avoid the use of thresholds.

In this work, all analyses were performed on 2D slices. However, it would be beneficial to
extend the principle of weakly supervised segmentation to 3D image data. This will allow for
processing of entire imaging studies of single patients and further decrease the labeling effort. It
can be expected, however, that the transition to 3D processing will be associated with a signifi-
cant increase in computational demand. Although weak supervision saves significant time in
creating labels, the precision of a supervised approach could not be reached in our study. If
additional manual post-processing efforts are required to achieve sufficient precision for
real-world applications, this must be taken into account. However, such corrections are mostly

Fig. 7 Comparison between true and estimated TLG. All units in g.
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limited to the exclusion of entire false positive lesions and can therefore be efficiently performed.
On the other hand, weak supervision allows a potentially much larger number of subjects to be
available as training data. Further studies need to show to what extent this compensates for the
poorer accuracy. In particular, this could potentially also provide higher robustness and general-
izability than a supervised model with a smaller training sample size.

Finally, the translation of the methodology presented in this paper to other PET tracers should
be straightforward and may thus allow for implementing automated segmentation of non-FDG
PET data with minimal manual annotation effort.

5 Conclusion

We were able to demonstrate that weakly supervised segmentation of FDG-avid lesions on
whole-body FDG-PET is feasible, yielding satisfactory results. Further studies extending the
proposed methodology to other PET tracers and medical imaging modalities will be necessary
to investigate the transferabilty of the proposed methodology to related segmentation tasks.
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6 Code, Data, and Materials Availability
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