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Abstract

Background: Few environments have been developed or deployed to widely share biomolecular simulation data
or to enable collaborative networks to facilitate data exploration and reuse. As the amount and complexity of data
generated by these simulations is dramatically increasing and the methods are being more widely applied, the
need for new tools to manage and share this data has become obvious. In this paper we present the results of a
process aimed at assessing the needs of the community for data representation standards to guide the
implementation of future repositories for biomolecular simulations.

Results: We introduce a list of common data elements, inspired by previous work, and updated according to
feedback from the community collected through a survey and personal interviews. These data elements integrate
the concepts for multiple types of computational methods, including quantum chemistry and molecular dynamics.
The identified core data elements were organized into a logical model to guide the design of new databases and
application programming interfaces. Finally a set of dictionaries was implemented to be used via SQL queries or
locally via a Java API built upon the Apache Lucene text-search engine.

Conclusions: The model and its associated dictionaries provide a simple yet rich representation of the concepts
related to biomolecular simulations, which should guide future developments of repositories and more complex
terminologies and ontologies. The model still remains extensible through the decomposition of virtual experiments
into tasks and parameter sets, and via the use of extended attributes. The benefits of a common logical model for
biomolecular simulations was illustrated through various use cases, including data storage, indexing, and
presentation. All the models and dictionaries introduced in this paper are available for download at http://ibiomes.
chpc.utah.edu/mediawiki/index.php/Downloads.

Keywords: Biomolecular simulations, Molecular dynamics, Computational chemistry, Data model, Repository,
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Background
Thanks to a dramatic increase in computational power,
the field of biomolecular simulation has been able to
generate more and more data. While the use of quantum
mechanics (QM) is still limited to the modelling of small
biomolecules [1] composed of less than a couple hun-
dred of atoms, atomistic or coarser-grain molecular rep-
resentations have allowed researchers to simulate large
biomolecular systems (i.e. with hundreds of thousands of
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atoms) on time scales that are biologically significant
(e.g. millisecond for protein folding) [2]. Classical mo-
lecular dynamics (MD) and hybrid approaches such as
quantum mechanics/molecular mechanics (QM/MM)
are some of the most popular methods to simulate bio-
molecular systems. With the explosion of data created
by these simulations — generating terabytes of atomistic
trajectories — it is increasingly more difficult for re-
searchers to manage their data. Moreover results of
these simulations are now becoming of interest to bench
scientists to aid in the interpretation of increasingly
complex experiments and to other simulators for asses-
sing force fields and to develop coarse-grain models.
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Opening these large data sources to the community, or
at least within collaborative networks, will facilitate the
comparison of results to detect and correct issues with
the methods, identify biologically relevant patterns or
anomalies, and provide insight for new experiments.
While the Protein Data Bank [3] is very useful as a cen-
tral repository for structural data, the number of reposi-
tories for biomolecular simulations is still very limited.
To the best of our knowledge the only databases that
currently provide access to MD data for the community
are Dynameomics [4,5] and MoDEL (Molecular Dynam-
ics Extended Library [6]). Dynameomics and MoDEL
were populated with about 11,000 and 17,000 MD tra-
jectories of proteins respectively. One of the problems
with such repositories is that the published data was
generated in a specialized environment to study a given
biological process (e.g. protein folding), resulting in fairly
homogeneous data compared to the range of methods
and software available to the community. These reposi-
tories are somewhat tied to these environments and it is
uncertain how one would publish data generated outside
these environments or how external systems would
index or interface with these repositories. As more re-
positories are created the need for a common represen-
tation of the data becomes crucial to achieve semantic
interoperability and enable the development of federated
querying tools and scientific gateways. Note that other
efforts to build repositories and scientific gateways, such
as the BioSimGrid project [7] and work by Terstyanszky
et al. [8], have been undertaken but so far none has been
widely adopted outside their original deploying institu-
tion or organization.
In the computational quantum chemistry community,

more progress has been achieved towards the develop-
ment of repositories using standard data representations
to enable collaborative networks. One of the main on-
going efforts is led by the Quixote project [9] which
aims to create a federated infrastructure for quantum
chemistry calculations where data is represented with
CML CompChem (Chemical Markup Language – Com-
putational chemistry [10]) and integrated into the
semantic web through RDF (Resource Description
Framework, http://www.w3.org/RDF/). The Chemical
Markup Language [11] (CML) and its computational
component CML-CompChem aim to provide a standard
representation of computational chemistry data. While
the core CML XML specifies the requirements to
represent molecular system topologies and properties,
CML-CompChem supplements CML to allow the repre-
sentation of computational chemistry data, including in-
put parameters and output data (calculations). So far
these extensions have mainly focused on representing
quantum computational chemistry experiments as XML
files. These files can be created by converting input and/
or output files generated by a particular software pack-
age through file parsers such as the ones supported by
the Blue Obelisk group [12] (e.g. Chemistry Develop-
ment Kit, Open Babel). While CML-CompChem has a
great potential for QM calculations [13], its usefulness
for MD and biomolecular simulations in general might
be limited. For example, typically trajectories of atomic
positions need to be compressed or binary encoded for
data movement, storage purposes, and/or accuracy. Em-
bedding this information into a verbose XML file such
as CML will not be the optimal solution, at least not for
the description and formatting of the raw output. An-
other obstacle to the conversion of MD experiments to a
single-file representation is the common definition of
many separate input files (e.g. system topology, method
parameters, force field) necessary to prepare an MD
simulation and define the different iteration cycles (e.g.
minimization, equilibration, production MD). In quantum
chemistry, the targeted molecules and calculation parame-
ters are typically defined in a single input file (e.g. “.com”
file for Gaussian [14] and “.nw” file for NWChem [15])
which makes this conversion much simpler. The output
files generated by quantum chemistry software packages
usually already contain the final results the user is inter-
ested in while in MD the raw output – i.e. multiple files
containing the trajectories of atomic positions, energies
and other output information – has to be further proc-
essed through various analysis tasks to create meaningful
information. These post-processing steps involve the cre-
ation of new input and output files, making the conversion
of an experiment to a single XML file even more difficult.
Perhaps one of the main barriers to build repositories

for biomolecular simulations is the lack of standard
models to represent these simulations. To the authors’
knowledge no published study has assessed the needs of
the community regarding biomolecular simulation re-
pository data models. Therefore it is unclear which
pieces of information are considered essential by re-
searchers and how they should be organized in a com-
putable manner, so that users can:

– Index their data and build structured queries to find
simulations or calculations of interest, not only via
the annotations, but also with access to the raw data
(files).

– Summarize, present, and visualize simulation data
either through a web portal or more static
documents (e.g. PDF document, XML file).

These models should be designed to include not only
the description of the various independent computational
tasks performed but also a high-level description of the
overall simulated experiment. Each experiment can be re-
lated to multiple concepts that help understanding what
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was simulated, how, and in which context. These concepts
can be grouped into the following categories:

– Authorship: information about the author, grants
and publications related to the experiment

– Methods: computational method description (e.g.
model building, equilibration procedure, production
runs, enhanced sampling methodology) and
associated inputs / parameters

– Molecular system: description of the simulated
molecules from a structural, chemical, and biological
point of view

– Computational platform: description of the software
used to run the computational tasks, the host
machine (computational environment), and
execution configuration

– Analysis: derived data that can be used for quality
assessment of the simulations

– Files: information about the raw simulation input
and output files, such as format, size, location, and
hosting file system

In this study we describe our efforts to formalize the
needs of the community regarding the elements neces-
sary to index simulation data. This work was initiated in
part to support the iBIOMES (Integrated BIOMolEcular
Simulations) project [16], an effort to create a searchable
repository for biomolecular simulations, where the raw
data (input and output files) is made available so that re-
searchers can rerun the simulations or calculations, or
reuse the output to perform their own analysis. In the
initial prototype a set of software-specific file parsers
were developed to automatically extract common data
elements (metadata) and publish the raw data (i.e. the
input and output files) to a distributed file system using
iRODS (integrated Rule-Oriented Data System [17]).
The published files and collection of files (experiments)
are indexed based on the extracted data elements and
are stored as attribute-value-unit triplets in a relational
database. In this paper we introduce a list of common
data elements and a data model that will help iBIOMES
and future biomolecular simulation data repository de-
velopments move towards semantic interoperability.

Motivation for a common data representation: examples
The development of a common framework for data rep-
resentation provides users with a large amount of flexi-
bility to develop new tools for managing the data while
maintaining interoperability with external resources. In
this section we present three different examples that
demonstrate the need for a standard representation of
biomolecular simulation data, whether it is for indexing
or presentation to the user. All three examples have
been implemented to some extent in prototype form
here. The first example is based on our experience with
iBIOMES [16], where simulation-specific metadata is as-
sociated at the file or directory level, through a special-
ized file system (iRODS [17]). The second example
shows how one would use a model-based approach to
build a repository where simulation parameters and
provenance metadata are stored in a relational database.
Finally the last example illustrates how a model-based
API (Application Programming Interface) can be used to
automatically generate XML and HTML summaries for
the simulations being published.

Example 1: building a repository based on file annotations
One of the simplest ways to index simulations is to tag
the associated files and directories with user annotations
summarizing their content. These tags can be simply
stored in a database or indexed via dedicated systems
such as Hadoop [18,19] or Apache Lucene [20]. This ap-
proach is well suited for fast searches based on keywords
or attribute-value pairs. In the iBIOMES system [16]
these tags are managed by the iRODS framework [17],
which enables the assignment of attribute-value-unit
triplets to each file and directory in a distributed file sys-
tem. This approach is very flexible since it allows the use
of tags that represent common concepts such as compu-
tational methods and biological features, and user- or
lab-specific attributes as well. In iBIOMES, a catalogue
of common attributes was defined for users to annotate
their data. The definition of such attributes is important
as they can be tied to actionable processes, such as ana-
lyses, visualizations, and ultimately more complex work-
flows. It is then possible to build a user interface that
presents the data and performs certain actions based on
the existence of certain attributes or their associated
values. For example if the format of a file is PDB (File
format = “PDB”), then the user interface could enable 3D
rendering of the associated molecules through Jmol [21].
A data dictionary that would offer possible values for a
particular attribute is important as well. Each term
should be well defined to leave no ambiguity to the user.
A dictionary of force fields for example could list all the
common force fields with a textual description, a type (e.
g. classical, polarizable, coarse-grained), and the associ-
ated citations for each entry. A catalogue of common
data elements, associated to a data dictionary, is also
useful for users to pick from to facilitate annotations
and build queries. The catalogue used in iBIOMES was
defined internally by our lab and probably is not yet suf-
ficiently exhaustive for the community at large. However,
creating a catalogue of common data elements (CDE)
supported by the community is a first step towards the
standardization of biomolecular simulation data descrip-
tion. Defining a subset as recommended (i.e. the core
data elements) would go a step further and set a
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criterion to assess the quality of the data publication
process. Finally, linking these CDEs to existing termin-
ologies or ontologies would bring semantic meaning to
the annotations, enabling data discovery and query via
external systems.

Example 2: building a repository based on a relational
database
While a CDE catalogue is important, it lacks the repre-
sentation of relationships between elements unless it is
linked to a well-structured taxonomy. For example, if a
user is interested in simulations of nucleic acids, a hier-
archical representation of biomolecules could be used to
infer that the user is actually looking for any simulation
of DNA or RNA. The aim of a logical data model is to
give a representation of the domain that captures the
business needs and constraints while being independent
from any implementation concern [22]. Such a model
can provide the foundations for the design of a database
and can be used to automatically generate API skeletons
using modern modelling tools (e.g. Enterprise Architect,
ArgoUML, Visual Paradigm). Since it is a domain-
specific representation of the data, it can also serve as a
starting point to develop a terminology or ontology spe-
cific to this domain. In this second example we demon-
strate how a data model could be used to prototype a
repository for biomolecular simulations where simula-
tion parameters and provenance metadata are organized
and stored in a relational database. We created a UML
(Unified Modeling Language, http://www.uml.org/) model
including logical and physical entities to build a relational
database that could eventually be wrapped as a Grid ser-
vice. The Grid [23] represents a great infrastructure for
collaboration because of the underlying authentication
scheme and data discovery services available, but also be-
cause of the semantic and syntactic integration. For this
example we decided to mock up a data grid service using
the caGrid [24] framework. caGrid was supported by the
National Cancer Institute (NCI) and aimed to create a
collaborative network for researchers to share cancer
data, including experimental and computational data.
The caCORE (cancer Common Ontologic Representation
Environment) tools that were developed in this context
facilitate the creation of the grid interfaces by automatic-
ally generating the necessary Java code from a UML
model. These tools are now maintained by the National
Cancer Informatics Program (NCIP) and available at:
https://github.com/NCIP/. For this example we mapped
the logical model to a data model using the caAdapter
graphical tool. The final UML model and database cre-
ation scripts for MySQL (http://www.mysql.com/) are
available for download at: http://ibiomes.chpc.utah.edu/
mediawiki/index.php/Downloads. More details about the
UML model are provided in the section introducing the
logical data model. The caCORE SDK (Software Develop-
ment Kit) was then used to generate the Hibernate (http://
www.hibernate.org/) interfaces to the database along with
a web interface that can be used to create simple queries
or browse the published data. A screenshot of the gener-
ated interface is given in Figure 1 (listing of various pub-
lished computational tasks). To actually build and deploy
the data service onto a Grid, one would have to use the
Introduce module. Semantic integration is also possible via
the Semantic Integration Workbench (SIW), which enables
tagging of the domain model with concepts from standard
terminologies (e.g. ChEBI, Gene Ontology).

Example 3: representing experiments using XML
While a database provides a single endpoint to query data,
other types of data descriptors become necessary when
moving data between file systems, or simply to provide a
light-weight description of the data. XML has been widely
adopted by the scientific community to represent struc-
tured data because of its flexibility and support by web
technologies. In the field of computational chemistry CML-
CompChem [10] aims to provide a detailed representation
of computations but currently lacks support in the molecu-
lar dynamics community. BioSimML (Biomolecular Simula-
tion Markup Language [25]) was developed specifically for
biomolecular modelling and supports QM/MM simulation
representations but its current status in uncertain. The Uni-
fied Molecular Modeling (UMM) XML schema [26] is cur-
rently being developed by ScalaLife (Scalable Software for
Life Sciences, http://www.scalalife.eu/) and will attempt to
provide a detailed description of MD runs, so that these
files can be used as a standard input to run within various
MD engines. So far these XML-based formats have focused
on giving a low-level representation of the simulation runs
so that data can be converted between legacy formats. In
this example we generate an XML-based representation of
the experiment as a whole (multiple tasks), with a limited
granularity for the description of each task. For this purpose
we developed a Java API based on our logical model to
generate XML representations of experiments (Figure 2).
Format-specific file parsers developed for the iBIOMES
project [16] read in input and output files associated to an
experiment to create an internal representation of the ex-
periment and associated computational tasks. In the Java
code, classes are annotated with Java Architecture for XML
Binding (JAXB, https://jaxb.java.net/) annotations to map
the logical model to an XML schema. The JAXB API can
then be used to automatically output XML documents
based on the internal Java representation of the experiment
or read in an XML file to build the Java objects. The same
process could be implemented in various languages, using
CodeSynthesis XSD (http://www.codesynthesis.com/prod-
ucts/xsd/) in C++ or PyXB (http://pyxb.sourceforge.net/) in
Python for example.
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Figure 1 Screenshot of the web interface generated via the caGrid tools. The screenshot presents a listing of the computational tasks that
were published into the caGrid test system. The user request was automatically translated into a SQL query via Hibernate to return the rows
form the tables mapping to the class ExperimentTask and its child classes MinimizationTask (minimizations), MDTask (MD runs), and QMTask
(QM calculations). For each row, a set of get methods (e.g. getSoftware) link to the associated objects for more details (e.g. Software name
and version).

Figure 2 Generating an XML representation of experiments using a Java API. The Java API is used to parse the input files and create an
internal representation of the virtual experiment as a set of computational tasks. JAXB is then used to generate an XML representation of this
internal model, while XSLT is used to perform a last transformation into a user-friendly HTML page.
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The XML output does not aim to be sufficient to re-
create input or output files in legacy formats but it will
provide enough information for users to rapidly under-
stand the computational methods and structures repre-
sented by the associated raw data. This type of XML
document can be used as a way to give a detailed sum-
mary of experiments when exchanging data, compressed
with the raw data for example. These documents can be
transformed through XSLT (eXtensible Stylesheet Lan-
guage Transformations) to be rendered as HTML pages
and build repository web interfaces. A sample XML out-
put along with an HTML-based tree view generated
through XSLT are presented in Figure 3. For this ex-
ample a set of AMBER-specific [27] file parsers was used
to parse a directory containing all the input and output
files associated to an MD study of RNA. Common data
elements related to the molecular system topology were
extracted from the AMBER parameter/topology file
while task (minimization and MD runs), parameter set
(e.g. implicit solvent, number of iterations), and compu-
tational platform information were extracted from the
AMBER MD output files.

Summary
These three prototypes serve as examples demonstrating
the need for a catalogue of CDEs and the representation
of relationships between concepts through a data model.
The catalogue of CDEs, associated to a data dictionary,
Figure 3 XML and HTML-based representations of an experiment. Au
(right) representing the different tasks run for an MD study of RNA using th
provides the basis for a controlled vocabulary that can
be used to annotate experiment data (e.g. files and direc-
tories) and build queries. The data model provides extra
information as it links concepts together and allows more
complex and structured queries, through a relational data-
base for example. The second example showed how mod-
ern software engineering tools can use data models to
generate database schemas and APIs for repository devel-
opments. Finally the last example showed that XML rep-
resentations can be easily generated if the API follows a
model-based approach.
In this paper we introduce a list of CDEs built upon

community feedback, and a logical model that ties
dictionaries and common data elements together. Com-
mon data elements for simulation data indexing and
presentation were identified through a survey, while rec-
ommendations are made for trajectory and analysis data
description. The common data elements were organized
through a logical data model, which was refined to in-
clude dictionaries and minimize data redundancy. Finally
the design and implementation for a subset of these dic-
tionaries is introduced.

Experimental
Identification of core data elements
Survey
A survey was distributed to the community to assess the
list of data elements that was defined in iBIOMES [16].
to-generated XML sample (left) and corresponding HTML tree view
e AMBER software package.
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This initial list of common data elements was based on
the BioSimGrid [7] data model and supplemented with
new elements to reflect the needs of our lab and various
collaborators at the University of Utah, and to add de-
scriptions of quantum chemistry calculations. The main
goal of the survey was to identify which elements were
missing and which ones were not so important accord-
ing to the community. A list of 47 data elements de-
scribing simulation runs and the associated files was
presented to experts. These data elements were grouped
into 6 categories for organizational purpose: authorship
(user information and referenced citations related to a
particular run), platform (hardware/software), molecular
system (molecules being studied, independently from the
model chosen), molecules (info about the molecules com-
posing the system), methods (can apply to any method, in-
cluding QM and MD), molecular dynamics, and quantum
mechanics. The experts were asked to score the data ele-
ments based on how important they are to them to de-
scribe their own data and/or to index community data and
build search queries. Scoring was based on a Likert scale
(1 = “Not important at all”, 2 = “Not very important”,
3 = “Not sure, 4 = “Important”, 5 = “Very important”, and
“N/A” for non-applicable). In each group, the experts were
also allowed to propose missing data elements and/or
comment on the listed elements.
The survey was made available online (see extract in

Additional file 1) in March 2012 for about a month and
promoted through the Computational Chemistry List
(CCL) and the AMBER developers’ mailing list. The
CCL list is a fairly well known group for general discus-
sions related to computational chemistry, perhaps with
an emphasis on QM-related methods. The AMBER
developers group represents a variety of theoretical dis-
ciplines (MD, QM, QM/MM), with developments target-
ing various types of systems (e.g. proteins, nucleic acids,
lipids, carbohydrates, small compounds) and discussions
on how to best use the software, methods and force
fields. Individual emails were also sent to different re-
search groups at the University of Utah that are special-
ized in computational chemistry.

Trajectory and analysis data
The survey did not include any analysis- or file-related
data elements. The Dublin Core metadata (http://dublin-
core.org/documents/dces/) can be used as a good refer-
ence to describe files at a high level (e.g. author, format).
Analysis data on the other hand is very complex to de-
scribe because of its direct relation to the raw data it de-
rives from (e.g. use of multiple input files representing
experimental and computed data) and the existence of
numerous analysis methods that can be problem-specific
(e.g. Protein vs. RNA, QM vs. MD). In most cases it
will not make sense to use analysis data to index an
experiment either. For example looking for MD trajec-
tories with a particular RMSD (root mean square devi-
ation) value would be irrelevant without providing more
context about the system and the method used to calcu-
late the value. Although analysis data is a key factor to
assess the quality of a simulation, its use for data index-
ing and retrieval is not trivial and therefore was not in-
cluded in the survey. A generic framework for the
description of trajectory and derived data is nevertheless
provided in the Results section.

Logical model
Overview
The logical model presented here was derived from a
conceptual model that organized all the identified com-
mon data elements into a defined domain. The concep-
tual model was reduced into a logical model with the
assumption that the raw input and output files are made
available (in a repository similar to iBIOMES or MoDEL)
and that the model would be used to index the data ra-
ther than providing a complete view of the results (e.g.
calculation output, structures defined in each MD trajec-
tory frame). Although analysis data and quality criteria
are crucial to provide an objective perspective on experi-
ment results, no associated concept was included in the
current model. The granularity of the model was limited
to a sufficient level of details that makes it computable.
For example, the description of the theory behind mod-
elling methods is not part of the model. The end-goal
being to share the results of the simulations or calcula-
tions with the community we limited our model to in-
clude only popular methods that are used for the study
of biomolecules or smaller ligands.

Use of dictionaries
One of the main features of this logical model is the inte-
gration of dictionaries to avoid data redundancy. For
example a dictionary containing definitions of force fields
(e.g. name, type, citations) can be referenced by molecular
dynamics tasks, instead of creating individual force field
definition entries every time the force field is used. The in-
tegration of dictionaries into the model should not enforce
mappings to standard definitions but rather enable links
between specific values and standard definitions only if
they exist. If no mapping exists the user should still be
able to publish the data. This is achieved through the stor-
age of “specific names” outside the dictionaries with an
optional reference to the term definition, where the stand-
ard version of the name (not necessarily different) is de-
fined. For example if the basis set “LANL2DZ” is used in a
QM calculation, but no corresponding entry exists in the
basis set dictionary, the name of the basis set will still be
stored in the database when publishing the data to allow
queries on the calculation.

http://dublincore.org/documents/dces/
http://dublincore.org/documents/dces/
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Units
Certain attributes need to be associated to a unit to be
understood by a human or a computer. Different soft-
ware packages might use different units to represent the
same attribute. For example, distances in AMBER [27]
are measured in Ångströms while GROMACS [28] uses
nanometres. When publishing data to a repository one
should either convert the values using units previously
agreed upon or make sure that the units are published
along with the values. In both cases, mechanisms should
be in place to provide a description of the units when
pulling data from the repository. For the description of
this model we assume that the units are already set in
the repository, therefore they are not included in the de-
scription of the model.

Dictionaries
While most of the data described in a logical model for
biomolecular simulations can be directly parsed from
the input and output files, dictionaries containing stand-
ard definitions and values for certain data elements need
to be prepopulated. In this paper we present the design
and implementation of several dictionaries that can be
used to facilitate data publication and queries. For ex-
ample, if a user is interested in QM calculations based
on Configuration Interaction (CI) theory, a dictionary of
all CI methods will be needed to return all the calcula-
tions of interest (e.g. CISD, CISD(T)). Another interest-
ing use of these dictionaries is within the code of the file
parsers. Instead of defining standard values within the
code, one can use these dictionaries to lookup informa-
tion on the fly, and possibly use it to publish the data
into the target repository.
An initial set of dictionaries was populated using the

BiosimGrid [7] database dictionaries (source code avail-
able at: http://sourceforge.net/projects/biosimgrid/). They
were then refined internally and supplemented with new
dictionaries, especially to include QM-related definitions
(e.g. basis sets, QM Methods).

Results
Identification of core data elements
Survey
At the closing of the survey we were able to collect 39
responses (20 through CCL, 10 through the AMBER de-
velopers list, and 9 through emails). The results of the
survey are presented in Additional file 2. The respon-
dents listed a few data elements they felt were missing
from the proposed list or that needed to be refined (see
comments in Additional file 3). For instance, in the
authorship category, a data element representing re-
search grants was missing. For the representation of the
molecular system, data elements representing important
functional groups of the solute molecules should be
added, along with, optionally, the apparent pH of the
solvent. Adjustments should also be made to distinguish
the different species in the system, and flag them as part
of the solvent or the solute. For the computing environ-
ment information, a respondent showed interest in
knowing whether the software package is compiled in
single, double, or mixed precision, what the memory re-
quirements are for a run, and even what parallelization
scheme is used. All these elements are very technical
and might interest only a very limited number of users,
even in the developer’s community. The notion of hard-
ware architecture was not clearly defined in the survey
since it should have already included the use of GPU
(see comment in Additional file 3). A better representa-
tion of the hardware architecture can be done through
three different data elements: the CPU architecture (e.g.
x86, PowerPC), the GPU or accelerator architecture (e.g.
Nvidia GeForce GTX 780, AMD Radeon HD 7970, Intel
PHI), and possibly a machine or supercomputer architec-
ture identification (e.g. Cray XK7, IBM Blue Gene/Q, com-
modity Infiniband cluster, etc.) and name (stampede.tacc.
utexas.edu, h2ologin.ncsa.illinois.edu, keeneland.gatech.xse
de.org, etc.). For the computational methods, data ele-
ments were missing for the representation of both MD
and QM-specific parameters. In QM, the following ele-
ments were missing: exchange-correlation functionals (for
DFT), pseudopotentials and plane wave cut-offs, and
whether frozen core calculations are performed or not.
Some comments pointed the fact that the notion of con-
vergence can be very subjective, especially when dealing
with MD trajectories where multiple minima (conforma-
tions) can be found over time (see comments in Additional
file 3). The convergence flag and criteria were assigned as
QM-specific data elements to reflect this. For MD, the
context of the run (i.e. whether it is a minimization, an
equilibration, or a production run) was missing. Represen-
tations of restraints and advanced sampling methods (e.g.
replica-exchange, umbrella sampling) were also missing.
More detailed properties were listed by the respondents.
These included the order of expansion for LINCS-based
constraints and the order of interpolation for Particle-
Mesh Ewald. At this point it is not clear if such parameters
need to be tracked since users would hardly use these to
create queries and we assume that they can be directly read
from the raw input files if necessary.
Based on the results of the survey and the various

comments of the community we propose a set of com-
mon data elements for biomolecular simulation data
indexing, listed in Additional file 4. The table reorga-
nizes the granularity of the identified elements by mak-
ing a distinction between data elements (concepts) and
attributes (properties). For example the barostat data
element has at least one property: an implementation
name (e.g. “Andersen”, “Berendsen”). Depending on the

http://sourceforge.net/projects/biosimgrid/
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type of barostat other properties could include a time
constant and a chain length (e.g. Nose-Hoover barostat).
We also included “derived” properties that would be in-
ferred from other properties if the right terminology or
dictionary is available. For example, the name of a QM
method (e.g. MP2, B3LYP) should be enough to infer the
level of theory (e.g. Møller-Plesset, DFT), and the name
of the force field (e.g. AMBER FF99SB) should be suffi-
cient to infer its type (e.g. classical). This distinction is
important as it can help the developers choose which
properties should be actually stored (e.g. in a database or
an XML file) and which ones could be inferred. The set
also contains recommended and optional data elements/
attributes. An attribute is marked as recommended if its
average score (i.e. the sum of Likert scale scores divided
by the number of responses for that element) is greater
than 4.0 (“Important”), otherwise it is marked as op-
tional. Attributes proposed by the respondents were cat-
egorized through an internal review performed by our
lab, composed of researchers running molecular dynam-
ics simulations and quantum chemistry calculations on a
daily basis. A data element is considered recommended
if it has at least one recommended attribute. The current
list contains 32 data elements and 72 attributes (includ-
ing 30 recommended attributes).
We recognize that the process by which the data ele-

ments were defined and characterized is not perfect.
Although the number of respondents was fair (between
37 and 39 depending on the data element), certain data
elements had to be added or redefined based on an in-
ternal review by some of our lab members, which might
have created some bias towards the needs of our lab ra-
ther than a general consensus in the community. Despite
these limitations the list of data elements proposed here
may be considered the first attempt to summarize the
needs of the computational chemistry community to en-
able biomolecular simulation data indexing and queries.
This list should be a good starting point to create a list
of standard metadata to tag files using simple attribute-
value pairs or attribute-value-unit triplets, as it is the
case for iBIOMES via the iRODS metadata catalogue
[17]. Although this list is fairly exhaustive, it is not
complete and we hope that by publishing it the commu-
nity will be able to provide more feedback and build on it,
with the intent of this data model being extensible. The
list is available on the iBIOMES Wiki at: http://ibiomes.
chpc.utah.edu/mediawiki/index.php/Data_elements. Field
experts who want to contribute to the list can request an
account on the wiki.

Trajectory files
In most MD software packages the computed trajector-
ies of atomic coordinates are stored in large files (~MB-
TB) with each containing one or multiple time frames
(e.g. PDB, AMBER NetCDF, DCD). This is the raw data
that repositories would actually store and index for re-
trieval. Until now we have been focusing on the descrip-
tion of the computational tasks that were used to
generate this data, i.e. the provenance metadata. This
metadata can be used to find a given experiment and all
associated trajectory files. On the other hand new attri-
butes need to be assigned at the trajectory file level to
describe their content and ultimately enable automatic
data extraction and processing by external tools (e.g.
VMD [29], CPPTRAJ [30], MDAnalysis [31]). Such attri-
butes include the number of time frames, time between
frames, number of atoms in the system and/or reference
to the associated topology file, presence or absence of
box coordinates, velocity information, and so on. It is
important to note that the use of self-descriptive formats
such as NetCDF (http://www.unidata.ucar.edu/software/
netcdf/) would allow trajectory files to carry not only the
description of the dataset, but also the provenance meta-
data, for example using the CDEs previously defined.
Perhaps one of the most important attributes to give
context within a full experiment is the index of a trajec-
tory file within the set of all trajectory files representing
a given task or series of tasks. Although self-descriptive
formats could easily keep track of this information, it is
non-trivial to generate such an index as tasks can be run
independently outside of a managed workflow such as
MDWeb [32], which would be able to assign these in-
dexes at file creation time. The order of trajectory files is
therefore commonly inferred from their names (e.g. “1.
traj, 2.traj, 3.traj”). This approach usually works well
although some errors might occur when trying to auto-
mate this ordering process. For example “10.traj” would
be ranked before “2.traj” if a straight string comparison
is performed (vs. “02.traj”). Strict naming conventions
for trajectory data (raw, averaged, and filtered on space
or time) should help circumvent these problems.

Analysis data
Although some analysis tasks are common to most bio-
molecular systems for a particular method (e.g. RMSD
calculations of each frame in the trajectory to a reference
structure) the number of analysis calculations one can
perform is virtually infinite. There is currently no stand-
ard to describe the output of the analysis. Some formats
might enable the description of the values (e.g. simple
CSV or tab-delimited file with labelled columns and/or
rows) but more structured files are required to describe
the actual analysis process that generated the set of
values contained in the file. Formats such as NetCDF are
adapted to store this kind of description but are not
commonly used to store biomolecular simulation ana-
lysis data. Instead comma- or tab-delimited files formats
are usually preferred for their simplicity, readability, and

http://ibiomes.chpc.utah.edu/mediawiki/index.php/Data_elements
http://ibiomes.chpc.utah.edu/mediawiki/index.php/Data_elements
http://www.unidata.ucar.edu/software/netcdf/
http://www.unidata.ucar.edu/software/netcdf/
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support by popular plotting tools (e.g. MS Excel, Open-
Office, XmGrace). Assuming that the dataset is physic-
ally stored in such a file or in a relational database, a
minimal set of attributes should be defined to facilitate
reproduction of the analysis, as well as enable reading
and loading into visualization tools with minimal user
input. We believe that the strategy used in the NetCDF
framework to break down data into variables with asso-
ciated dimensions is a simple and logical one, and so we
follow a similar strategy here.

– Data dimensions: Defines dimension sizes for defined
data sets (i.e. variables). Any number of dimensions
(including zero if data is scalar) can be defined.

– Data variables: The actual data. Report type
(e.g. integer, float), labels, and units for all the values
contained in a given set. One or more dimensions can
be associated with a given variable based on its overall
dimensionality. Zero dimensions correspond to a
single value (e.g. average RMSD value), one dimension
is an array (e.g. RMSD time series), two dimensions
are a matrix (e.g. coordinate covariance), etc.

Another set of attributes need to be defined to repre-
sent the provenance metadata, i.e. how the analysis data
was derived from the raw trajectories. Although different
analysis tasks will require different input data types and
parameters, a list of common attributes can be defined
to provide a high-level description of the analysis task:

– Name (e.g. “RMSD”) and description (“Root mean
square deviation calculation”) of analysis method (see
entries defined in our MD analysis method dictionary)

– Path to the input file describing the task (if applicable).
– Name and version of the program used, along

with the actual command executed.
– Execution timestamp
– Reference system, if any (self, experimental,

or other simulated structure)

While these attributes might not be sufficient to
automatically replicate the results they should provide
enough information for users other than the publisher
to understand how the analysis data was generated and
how the analysis task can be replicated.
A further set of attributes can be defined to provide

additional details on the scope of the analysis and de-
scribe in detail the data from which the current data has
been derived:

– File dependencies
– Filter on time
– Filter on space (e.g. heavy atoms only, specific

residue)
These would facilitate maximum reproducibility as
well as enable detailed searches on very specific types of
analysis. The ‘File dependencies’ attribute may include
information like the trajectory used in a given calcula-
tion, which could also be used to check if the current
analysis is up-to-date (e.g. if the trajectory file is newer
than the analysis data, the analysis can be flagged as
needing to be updated). The ‘Filter on time’ attribute
might describe a specific time window or subset of
frames used in the analysis. Since these attributes are
perhaps not as straightforward for analysis programs to
report as the other attributes, they could be considered
optional and/or set by the user after the data is pub-
lished. The ‘Filter on space’ attribute could be particularly
useful, since it would allow one for example to search for
all analyses of a particular system done using only protein
backbone atoms or only heavy atoms, etc. However, this
would require translation of each individual analysis pro-
gram’s atom selection syntax to some common represen-
tation, which is no small task and would increase the size
of the metadata dramatically for certain atom selections.
In many cases it is likely that the atoms used in the ana-
lysis could be inferred from the command used, so this at-
tribute could also be considered optional. Two examples
of how these attributes might be applied to common ana-
lysis data are given in Additional file 5.

Logical model
Overview
In this model the central concept is the virtual experi-
ment, a set of dependent computational tasks repre-
sented by several input and output files. The goal of this
model is to help create a common description of these
virtual experiments (stored in a database or distributed
file system for example) for indexing and retrieval. The
overall organization of virtual experiments is illustrated
in Figure 4. For the rest of this paper virtual experiments
will be simply denoted as experiments. The organization
of an experiment as a list of processes and tasks was in-
spired by the CML-CompChem [10] schema. In CML-
CompChem the job concept represents a computer
simulation task and can be included into a series of con-
secutive sub-tasks designated as a job list. The concepts
of experiment, process group, process, and task are intro-
duced here to handle the representation of tasks that
might be run in parallel or sequentially, and that might
target the same or different systems. An experiment
process group is defined as a set of computational processes
targeting the same molecular system, where a process is
defined as a set of similar tasks (e.g. minimization tasks,
MD tasks, QM tasks). In MD, the minimization-heating-
production steps can be considered as a single process
group with 3 different process instances. If multiple copies
of the system are simulated, each copy will be considered a



Figure 4 Illustration of the data model used to represent virtual experiments. Each experiment is a set of tasks, grouped into processes
(e.g. minimization, equilibration, production MD) and process groups applied to the same molecular system (e.g. B-DNA oligomer).
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separate process group. In QM, a process would represent a
set of sequential calculations on a compound. If various
parts of the overall system are studied separately (e.g. lig-
and vs. receptor), each subsystem should be assigned to a
different process group.
Within the scope of an experiment, multiple tasks and

group of tasks will be created sequentially or in parallel,
and based on intermediate results. To keep track of this
workflow, dependence relationships (dependencies) can
be created between tasks, between processes, and be-
tween process groups.

Notations
In the following sections we present the overall orga-
nization of the model through an object-oriented ap-
proach where the concepts (e.g. experiments, tasks,
parameter sets, and molecular systems) are represented
by classes with attributes. The description is supported
by several class diagrams using the UML notation. For
example inheritance is characterized through a solid
arrow with an unfilled head going from the child to the
parent class. Along with standard UML notations, we
defined the following colour scheme to guide the reader:

– Blue: classes giving a high-level description of the
experiments and tasks

– Yellow/orange: method/parameter description
– Green: classes describing the molecular system

independently from the computational methods
– Pink: classes related to authorship and publication

(e.g. citations, grants)
– Grey: description of the hardware or software used

to run the tasks

Finally, classes representing candidates for dictionary
entries are marked with wider borders.

Experiments, processes, and tasks
Figure 5 presents the concepts that can be used to
describe the context of an experiment. Each experiment



Figure 5 Concepts used to describe the context of the experiments.
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can be given a role, i.e. the general rationale behind the
experiment. Examples of experiment roles include simu-
lation (dynamics), geometry optimization, and docking.
These roles should not be associated to any computa-
tional method in particular. Each experiment can be
linked to a particular author (including institution, and
contact information) to allow collaborations between re-
searchers with common interests. Publications related to
a particular experiment (citations) or that use the results
of the experiments can be referenced. Grant information
is important as well since it allows researchers to keep
track of what their funding actually supports.
Experiment sets (Figure 2) are collections of independ-

ent experiments that are logically associated together, be-
cause of similar context (e.g. study of the same system
using different methods) or simply for presentation
purpose or to ease retrieval by users (e.g. all the experi-
ments created by a certain working group). An experi-
ment can be assigned to multiple experiment sets.
An experiment task corresponds to a unique computa-

tional task defined in an input file. Figure 6 presents the
main concepts associated to experiment tasks. These in-
clude the definition of the actual calculation (e.g. fre-
quency calculation and/or geometry optimization in
QM, whether the dynamics of the system are simulated),
the description of the simulated conditions (reference
pressure and temperature), and the definition of the
method (e.g. QM, MD, minimization) and input parame-
ters (e.g. basis set, force field). More details about the
different types of tasks and simulation parameters are
given in the computational method section. Each task is
executed within a computing environment, i.e. the set of
hardware and software components used to run the
simulation software package. These components include
the operating system, the processor architecture, and the
machine/domain name. Information about the task exe-
cution within the computing environment, including exe-
cution time, start and end timestamps, and termination
status can be tracked as well. The software information
includes name (e.g. “AMBER”) and version (“12”). In
certain cases a more specific name for the executable is
available. This can provide extra information about the
compilation step and/or the features available. In Gaussian
[14], for example, this information can be found in the
output files: “Gaussian 09” would give a generic version of
the software package while “EM64L-G09RevC.01” would
give the actual revision number (“C.01”) and the target
architecture of the executable (e.g. Intel EM64). For
AMBER, the executable name would be either “SANDER”
(Simulated Annealing with NMR-Derived Energy Restraints)
or “PMEMD” (Particle-Mesh Ewald Molecular Dynamics),
which are two alternatives to run MD tasks within the soft-
ware package.

Computational methods
The most common methods for biomolecules include
QM, MD, and hybrid QM/MM. In this model we focus
on these methods but we allow the addition of other
methods by associating each task to one or multiple
parameter sets that can be combined to create new hybrid
approaches. This decomposition was applied to MD, mini-
mizations (e.g. steepest descent, conjugate gradient), QM,
and QM/MM methods as illustrated in Figure 7.

Method-specific tasks and parameter sets
Common attributes of any computational method are
represented at the ExperimentTask level. These include
names (e.g. “Molecular dynamics”), description (e.g. “new



Figure 6 Description of experiments, processes, and tasks.
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unknown method”), types of boundary conditions (peri-
odic or not), and the type of solvent (in vacuo, implicit,
or explicit). Method-specific tasks (MinimizationTask,
MDTask, QMTask, QMMMTask) are created to capture
the parameters that would not be shared between all
methods. Simulation parameters include any parameter
related to the method or task that would be set before a
simulation is run. These parameters are aggregated into
sets that can be reused between methods. For example,
the MD-specific task (MDTask) references MDParameter-
Figure 7 Organization of computational methods into tasks and para
Set, which includes the definitions of the barostat, thermo-
stat and force fields. The QM/MM-specific task (QMMM
Task) references the same parameter set since these defini-
tions are necessary to describe the computational method
to treat the MM region. It also references a QM-specific
parameter set to describe the QM method and a
QM/MM-specific parameter set to describe the treatment
of the QM/MM boundary. A new task type could be cre-
ated for multi-level quantum calculations. In this case the
task would reference multiple QM parameter sets and a
meter sets.
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new type of parameter sets that would define at least the
algorithm or implementation used to integrate the differ-
ent levels (e.g. ONIOM [33]).
In molecular dynamics, the behaviour of the simulated

system is governed by a force field: a parameterized
mathematical function describing the potential energy of
the system, and the parameters of the function, with dy-
namics propagated using Newton’s equations of motion
and the atomic forces determined from the forces or
first derivatives of the potential energy function. Differ-
ent parameters will be used for different types of atoms
(or group of atoms in the type of coarse grain dynamics).
A given force field parameter set is usually adapted to
particular types of residues in molecules (e.g. nucleo-
bases in nucleic acids vs. amino acids in proteins). For a
single molecular dynamics task multiple force fields and
parameter sets can be used simultaneously. When
Figure 8 Description of MD tasks and parameter sets.
simulating an explicit water-based solvent for example,
the specific force field parameter set used to represent
these water molecules (e.g. TIP3P, TIP4P, SPC/E [34]) will
typically be different from the set used to parameterize the
atoms of the solute or the ions. The ForceField class
presented in Figure 8 represents instances of force fields
referenced by a particular run while ForceFieldDefinition
represents an entry from the dictionary listing known force
fields. Force field types include classical, polarizable, and
reactive force fields.
Molecular dynamics methods can be classified into

more specific classes of methods. For example in stochas-
tic dynamics (Brownian or Langevin Dynamics), extra pa-
rameters can be added to represent friction and noise [35].
In coarse-grain dynamics the force field is applied to
groups of atoms rather than individual atoms. The differ-
entiation between atomistic and coarse-grain dynamics is
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then achieved solely based on the type of force field used.
In this model Langevin dynamics and coarse-grain dy-
namics are not represented by different types of tasks as
they share the same parameter set as classic molecular dy-
namics. The collision frequency attribute used specifically
by stochastic dynamics was added to the MD parameter
set while a flag specifying whether the force field is atomis-
tic or coarse grain is set in the force field dictionary.
Each parameter set can be associated to a barostat and a

thermostat to define how pressure and temperature are
constrained in the simulated system (Figure 8). The en-
semble type (microcanonical, canonical, isothermal–iso-
baric, or generalized) can be defined directly in the
parameter set. The model also includes the concepts of
constraints and restraints. Both have a target (i.e. the list of
atoms they apply to), which can be described by an atom
mask or a textual description (e.g. ‘:WAT’, ‘water’). The
type of constraint is defined by the algorithm used (e.g.
SHAKE, LINCS) while the type of restraint is character-
ized by the property being restrained (e.g. bond, angle).
Enhanced sampling methods are gaining interest in

the MD community as larger systems and longer time
scales can be simulated faster than with classic ap-
proaches [36]. These methods usually involve the cre-
ation of multiple ensembles or replica that can be run in
parallel (e.g. temperature replica-exchange, umbrella
Figure 9 Description of QM tasks and parameters.
sampling). A dictionary of such methods was created to
list popular enhanced sampling methods. At the core the
runs based on these methods can still be represented
with multiple molecular dynamics tasks. Depending on
the method, the implementation, and the definition of
the input files, the set of MD tasks corresponding to a
given enhanced sampling run can be grouped into pro-
cesses where each process represents either a separate
ensemble/replica or a group of tasks run in parallel. For
a replica exchange MD (REMD) run using 4 replicas,
one could either group the 4 MD tasks into a single
process representing the whole REMD run or 4 separate
processes with a single task each.
In quantum chemistry the two main elements that de-

fine the theory and approximations made for a particular
run are the level of theory (or QM method) and the basis
set (Figure 9). Basis sets provide sets of wave functions
to create molecular orbitals and can be categorized into
plane wave basis sets or atomic basis sets. They are de-
fined in a dictionary (BasisSetDefinition). Different levels
of theory are available to approximate the selected basis
set and find a discrete set of solutions to the Schrödinger
equation. Popular methods include Hartree-Fock and
post-Hartree-Fock methods (e.g. Configuration Inter-
action, Møller-Plesset, Coupled-Cluster), multi-reference
methods, Density Functional Theory (DFT), and Quantum
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Monte Carlo [37]. The classification of QM methods is
not trivial because of the range of features dependent on
the level of theory. For example, DFT method names typ-
ically correspond to the name of the exchange-correlation
functional while semi-empirical method names provide a
reference to the empirical approximations of the method.
For this model we defined the concepts of QM method,
class and family. At the highest level the family defines
the method as “ab initio”, “semi-empirical”, or “empirical”.
The class defines the level of theory for ab-initio methods
(e.g. Hartree-Fock, Møller-Plesset, Configuration Inter-
action, DFT, Multi-reference), or the type of semi-
empirical method (pi-electron restricted or all valence
electron restricted). Note that one method can be part of
multiple classes (e.g. Multi-reference configuration inter-
action, hybrid methods). At the lowest level the method
name (e.g. MP2, B3LYP, AM1) corresponds to a specific
method, as it would be called by a particular software
package. Approximations of pure ab-initio quantum
methods can be used to reduce the computational cost of
the simulations. Typical approximations include the use of
frozen cores to exclude inner shells from the correlation
calculations and pseudo-potentials (effective core poten-
tials) to remove the need to use basis functions for the
core electrons. The use of such approximations is noted at
the QM parameter set level.
Molecular dynamics methods can be “improved” by

injecting quantum characteristics to the models (semi-
classical methods). In ab-initio molecular dynamics, the
forces for the system are calculated using full electronic
structure calculations, avoiding the need to develop pa-
rameters a prior. In hybrid QM/MM, the simulation do-
main is divided into an MM space where the MD force
field applies, and a QM space where molecular orbitals
will be described. Different methods exist to treat the
boundaries between the two spaces. The decomposition
of runs into tasks and parameter sets make the integra-
tion of such methods possible and fairly straight forward.
For example, one could create a new type of tasks for
ab-initio molecular dynamics that would have at least
two parameter sets: the QM parameter set defined earl-
ier and a new parameter specific to ab-initio molecular
dynamics that would define the time steps (number,
length) and the type of method (e.g. Car-Parinello MD,
Born-Oppenheimer MD).

Molecular system
In this model a distinction is made between biomolecules
(e.g. RNA, protein) and “small molecules” (Figure 10).
Here we define a small molecule as a chemical or small
organic compound that could potentially be used as a
ligand. They are defined at the level of a single molecule
while biomolecules are described by chains of residues.
Typically, QM calculations will target small molecules
while MD simulations will target larger biomolecules and
ligand-receptor complexes. Properties such as molecular
weight and formula are worth being tracked for small
compounds but their importance is not that obvious
when dealing with larger molecules.
Three dictionaries are necessary to provide definitions

for standard residues, atomic elements (as defined in the
periodic table), and element families (e.g. “Alkaline”,
“Metals”). Note that here we minimize the amount of
structural data by keeping track of occurrences of resi-
dues (ResidueOccurrence) and atom types (AtomOccur-
rence) in a particular molecule, rather than storing
individual instances. For example, in the case of water,
there will be a single entry for the hydrogen atom with a
count set to 2, and another entry for the oxygen atom
with a count set to 1. The same approach is used to keep
track of the various molecules in the system. For ex-
ample explicit solvent using water would be represented
by the definition of the water molecule and the count of
these molecules in the system. To enable searches of
specific ligands a simple text representation of the com-
pound is necessary. Molecule identifiers such as SMILES
(Simplified Molecular-Input Line-Entry System [38]) or
InChI (International Chemical Identifier [39]) strings
can be associated to small molecules to enable direct
molecule matching and similarity and substructure
searches. The residue sequence is also available to search
biomolecules based on an ordered list of residues. The
residue sequence can be represented by two different
strings: the original chain, or specific chain, as referenced
in the input file defining the molecular topology, and a
normalized chain. The specific chain, can potentially give
more information about the individual residues within
the context of the software that was used, and reference
non-standard residues defined by the user. The normal-
ized chain on the other hand uses a normalized nomencla-
ture for the residue: one-letter codes representing either
amino-acids or nucleobases. The normalized chain can be
used to query the related molecule without prior know-
ledge about the software used, and enables advanced
matching queries (e.g. BLAST [40]).
Both residue and atom occurrences can be given a spe-

cific symbol, which represents a software-specific name,
usually referencing a computational model for the entity.
In MD the specific symbol would be the force field atom
type while in QM this would be used to specify which
basis set should be applied.
The description of the biomolecules should include at

least a generic type such as DNA, RNA or protein to
classify the simulated molecules at a high level. Other
biological information such as species (e.g. Mus muscu-
lus, Homo sapiens) and molecule role can be added as
well. As defined by the Chemical Entities of Biological
Interest (ChEBI [41]), each molecule can have one or



Figure 10 Decomposition of the molecular system into molecules with structural and biological features.
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multiple roles (application, chemical role, and/or bio-
logical role). This data element is very important as it
would allow researchers to query molecules based on
their function rather than their structure. On the other
hand this type of information is not included in the raw
simulation files, which means that it would have to be
entered manually by the owner of the data. To avoid this
one can imagine populating this information automatic-
ally by referencing external databanks that already store
these attributes (e.g. Protein Data Bank [3]). This is
reflected in this model by the reference structure con-
cept, which keeps track of the database and the structure
entry ID. If the topology of a simulated system is actually
derived from a reference structure an extra field can be
used to describe the protocol used to prepare the refer-
ence structure so that it serves as an input of the simula-
tions. Possible steps include: choice of the specific model
number if several are available in a single PDB entry or
which PDB entry if multiple entries are possible, possible
addition of missing residues from disordered regions, or
specification of homology or other putative models.
Files and file system
So far the description of the model focused on the data
elements related to the experiment itself to explain why
the different tasks were run and what they represent.
Another important aspect of this model is the inclusion
of a reference to the files (input and output) that contain
the actual data being described. This is illustrated in
Figure 11. Each experiment can be associated to one or
several file collections stored on local or remote file sys-
tems (e.g. NFS, Amazon S3, iRODS server). For each of
these collections no assumption should be made on the
location or the implementation of the file system, there-
fore it is necessary to keep track of the type of file server
and host information to find a route to the host and ac-
cess the files using the right protocol and/or API. The
individual files should be associated to the tasks they
represent and a distinction between input (parameters
and methods) and output (e.g. logs, trajectories) files
should be made. The topology files should be associated
to the molecular system instead. Note that in certain
cases, especially for QM calculations, the topology and
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input parameters might be contained in the same file.
Each file reference should at least contain a unique
identifier (UID) within its host file system and a format
specification.

Extended attributes
It is obvious that no single data model will be able to
capture the needs of any lab running biomolecular simu-
lations. The intent of this logical model is to provide a
simple yet fairly exhaustive description of the concepts
involved. To allow the addition of new properties, to
provide more details about the experiment or to keep
track of user- or lab-defined attributes, the notion of
extended attribute can be introduced to the model. Each
extended attribute would be an attribute-value-unit
triplet referenced by a given class to extend its own
attributes, as defined in the logical model. For example
one user might want to keep track of the order of
interpolation and the direct space tolerance for PME-
based simulations. These parameters are currently not
represented in the model, which only keeps track of the
name of the electrostatics model (“PME”). To add these
two parameters, one could add two extended attributes
to the MD parameter set class (Figure 8) called “PME
interpolation order” and “PME tolerance”.
From an object-oriented perspective, all the classes in-

troduced in the logical model could inherit from a single
superclass that would reference extended attributes,
where each extended attribute would be an attribute-
value-unit triplet with a possible link to a concept identi-
fier defining the attribute in an existing terminology.
From a database perspective, an extra table would be
needed to store all the extended attributes. Such table
would need the necessary columns to represent the
attribute-value-unit triplet, a possible concept identifier,
and the name of the table each attribute would extend.
Although this is an easy way to gather all the extended
attributes in a single table this approach is not rigorous
from a relational approach. To allow SQL queries that
do not involve injection of table names each table would
have to be associated to an extra table storing its ex-
tended attributes.

Summary
The logical model presented here defines a domain that
should be sufficient to index biomolecular simulation
data at the experiment level. In total over 60 classes
were defined to represent the common data elements
identified through the survey, along with new elements
and dictionaries that should avoid data redundancy and
facilitate queries using standard values. From a devel-
oper’s perspective this model provides some guidelines
for the creation of a physical data model that would be
more dependent on a particular technology, whether it
is for the implementation of a database or an API. At a
more abstract level the concepts introduced in this
logical model provide a good starting point for the cre-
ation of a new terminology or ontology specific to bio-
molecular simulations.

Dictionaries
Overview
The current list of dictionaries include: force field par-
ameter set names and types (e.g. classical, polarizable),
enhanced sampling methods, MD analysis functions,
barostats, thermostats, ensemble types, constraint algo-
rithms, electrostatics models, basis sets and their types,
calculation types (e.g. optimization, frequency, NMR),
residues, atomic elements (periodic table) and their fam-
ilies, functional groups, software packages, and chemical
file formats. The list also includes a dictionary of compu-
tational methods (e.g. Langevin dynamics, MP2, B3LYP)
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with their class (e.g. MD, Perturbation Theory, DFT) and
family (e.g. ab initio, semi-empirical, empirical). All these
dictionaries are available for browsing and lookups at:
http://ibiomes.chpc.utah.edu/dictionary/. Examples of dic-
tionary entries are also provided in Additional file 6 (force
fields) and Additional file 7 (computational methods).

Implementation
All our dictionaries follow the same implementation
method. The raw data is defined in CSV files and can
be loaded into a database for remote queries and/or
indexed using Apache Lucene [20] for local access via
Java APIs (Figure 12). Apache Lucene is a text search
engine written in Java that uses high-performance index-
ing to enable exact and partial string matching. Each
CSV file contains a list of entries for a given dictionary
with at least three columns representing: the identifiers,
the terms (e.g. “QM/MM”), and the term descriptions
(e.g. “Hybrid computational method mixing quantum
chemistry and molecular mechanics”). More columns
can be defined depending on the type of dictionary,
either to represent extra attributes or to link to other
dictionaries (foreign keys). For example the CSV file list-
ing the QM method classes would have an extra column
with the IDs of the associated QM method families. A
set of SQL scripts was written to automatically create
the database schema necessary to store the dictionaries
and to load the CSV data into the tables. These scripts
become very useful if one wants to integrate these dic-
tionaries into a repository. Another script was written to
automatically build the Lucene indexes. The script calls
a Java API which parses the CSV files and uses the
Lucene API to build the indexes. These indexes can then
be used locally by external codes via the Lucene API,
avoiding the need for static definitions of these diction-
aries within the code or the creation of dependencies
with remote resources such as a database. They should
also help future developments of chemical file parsers
and text processing tools for chemical information
Figure 12 Building process for the dictionaries. Each dictionary can be
a database to enable remote SQL queries.
extraction from the literature (i.e. natural language
processing). The Lucene-based dictionaries can be dir-
ectly queried through a simple command-line interface.
Additional file 8 demonstrates how one would look up a
term using this program. This design is fairly simple and
enables updates of the dictionary entries directly through
the CSV files. One limitation is the lack of synonyms for
the terms defined. To create richer lists it will be neces-
sary to add an extra CSV file for each dictionary that
would contain the list of all the synonyms and the ID
of the associated terms. Successful implementations of
terminologies in other domains, such as the UMLS
(Unified Medical Language System [42]), should be used
to guide the organization of the raw data and facilitate the
integration of existing terminologies representing particu-
lar aspects of the biomolecular simulations (e.g. chemical
data, biomolecules, citations).
Maintenance and community support
Until this point the development of the dictionaries has
been restricted to an internal effort by our lab. To sup-
port the work of the community at large these dictionar-
ies have to be extended and adjusted based on user
feedback. For this purpose the dictionaries are now
available on our project Wiki at http://ibiomes.chpc.
utah.edu/mediawiki/index.php/Dictionary, which enables
discussions and edits by identified users. This will serve
as a single endpoint to draft new versions of the diction-
aries. The source code for the dictionaries, including the
CSV files, SQL scripts, and Java API, is available from
GitHub at: https://github.com/jcvthibault/biosim-reposi-
tory. Updates on the CSV files hosted there should occur
according to the status of the dictionaries in the Wiki.
With time we might find that a dedicated database with
a custom user interface becomes necessary for a defined
group of editors to update existing terms, add new en-
tries, add new dictionaries, and keep track of changes
(logs). In any case, the number of editors should be
either indexed via Apache Lucene for use via a Java API or loaded into

http://ibiomes.chpc.utah.edu/dictionary/
http://ibiomes.chpc.utah.edu/mediawiki/index.php/Dictionary
http://ibiomes.chpc.utah.edu/mediawiki/index.php/Dictionary
https://github.com/jcvthibault/biosim-repository
https://github.com/jcvthibault/biosim-repository
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limited to a small group of experts, actively participating
and working together [43,44].

Discussion
In this paper we introduced a set of common data ele-
ments and a logical data model for biomolecular simula-
tions. The model was built upon community needs,
identified through a survey and refined internally. Ele-
ments described by the model cover the concepts of
authorship, molecular system, computational method
and platforms. Although the model presented here
might not be complete, it integrates the methods that
are the most significant for simulations of biomolecular
systems: molecular dynamics, quantum chemistry and
QM/MM. We introduced a new representation of the
method landscape through method-specific parameter
sets, which should allow the integration of more compu-
tational methods in the future. The addition of extended
attributes to the model should enable customization by
labs to fit their specific needs or represent properties
that are currently not described by the model. The use
cases presented here showed how the model can be used
in real applications, to partially automate the creation of
database schemas and generate XML descriptions. Mul-
tiple dictionaries, populated through reviews of online
resources and literature, were implemented to supple-
ment the model and provide developers with new tools
to facilitate text extraction from chemical files and popu-
lation of repositories. Although the current version of
the dictionaries is fairly exhaustive they will become a
powerful tool only if they are updated by the commu-
nity. A missing piece in this model is a catalogue of
available force field parameter sets and atom types that
could be used to generate force field description files
and serve as an input for popular MD software packages.
The EMSL Basis Set Exchange [45] already offers some-
thing similar for basis sets, and provides a SOAP-based
web service to access the data computationally.
While it is important to allow the whole community

to provide input on the CDEs and dictionaries, eventu-
ally a consensus needs to be made by a group of experts
representing the main stakeholders: simulation engine
developers, data repository architects, and users. The
creation of a consortium including users, developers and
informaticians from the QM and the MD community
could help formalize this process if such entity leads:

– Active polling, for example via annual surveys
assessing the need for changes or additions in the
CDEs, dictionaries, or the data model. Information
about the respondents such as software usage,
preferred computational methods (e.g. all-atom or
coarse-grain MD, DFT) and target systems (e.g.
chemical compounds, biomolecules) will provide
more details for the development of more adequate
recommendations for specialized communities.

– Monitoring of community discussions, which might
take place on a dedicated online forum or a wiki
such as the one introduced here

– Recurring creation and distribution of releases for
the CDEs, dictionaries, and data model. The CDEs
in particular should include at least 2 levels of
importance (recommended or optional) to provide
some criteria about the completeness of the data
descriptors. A third level characterizing certain CDEs
as mandatory might provide a standard for developers
and data publishers to populate repositories.

Our current focus is on indexing data at the experi-
ment level so that the associated collection of input and
output files can be retrieved. While the CDEs can be
used to tag individual files it is not clear yet how much
metadata is necessary to enable automatic data extrac-
tion (e.g. extract properties for a single frame from a
time series) and processing, and if such metadata can be
extracted directly from the files without user input. The
popularization of self-explanatory formats (e.g. NetCDF,
CML) to store calculation results or MD trajectories
would certainly help. The ongoing work within the Sca-
laLife programme should help the community move in
this direction, while the data model presented here will
provide a good framework to organize, describe, and
index computational experiments comprising multiple
tasks. By publishing this model and the list of CDEs we
hope to encourage developments of new repositories for
biomolecular simulations, whether they are part of an
integrated computational environment (e.g. MDWeb) or
not (e.g. iBIOMES). Both approaches should be ad-
dressed. On one hand, computational environments can
easily keep track of the tasks performed during an ex-
periment since the input parameters and topologies are
directly specified within the environment. On the other
hand, we still need to think about the developer commu-
nity that works on new simulation engines, new force
fields and new computational methods. They will still
need to customize their simulation runs within more
flexible environments where they can manually edit
input files or compile new codes, and use local or
allocated high-performance computing resources. Inde-
pendent data repositories where data can be deposited
through a publication process are probably more viable
to overcome these requirements. Finally it is not clear
who will be given access to these large computational
environments or who will have the computational, stor-
age, and human resources to deploy, sustain, and make
such complex systems available to the community.
The goal of the proposed data model is to lay the

foundations for a standard to represent biomolecular
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simulations, from the experiment level to the task level.
For this purpose we wanted to integrate MD, QM, and
QM/MM methods, all of which play a particular role in
the field. Although classical MD is arguably the most popu-
lar approach for biomolecular simulations we believe that
QM/MM approaches and ab initio MD for example will
gain more and more interest as computational power in-
creases and they should not be left out of a future standard.
On the other hand we recognize that our model might not
be as granular as others. The UMM XML [26] schema for
example will be one of the first attempts to describe MD
simulation input with enough granularity so that software-
specific input files can be generated without information
loss. Such effort is highly valuable for the MD community,
and our data model will certainly evolve to integrate such
models. Our short-term goal is to engage current repository
and data model developers such as the ScalaLife (http://
www.scalalife.eu/) and Mosaic (https://bitbucket.org/mol-
sim/mosaic/wiki/Home) groups for MD and the Blue
Obelisk (http://sourceforge.net/apps/mediawiki/blueobelisk/)
group for QM and cheminformatics so that we can learn
more about each other’s experience and try to align our ef-
fort towards an integrated data model that would fit the
needs of the whole biomolecular simulation community.

Conclusion
The framework presented here introduces a data model
and a list of dictionaries built upon community feedback
and selected experts’ experience. The list of core data el-
ements, the models, and the dictionaries are available on
our wiki at: http://ibiomes.chpc.utah.edu/mediawiki/.
As more implementation efforts are taken, the com-

munity will be able to assess the present data model
more accurately and provide valuable feedback to make
it evolve, and eventually support collaborative research.
The list of desiderata for data model developments, for
both conceptual and physical representations, should
provide some guidance for the long task at play.

Methods
This paper uses semi-structured interview methods to
establish the community needs and preferences regard-
ing biomolecular simulation data indexing and presenta-
tion. The common data elements were identified using
an approach similar to [46], while the data model was
built using standard modelling techniques to derive lo-
gical and physical models. Interested readers can find
details of these techniques in [22].

Additional files

Additional file 1: Online survey extract. This picture shows the
section of the online survey assessing the computational platform-related
data elements.
Additional file 2: Results of the survey. This table presents results of
the survey, based on the following Likert scale: 1 = “Not important at
all”, 2 = “Not very important”, 3 = “Not sure, 4 = “Important”, 5 = “Very
important”, N/A = “Not applicable”. N is the number of responses for a
particular data element. The reported score is the average of points
assigned by responders using the Likert scale.

Additional file 3: Summary of survey comments for each data
element category. This table summarizes the comments of the
respondents for each category of data elements. The last column lists
only the comments that were either proposing new data elements or
changes to the original ones, and that were related to the data element
category. The number of respondents N is the number of people who
provided at least one comment for the associated category.

Additional file 4: Final set of common data elements. This file
contains several tables (one for each data element category) presenting
the identified common data elements. Each data element can be
described through multiple attributes. Recommended attributes are
marked with an “R” and attributes that can be derived from other
attributes are marked with a “D”. Attributes that should be associated to
a unit are marked with a “U”.

Additional file 5: Analysis dataset description examples. This
document presents two examples of how the proposed data elements
might be applied to common analysis data.

Additional file 6: Table representing the force field dictionary. This
table lists common parameter sets available for popular MD software
packages. Each entry in the table is described through an ID (ID), a name
(TERM), a description (DESCRIPTION), a possible list of citations
(CITATION), a force field type ID (TYPE_ID), and whether the force field is
coarse grain or not (IS_COARSE_GRAIN).

Additional file 7: Table representing the dictionary of
computational methods. This dictionary lists “specific” methods which
can be referenced within an input file for a computational task. Each
entry in the table is described through an ID (ID), a name (TERM), a
description (DESCRIPTION), and a possible list of citations (CITATION).

Additional file 8: Lucene-based dictionary usage and lookup
example. This document demonstrates the use of the command-line
interface to lookup terms in the Lucene-based dictionary. In this example
the user searches terms that start with “AMBER FF”. The ‘-n 2’ option
specifies that no more than 2 matches should be returned.
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