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The nerve growth factor NGF has been shown to cause cell fate decisions toward either

differentiation or proliferation depending on the relative activity of downstream pERK,

pAKT, or pJNK signaling. However, how these protein signals are translated into and

fed back from transcriptional activity to complete cellular differentiation over a time span

of hours to days is still an open question. Comparing the time-resolved transcriptome

response of NGF- or EGF-stimulated PC12 cells over 24 h in combination with protein

and phenotype data we inferred a dynamic Boolean model capturing the temporal

sequence of protein signaling, transcriptional response and subsequent autocrine

feedback. Network topology was optimized by fitting the model to time-resolved

transcriptome data under MEK, PI3K, or JNK inhibition. The integrated model confirmed

the parallel use of MAPK/ERK, PI3K/AKT, and JNK/JUN for PC12 cell differentiation.

Redundancy of cell signaling is demonstrated from the inhibition of the different MAPK

pathways. As suggested in silico and confirmed in vitro, differentiation was substantially

suppressed under JNK inhibition, yet delayed only under MEK/ERK inhibition. Most

importantly, we found that positive transcriptional feedback induces bistability in the cell

fate switch. De novo gene expression was necessary to activate autocrine feedback that

caused Urokinase-Type Plasminogen Activator (uPA) Receptor signaling to perpetuate

the MAPK activity, finally resulting in the expression of late, differentiation related genes.

Thus, the cellular decision toward differentiation depends on the establishment of a

transcriptome-induced positive feedback between protein signaling and gene expression

thereby constituting a robust control between proliferation and differentiation.

Keywords: PC12 cells, Boolean modeling, NGF signaling, EGF signaling, bistability

1. INTRODUCTION

The rat pheochromocytoma cells PC12 are a long established in vitro model to study neuronal
differentiation, proliferation and survival (Greene and Tischler, 1976; Burstein et al., 1982; Cowley
et al., 1994). After stimulation with the nerve growth factor (NGF), a small, secreted protein
from the neurotrophin family, PC12 cells differentiate into sympathetic neuron-like cells, which is
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morphologically marked by neurite outgrowth over a time course
of up to 6 days (Levi-Montalcini, 1987; Chao, 1992; Fiore et al.,
2009; Weber et al., 2013). NGF binds with high affinity to the
TrkA receptor (tyrosine kinase receptor A), thereby activating
several downstream protein signaling pathways including
primarily the protein kinase C/phospholipase C (PKC/PLC),
the phosphoinositide 3-kinase/protein kinase B (PI3K/AKT)
and the mitogen-activated protein kinase/extracellular signal-
regulated kinase (MAPK/ERK) pathways (Kaplan et al., 1991;
Jing et al., 1992; Vaudry et al., 2002). Beyond these immediate
downstream pathways, further studies showed the involvement
of Interleukin 6 (IL6), Urokinase plasminogen activator (uPA)
and Tumor Necrosis Factor Receptor Superfamily Member 12A
(TNFRSF12A) in PC12 cell differentiation (Marshall, 1995; Wu
and Bradshaw, 1996; Leppä et al., 1998; Xing et al., 1998; Farias-
Eisner et al., 2000, 2001; Vaudry et al., 2002; Tanabe et al., 2003).
Sustained ERK activation is seen as necessary and sufficient for
the successful PC12 cell differentiation under NGF stimulation
(Avraham and Yarden, 2011; Chen et al., 2012), whereas transient
ERK activation upon epidermal growth factor (EGF) stimulation
results in proliferation (Gotoh et al., 1990; Qui and Green, 1992;
Marshall, 1995; Vaudry et al., 2002). In fact, selective pathway
inhibition or other external stimuli that modulate the duration of
ERK activation likewise determine the cellular decision between
proliferation and differentiation (Dikic et al., 1994; Vaudry et al.,
2002; Santos et al., 2007). Consequently, the MAPK signaling
network, as the key pathway in the cellular response, has been
studied thoroughly in vitro and in silico (Sasagawa et al., 2005;
von Kriegsheim et al., 2009; Saito et al., 2013). Interestingly,
both EGF and NGF provoke a similar transcriptional program
within the first hour. Therefore, differences in cellular signaling
must be due (i) to differential regulation of multiple downstream
pathways and (ii) late gene response programs (>1 h) that
feed back into the protein signaling cascade. As an example for
pathway crosstalk, both, the MAPK/ERK and c-Jun N-terminal
kinase (JNK) pathways regulate c-Jun activity and are necessary
for PC12 cell differentiation (Leppä et al., 1998; Waetzig and
Herdegen, 2003; Marek et al., 2004), while uPA receptor (uPAR)
signaling, as a result of transcriptional AP1 (Activator Protein-1)
regulation, is necessary for differentiation of unprimed PC12 cells
(Farias-Eisner et al., 2000; Mullenbrock et al., 2011).

In the present study, we combined time-resolved
transcriptome analysis of EGF and NGF stimulated PC12
cells up to 24 h with inhibition of MAPK/ERK, JNK/JUN, and
PI3K/AKT signaling, to develop a Boolean Model of PC12 cell
differentiation that combines protein signaling, gene regulation
and autocrine feedback. The Boolean approach allows to derive
important predictions without detailed quantitative kinetic
data and parameters over different time scales (Singh et al.,
2012). Protein signaling comprised MAPK/ERK, JNK/JUN,
and PI3K/AKT pathways. Based on the upstream transcription
factor analysis and transcriptional regulation of Mmp10 (Matrix
Metallopeptidase 10), Serpine1 (Serpin Peptidase Inhibitor,
Clade E, Member) and Itga1 (Integrin, Alpha 1), we further
included an autocrine feedback via uPAR signaling. The model
topology was trained on the transcriptional response after
pathway inhibition. Inhibition of JNK completely blocked

PC12 cell differentiation and long-term expression of target
transcription factors (TFs), such as various Kruppel-like factors
(Klf2, 4, 6 and 10), Maff (V-Maf Avian Musculoaponeurotic
Fibrosarcoma Oncogene Homolog F) and AP1. Interestingly,
inhibition of MEK (mitogen-activated protein kinase kinase),
blocking the phosphorylation of ERK, slowed down, but not
completely abolished cell differentiation. Neurite quantification
over 6 days confirmed a late and reduced, but significant PC12
differentiation, which hinted at alternative pathway usage
through JNK. Inhibition of the PI3K/AKT pathway, which is
involved in cell proliferation (Chen et al., 2012), even increased
the neuronal morphology and neurite outgrowth.

In conclusion, our Boolean modeling approach shows the
complex interplay of protein signaling, transcription factor
activity and gene regulatory feedback in the decision and
perpetuation of PC12 cell differentiation after NGF stimulation.

2. MATERIALS AND METHODS

2.1. Cell Culture and Stimulation
PC12 cells were obtained from ATCC (American Type Culture
Collection, UK) and were cultured at 37◦C at 5% CO2 in
RPMI 1640 medium, supplemented with 10% Horse Serum, 5%
Fetal Bovine Serum, 1% penicillin/streptomycin (PAN Biotech,
Germany) and 1% glutamine (PAN Biotech, Germany). For
cell stimulation, 500,000 cells/well were seeded on collagen
coated 6 well plates (Corning, NY, USA). The following day,
cells were stimulated with 50 ng/ml rat nerve growth factor
(NGF; Promega, Madison, WI, USA) or 75 ng/ml epidermal
growth factor (EGF; R&D Systems; Wiesbaden, Germany)
for the corresponding times. For the pathway inhibition
experiments, the following inhibitors were used and added 60
min before NGF was added, mitogen-activated protein inhibitor
at a concentration of 20 µM (MEKi; U0126 from Promega,
Madison, WI, USA), phosphoinositide 3-kinase inhibitor at a
concentration of 40 µM (PI3Ki; LY-294002 from Enzo Life
Sciences, New York, USA) and c-Jun N-terminal kinase inhibitor
at a concentration of 20 µM (JNKi; SP600125 from Sigma-
Aldrich, St. Louis, USA). The inhibitors were dissolved in DMSO
and were further diluted in cell culture medium at their working
concentration. Control cells were treated with DMSO at the
same concentration that was present in the cells with inhibitor
treatment.

2.2. RNA Isolation and Quantitative Real
Time PCR (qRT-PCR)
Total RNA was isolated from 500,000 cells per timepoint
according to the manufacturer’s protocol (Universal RNA
Purification Kit, Roboklon, Germany). RNA integrity
was measured using an Agilent Bioanalyzer-2000 (Agilent
Technologies GmbH, Waldbronn, Germany), and its content
quantified by NanoDrop ND-1000 (Thermo Fisher Scientific,
Wilmington, USA). For RT-qPCR, double strand cDNA was
synthesized from 1 µg of total RNA using the iScriptTM cDNA
Synthesis kit (Quanta Biosciences, Gaithersburg, USA) according
to the manufacturer instructions. RT-qPCR was performed in
a CFX96 instrument (BioRad, Hercules, CA, USA) using a
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SYBR Green master mix. Relative gene expression levels were
calculated with the 2-11Ct method, using HPRT1 and 18S
ribosomal RNA as reference genes. Post-run analyses were
performed using Bio-Rad CFX Manager version 2.0 and the
threshold cycles (Cts) were calculated from a baseline subtracted
curve fit. See Supplementary Table 1 for primer pair sequences.

2.3. Microscopy and Quantification
Live phase contrast images from PC12 cells under the different
conditions were acquired using a Nikon Eclipse Ti Inverted
Microscope (Nikon; Düsseldorf, Germany) equipped with a
Perfect Focus System (PFS) and a Digital cooled Sight Camera
(DS-QiMc; Nikon, Germany) as described in (Weber et al., 2013).
Briefly, PC12 cells were cultured in collagen coated 6-well plates
(500,000 cells/well) and treated as described in “Cell culture and
stimulation” and 150 images per well, every second day were
recorded with the same spatial pattern. Cell differentiation is
calculated by the ratio of the two described imaging features
(Weber et al., 2013) convex hull (CH) to cell area (CA) for 150
images per well over 6 days (Weber et al., unpublished data).

2.4. Western Blot
For each timepoint and condition 3 × 106 PC12 cells (for
inhibition experiments) or 5 × 106 PC12 cells (for EGF vs.
NGF comparison) were seeded in 10cm collagen coated Cell
BIND dishes (Corning; Germany). Cells were collected after 5,
10, 30 min, 1, 2, 4, 6, 8, 12, 24, and 48 h in 200 µl RIPA
buffer (containing 0.5% SDS), supplemented with proteinase
inhibitor (complete mini EDTA free tablets, Roche, Basel,
Switzerland) and Benzonase (Merck), and lysed for 20 min
under agitation. A total of 30 µg protein was loaded per
lane and run in 10% SDS- polyacrylamide gels, transferred
to polyvinylidene difluoride membranes. Membranes were cut
horizontally into fragments according to the expected sizes
of the protein of interest and immunoblotted with antibodies
against total p44/42 (ERK1/2, 1:2000, #9102S, Cell Signaling
Technology [CST]), phospho p44/42 (pERK1/2, 1:2000, #9101S,
CST), total JNK (JNK1/2, 1:1000, #9258S, CST), phospho JNK
(Thr183/Tyr185, 1:1000, #4668S, CST), total AKT (1:1000,
#4691S, CST), phospho AKT (1:1000, Ser473, #9271S, CST)
or GAPDH (1:2000,# MAB374, Millipore) overnight at 4◦C.
Proteins were visualized with chemiluminescence on SuperSignal
West Pico Chemiluminiscent Substrate imager (Thermo-Fischer,
Massachusetts, USA) after 1h of incubation with appropriate
horseradish peroxidase-linked secondary antibody (Sigma-
Aldrich). Immunoblots were quantified using ImageJ (image
analyzer camera LAS4000, Fujifilm, Tokyo, Japan). Blots were
normalized to total GAPDH and an internal standard (IS) was
used for normalization between membranes.

2.5. Microarray Analysis and Data
Pre-processing
Time-resolved gene expression data of stimulated PC12
were recorded at t = [1, 2, 3, 4, 5, 6, 8, 12, 24] h and
t = [1, 2, 3, 4, 6, 8, 12, 24] h for NGF and EGF stimulation,
respectively. Control timepoints were measured at
0, 2, 4, 6, 8, 12, 24 h. Total RNA was isolated, labeled and

hybridized to an Illumina RatRef-12 BeadChip (Illumina, San
Diego, CA, USA) according to the manufacturers protocol.
Raw microarray data were processed and quantile normalized
using the Bioconductor R package beadarray (Ritchie et al.,
2011). Illumina Probes were mapped to reannotated Entrez
IDs using the Illumina Ratv1 annotation data (v. 1.26) from
Bioconductor. If several probes mapped to the same Entrez ID,
the one having the largest interquartile range was retained. This
resulted in 15,348 annotated genes, whose expression was further
batch corrected according to their chip identity (Johnson et al.,
2007). Finally, gene expression time series were smoothed by
a 5th order polynomial to take advantage of the high sampling
rate and replicates at 0, 12, and 24 h. Microarray data have
been deposited at Gene Expression Omnibus (GEO) under the
accession number GSE74327.

2.6. Multi-Dimensional Scaling
To determine significantly regulated genes over time we
performed a multi-dimensional scaling (MDS) using the HiT-
MDS algorithm (Strickert et al., 2005). The algorithm projects
the 15348 × 15348 distance matrix D of the pairwise Euclidean
distances between all genes onto a two dimensional space, while
preserving distances in D as best as possible. Genes varying
strongly and uniquely over time will appear as outliers in the
MDS point distribution. The uniqueness of a gene expression
profile was quantified by fitting a two-dimensional skewed
Gaussian distribution (Azzalini, 2015) to the MDS point density
function.

2.7. Clustering Gene Expression Patterns
To cluster the gene timeseries, we applied the Cluster Affinity
Search Technique (CAST), which considers the genes and their
similarity over times as nodes and weighted edges of graph,
respectively (Ben-Dor et al., 1999). All clusters are considered
as unrelated entities and there is no pre-defined number of
clusters. Instead a threshold parameter, here t = 0.8, determines
the affinity between genes and this the final number of gene
clusters. Inverse or anti-correlative behavior of genes after NGF
or EGF stimulation was determined by fitting a linear model
to the smoothed gene expression. Genes having a significant
slope with opposite sign and an r2 > 0.7 were taken as
anti-correlated.

2.8. Enrichment Analysis of Transcription
Factor Target Gene Sets
Upstream analysis for putative transcription factors regulating
the EGF and NGF transcriptome responses over time were
assessed by a Gene Set Enrichment analysis (Luo et al., 2009)
using paired control to treatment samples for each timepoint
with an overall cutoff q-value < 0.01. As gene sets we used the
transcription factor target lists from the Molecular Signatures
Database (MSigDB, version 5.0) (Subramanian et al., 2005), for
which we mapped the human genes to the rat orthologs using
BiomaRt (Huang et al., 2014).
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2.9. Boolean Model
We used a Boolean model framework for dynamic analysis of
PC12 cell differentiation. Based on our microarray data and
literature knowledge we constructed a highly connected prior
knowledge network (PKN) consisting of 63 nodes and 109
edges (cf. Supplementary Table 2). The R/Bioconductor package
CellNetOptimizer (CNO) (Saez-Rodriguez et al., 2009) was used
to optimize the PKN by reducing redundant nodes, unobservable
states and edges. For this we rescaled the qRT-PCR fold change
values between 0 and 1 and then transformed with a Hill function
f (x) = xn

xn + kn
as suggested in Saez-Rodriguez et al. (2009), where

n = 2 and k = 0.5 denote the Hill coefficient and the threshold,
above which a node is considered “on,” respectively. Changing
the Hill coefficient between 1 ≤ n ≤ 6 did not change the results
qualitatively. Model topology optimization was performed via
the CellNORdt, which allows fitting with time course data. (See
Supplementary Table 3 for stimulus, inhibition and time course
data). We set the maximal CPU run time for the underlying
genetic algorithm (GA) to 100 s and the relative tolerance to
0.01, using default parameters from the CNO otherwise. A
representative evolution of the average and best residual error in
a GA run is depicted in Supplementary Image 1A. The solutions
quickly converge to a quasi steady state within the time window
of simulation of 100 s. The following edges were fixed to prior to
optimization based on literature knowledge: NGF→ PI3K, NGF
→ RAS, NGF→ PLC, AP1→ NPY, MEK/ERK & JNK→ Jund,
MEK/ERK & JNK → Junb, Fosl1 & Jund → AP1, Mmp10 →

RAS, RAS → MEK, PLC → MEK. Model optimization was
performed 100 times and edges were retained, if they appeared
in 70% of the runs. This cutoff was chosen to generate a sparse
network with robust edges. Performingmore runs did not change
the results qualitatively (cf. Supplementary Image 1B). Model
simulations were performed using the R/Bioconductor package
BoolNet (Müssel et al., 2010). The reference publications from
which the interactions have been inferred as well as their Boolean
transition functions are listed in Supplementary Table 4.

3. RESULTS

3.1. Gene Response of PC12 Cells Diverges
for NGF and EGF on Long Time Scales
To elucidate the dynamic gene response of NGF and EGF, we
measured the transcriptome dynamics using Illumina RatRef-
12 Expression BeadChips. PC12 cells were either stimulated
with NGF or EGF, and collected at the following timepoints:
1, 2, 3, 4, 5, 6, 8, 12, and 24 h. The unstimulated control samples
(ctrl) were collected in parallel. Gene expression time series were
smoothed by a 5th order polynomial to take advantage of the high
sampling rate. Finally, wemapped array probes to their respective
Entrez IDs, resulting in 15,348 annotated genes.

A bi plot of the principal component analysis (PCA) for
the 1000 most varying genes depicted a clear separation of the
control, NGF and EGF samples. The PCA scores, representing
the NGF and EGF treated samples, showed a qualitatively similar
behavior up to 4 h after stimulation, yet differedmarkedly beyond
that time (Figure 1A, left). The absolute length and direction of

the PCA loadings (Figure 1A, right) indicate the contribution of
individual genes to the position of the scores. Correspondingly,
several immediate early genes, such as Junb (Jun B Proto-
Oncogene), Fos (FBJ Murine Osteosarcoma Viral Oncogene
Homolog), Ier2 (Immediate Early Response 2), and Egr1 (Early
Growth Response 1) contributed to the early gene response
under both EGF and NGF stimulation, while members of the
uPAR/Integrin signaling complex, such as Mmp13/10/3 (Matrix
Metallopeptidase 13/10/3), Plat (Plasminogen Activator, Tissue)
and Serpine1 (Serpin Peptidase Inhibitor, Clade E, Member 1)
determined, among others, the separation of the NGF from
the EGF trajectory. Loadings that point toward the control and
late EGF response samples, like Cdca7 (Cell Division Cycle
Associated 7) and G0s2 (G0/G1 Switch 2), are clearly related to
cell cycle progression and additionally highlight the difference
in proliferation vs. differentiation. In conclusion, the NGF gene
response, and thus PC12 cell differentiation, must be determined
by late transcriptional feedback events, that trigger and sustain
MAPK/ERK signaling.

Next, we sought to functionally analyze the transcriptional
differences in early and late gene regulation after EGF and
NGF stimulation. For this we selected genes that are (i)
strongly regulated (log2 fold change of < −1.7 or > 1.7 in
two consecutive timepoints) and (ii) have a unique temporal
expression profile according to a multi-dimensional scaling
(MDS) analysis (p-value < 0.01) (cf. Supplementary Image 2).
We found 152 and 402 genes, meeting both criteria, in the
EGF and NGF data, respectively, among which 126 genes are
shared by both conditions. Figure 1B depicts a clustering of these
differentially i.e., top-regulated genes. A cluster affinity search
technique (Ben-Dor et al., 1999) identified five EGF (E1-E3b) and
seven NGF (N1-N4B) gene response clusters (cf. Supplementary
Table 5 and Supplementary Image 3). Interestingly, the EGF
stimulus induced a short pulse-like response with rapid return
to original gene expression levels, while the NGF stimulus
induced a combination of short-impulse like (N1 - N2b) and long
sustained gene expression patterns with several clusters (N3a-
N4b) sustaining their expression over time (cf. circled insets in
Figure 1B).

Figure 1C depicts a network representation of the enrichment
analysis using a hypergeometric test on Gene Ontologies (GO).
Enriched upregulated biological functions were identified in gene
lists E1, E2a, N1, N2a, N3a, N4a and in both groups of inversely
regulated genes (cf. Supplementary Table 6). Nodes correspond to
GO terms, with numbers indicating the joint enrichment scores.
Nodes sharing at least 20 percent of their genes are connected by
solid or dotted edges, if the connected nodes lie within a stimulus
or across NGF and EGF treatment. Early transcription factor
activity is common to both, NGF and EGF signaling, (clusters
E1 and N1) as well as MAPK signaling genes (clusters E2a and
N3a). The latter, however, is more prominent and enriched at
later points in time after NGF stimulation (N3a) compared to the
EGF induced response (E2a). Here, a less and earlier enrichment
of MAPK signaling genes was seen. Moreover, a second network
of transcription factor activity could be identified after NGF
stimulation (cluster N2a) that does not have any equivalent after
EGF stimulation. It seems, that the initial response (first hour) is
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FIGURE 1 | Gene response dynamics after NGF or EGF stimulation. (A) Principal component analysis (PCA) of the PC12 cell transcriptomes after NGF (red),

EGF (blue) and control treatment (gray). The PCA scores (left panel) and loadings (right panel) correspond to the samples and genes, respectively. Samples in the left

panel have been connected to guide the eye. Clearly, EGF and NGF samples remain close in the first 3 h and separate at later timepoints, indicating a different cellular

phenotype. Right panel: 50 largest loading vectors indicating the impact and time of action of individual genes. Immediate early genes, like Fos or Ier2 point toward

early timepoints, while loadings pointing toward the right, like Vgf or Npy, correspond to late timepoints and are most likely involved in differentiation. (B) Expression

clusters of top regulated genes. The left and right panels depict the response of individual genes to EGF and NGF stimulation, respectively (gray lines). Cluster

centroids are marked by lines with the cluster size encoded by line thickness. The circular inserts depict the cluster centroid envelopes for EGF and NGF, respectively.

(C) Network representation of functional enrichment of NGF and EGF response genes. The network is comprised of GO-term clusters having a significant enrichment

(−log10 (p-value) > 1.3) as shown in bold black numbers. Red, gray and green nodes contain in this order top-regulated genes, inversely-regulated genes between

EGF and NGF or both. The vertical node location corresponds to the peak regulation of their genes, while node size is proportional to the number of genes in a

functional category. Edges indicate a gene overlap of > 20% between nodes, being drawn as dashed lines, if they are shared between EGF and NGF.

controlled by a shared set of top-regulated genes (cf. Figure 1C,
dashed lines). The cell-fate specific processes, however, seem
to be orchestrated by different set of genes (cf. Figure 1C,
separate networks). Many of the genes executing proliferation
or differentiation specific processes fall into the category of
inversely regulated genes and are not amongst the set of top-
regulated genes identified earlier (cf. Figure 1C, green and gray
nodes, cf. Material and Methods, cf. Supplementary Table 7).
The genes involved in the procession of extracellular matrix
and cytoplasmic vesicles, however, constitute an exception: these
genes are both top and inverse-regulated (cf. Figure 1C, green
nodes).

In summary, functional analysis of the gene clusters revealed
an initiation of the differentiation and proliferation process by
a shared set of differentially regulated genes. Specific functions,
such as transmission of nerve impulse or DNA replication,

however, seemed to be executed by two distinct gene groups
that are when comparing the EGF to the NGF stimulus inversely
regulated over time. Additionally, a second network of genes
involved in transcription factor activity was identified in the
NGF data set, which lacked a corresponding network in the EGF
data set.

3.2. Simulation of a Boolean Network
Based on the above gene response analyses we sought to identify
the mechanisms that sustain MAPK signaling activity after NGF
stimulation. Our transcriptome timeseries analysis revealed that
the decision process between proliferation and differentiation
was spread out over several hours during which transcriptional
feedback through an additional set of transcription factors
was present after NGF stimulation, only (cf. Figure 1C). To
further elucidate the transcription factors upstream of the gene

Frontiers in Genetics | www.frontiersin.org 5 April 2016 | Volume 7 | Article 44

http://www.frontiersin.org/Genetics
http://www.frontiersin.org
http://www.frontiersin.org/Genetics/archive


Offermann et al. Boolean Model of PC12 Cell Differentiation

response after EGF or NGF stimulation we performed a gene set
enrichment analysis (GSEA) (Luo et al., 2009) on the paired NGF
to control and EGF to control transcriptome timeseries. As gene
sets we used the motif gene sets from the Molecular Signatures
Database (MSigDB v5.0) (Subramanian et al., 2005) and mapped
the human genes onto the rat orthologs using BiomaRt (Huang
et al., 2014).

Figure 2A compares the temporal significance of
transcription factors for EGF and NGF stimulation. EGF
elicited an early, yet transient significance of all transcription
factors, while the time-resolved transcription factor significances
for NGF showed early, transient and late activity. Figure 2B
depicts the differences in TF significance between NGF and
EGF. The most down-regulated TFs relative to EGF are E2F1,
EBF1, SOX9 and SP1, all of which are linked to cell proliferation
(Bastide et al., 2007; Hallstrom et al., 2008; Györy et al., 2012;
Zhang et al., 2014).

Mullenbrock et al. (2011) showed late NGF-induced genes up
to 4 h were preferentially regulated by AP1 and CREB (cAMP
response element-binding protein). While AP1 was among the
most persistently up-regulated transcription factors, we found
a transient significance for CREB1, only, peaking at 3 and 6 h,
under EGF or NGF stimulation, respectively, which indicated the
importance of further TFs beyond that time window. In fact,
we found the highest positive differences in the transcription
factors BACH2, AP1, as well as ELF2 and ETV4. The latter
two belong to the ETS transcription factor family. In particular
ETV4, a member of the PEA3 subfamily of ETS, has been
shown to promote neurite outgrowth (Fontanet et al., 2013;
Kandemir et al., 2014). BACH2, member of the BTB-basic region
leucine zipper transcription factor family, is known to down-
regulate proliferation and is involved in neuronal differentiation
of neoblastoma cells via p21 expression (Shim et al., 2006)
and it interacts with the transcription factor MAFF (V-Maf
Avian Musculoaponeurotic Fibrosarcoma Oncogene Homolog
F) (Kannan et al., 2012) that is necessary for differentiation.

To analyze the early cellular response upon treatment, we
additionally compared the phosphorylation levels of pERK,
pAKT and pJNK under NGF and EGF stimulation over time
(Figure 2C). As expected, pERK increased after NGF and EGF
stimulation, showing a persistent up-regulation for 8 h or
pulse-like response, respectively. pJNK was continuously up-
regulated under NGF relative to EGF stimulation, whereas pAKT
responded similar to both stimuli, yet showed a consistently
higher phosphorylation under EGF beyond 2 h. Taken together,
this corroborates the roles of both pERK and pJNK as well as
pAKT in PC12 cell differentiation and proliferation, respectively
(Waetzig and Herdegen, 2003; Chen et al., 2012).

Based on the combined transcriptome, upstream transcription
factor and protein analyses we next developed a comprehensive
prior knowledge interaction network (PKN) for NGF induced
PC12 cell differentiation. The PKN comprises key players of
known pathways involved in PC12 cell differentiation, such
as ERK/PLC/PI3K/JNK/P38/uPAR/NPY and integrin signaling,
as well as “linker nodes” to obtain a minimal, yet fully
connected network, consisting of 63 nodes and 109 reactions
(cf. Supplementary Table 4 for reference publications). The

network is depicted in Supplementary Image 4 with differentially
regulated genes obtained from our timeseries marked in red
and points of inhibition indicated by orange. A Cytoscape
readable network format is provided in Supplementary Table 2.
Albeit the included PKN pathways are much more complex,
our focus was on simulating a biologically plausible signaling
flow, including protein signaling, gene response and autocrine
signaling as follows: stimulated TrkA receptor activates the
downstream pathways PLC/PKC, MAPK/ERK, PI3K/AKT, and
JNK/P38. Phosphorylated ERK, PI3K and P38/JNK together
activate different transcription factors such as Fosl1, Fos, Junb,
Btg2, Klf2/5/6/10, Cited2,Maff, and Egr1, which are important for
PC12 cell differentiation according to our analysis and literature
(Cao et al., 1990; Ito et al., 1990; Levkovitz and Baraban, 2002; Gil
et al., 2004; Eriksson et al., 2007).

Junb and Fos initiate the AP1 system, which in turn
induces uPA/uPAR signaling, triggering the formation of plasmin
(Avraham and Yarden, 2011). The latter is a major factor for
the induction of Mmp3/Mmp10, linking degradation of the
extracellular matrix (ECM) with integrin signaling. The integrins
transmit extracellular signaling back via the focal adhesion kinase
(FAK) (Singh et al., 2012). FAK activates again the SHC protein,
which closes the autocrine signaling. Previous studies reported
that uPAR expression is necessary for NGF-induced PC12 cell
differentiation (Farias-Eisner et al., 2000; Mullenbrock et al.,
2011). A second autocrine signaling loop in the initial PKN
putatively acts via the AP1 system, which in turn activates the
Neuropeptide Y (NPY/NPYY1 pathway). NPY is a sympathetic
co-transmitter that acts via G protein-coupled receptors through
interactions with its NPYY1 receptors (Selbie and Hill, 1998;
Pons et al., 2008). NPYY1 receptor further activates Ca2+

dependent PKC /PLCgamma and subsequently convergences to
ERK signaling.

To optimize the highly connected PKN we used
CellNetOptimizer (CNO) (Saez-Rodriguez et al., 2009). The
CNO first compresses the network, i.e., it deletes unobservable
nodes and then optimizes the network topology using a genetic
algorithm. We trained the PKN using gene expression of
selected differentially regulated genes under NGF stimulus and
inhibition of either MEK, JNK, or PI3K (Figure 3A, MEKi,
JNKi and PI3Ki). The overall gene response showed a gradual
decline in fold change from NGF via MEK to JNK inhibition,
while inhibition of PI3K only moderately impacted the gene
expression (Figure 3A). The most affected genes under MEK and
JNK inhibition were members of the uPAR signaling pathway,
Mmp10, Mmp3, and Plaur as well as the transcription factors
Fosl1 and Egr1, Plaur, Dusp6 (Dual Specificity Phosphatase 6)
and lastly Npy.

Topology optimization using the above perturbations led to a
greatly reduced network. Optimization lumped linear pathways
into one node, such as the autocrine feedback via uPA/PLAT to
Itga1 and FAK or MEK to ERK transition. The reduced network
revealed both MAPK/ERK and JNK as the central network
hubs, distributing the upstream signals to downstream genes. It
includes two positive feedback via AP1 and uPAR signaling back
to FAK and MAPK as well as AP1 to Npy and PKC/PLC back to
MAPK. To comply with prior knowledge, we re-expanded linear
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FIGURE 2 | Upstream analysis of gene expression timeseries. (A) Upstream Gene Set Enrichment Analysis for transcription factors. The heatmaps depict the

significance of transcription factors putatively controlling the gene response after EGF (left) or NGF stimulation (right). All TFs are significantly regulated (FDR corrected

p-value < 0.01) after NGF treatment. TFs have been clustered by their Euclidean distance across all conditions using a complete linkage method. (B) Difference in TF

p-value significance (NGF-EGF). Rows were ordered from the most positive to the most negative difference at t = 12 and 24 h. (C) Time-resolved quantification of

pERK, pAKT and pJNK after EGF and NGF treatment. Original western blots from PC12 cells treated with 75 ng/ml EGF and 50 ng/ml NGF over time. GAPDH is

shown as loading control, IS: Internal Standard. Statistical analysis of the pERK/ERK, pAKT/AKT and pJNK/JNK levels are shown on the right panel. An increased and

significant higher pERK/ERK level is shown in NGF stimulated (shown as black bars) cells compared to EGF (shown as white bars). A similar trend is visible for

pJNK/JNK. A * denotes a p-value < 0.05, data points obtained in duplicates and triplicates.
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FIGURE 3 | Selective inhibition of NGF-induced PC12 differentiation. (A) Fold change values of selected response genes in PC12 cells after NGF stimulation

under additional inhibition of MEK (NGF+MEKi), JNK (NGF+JNKi), or PI3K (NGF+PI3Ki). Fold change values have been calculated from biological triplicates relative to

the unstimulated control per timepoint. To retain the contrast of less variable genes the maximal fold change has been restrained to +6. Genes have been clustered by

their Euclidean distance across all conditions using a complete linkage method. (B) Optimized Boolean Network based on the training data in (A). Nodes in red have

been measured on the transcript level. Orange nodes indicate inhibited proteins.

pathways and added known down-stream target genes, such
that the final network, shown in Figure 3B, comprised 32 nodes
and 52 edges. We assumed that PC12 differentiation occurs,
if the majority of these genes is activated together with uPAR
signaling. Due to the inherent difficulty of Boolean networks
to incorporate negative feedback loops, we revised the network

topology of the reduced network to include transient gene activity
of several moderately responding genes. Klf4 and Btg2 have been
previously been indicated as immediate early genes in PC12
cell differentiation (Dijkmans et al., 2009) and are involved
in growth arrest (Tirone, 2001; Yoon et al., 2003), which is
a necessary prerequisite for differentiation and degradation of
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mRNA, respectively. While the explicit mechanism of how Klf4
and Btg2 are regulated remains unclear, we assumed an auto-
inhibition once they mediated their growth arrest effect. Zfp36
belongs to the TTP (Tristetraprolin) family of proteins and has
been shown to degrade AU-rich mRNAs, particularly of early
response genes (Amit et al., 2007). It negatively regulates its
own expression (Tiedje et al., 2012) and therefore in the model
effectively delays the activity of AP1 before switching itself off. Of
note, another member of the TTP protein family, Zfp36l2 (zinc
finger protein 36, C3H type-like 2) is constitutively expressed at
long times after NGF stimulation (data not shown) and might
act as another long-term negative feedback regulator and causing
downregulation of Egr1, Fos, and Junb. Indeed, our experimental
data revealed a reduction on gene expression of Egr1, Fos and
Junb over time (Figure 3A).

We simulated the optimized and re-expanded Boolean
network (cf. Supplementary Table 8) using the BoolNet
R/Bioconductor package (Müssel et al., 2010), performing
two types of simulations. First, we tested the robustness and
alternative attractors by setting NGF to “on” and randomly
initializing all other network nodes. The nodes were then
synchronously updated until a steady state was reached. Within
n = 107 different simulations, the same final network state with
“cell differentiation” set to “on” was always reached. Although
this was not an exhaustive search given the number of possible
initial network states, it still demonstrated the robustness of
the network output. Next, to show the information flow from
the NGF receptor to the downstream nodes under different
inhibitory conditions, we initialized all nodes except NGF to
“off” and performed synchronous updates until a steady state
was reached (Figure 4A). Without inhibition, NGF sequentially
switches on MAPK, AKT and JNK pathways as well as uPAR
signaling. Klf4, Btg2, and Zfp36 become transiently active, with
the latter delaying AP1 activity. Blocking MEK (NGF+MEKi)
inhibited ERK and thus several downstream targets, including
the uPAR feedback. As the latter is assumed indispensable for
PC12 cell differentiation, (Farias-Eisner et al., 2000, 2001), the
model predicted inhibition of PC12 cell differentiation. The
same phenotype is found, when blocking JNK (NGF+JNKi). In
comparison to NGF+MEKi it even abrogated the activity of
downstream targets altogether. Inhibition of PI3K (NGF+PI3Ki)
solely affected PI3K and its downstream target protein AKT and
target genesMaff and Klf10, yet cell differentiation persisted.

Taken together, we developed a core network from the
downstream interactome of PC12 cell pathways involved in
differentiation. The model captured the dynamic pathway
activation after NGF stimulation and various inhibitions. It
assigned central and synergistic roles for ERK and JNK in PC12
differentiation with JNK having the largest impact on the network
activity.

3.3. Model Analysis and Experimental
Confirmation
Network simulations were confirmed by live phase-contrast
imaging (Figure 4B) and western blot analyses (Figure 5). We
measured the convex hull (CH) to cell area (CA) ratio of PC12

cells on days 2, 4, and 6. A large convex hull due to extended
neurite (marked as red arrow heads in Figure 4B) and small
overall cell area is indicative of differentiation (Figure 4B, right
panel). Clearly, the continuous CH/CA ratio at day 2 was largest
for NGF stimulation and NGF stimulation with additional PI3K
inhibition, which corresponded well with the cell differentiation
set to “on” in the network simulations under these condition.
One can speculate whether inhibition of the pro-proliferative
PI3K pathway amplifies cell differentiation, possibly relieving
a negative feedback. Indeed, a Western blot of the pERK/ERK
ratio depicted a trend to higher ERK phosphorylation relative
to NGF stimulation under PI3K inhibition (Figure 5) and phase-
contrast images of PC12 cells show more and longer neurites in
comparison to cells treated only with NGF or in combination
to MEKi and JNKi (Figure 4B, NGF+PI3Ki). Interestingly,
image analysis suggested not a stop, but rather a delay of cell
differentiation under MEK inhibition. In detail, PC12 cells show
no neurites under MEKi after 2 days of combined NGF treatment
compared to NGF alone or NGF-PI3Ki. After 4 and 6 days of
NGF+MEKi treatment, less cells have neurites in comparison to
cells that were only treated with NGF (Figure 4B, NGF+MEKi).
In line with literature, pERK levels were reduced, yet pJNK
levels were likewise increased, indicating a redirection of protein
activity under MEK inhibition (Figure 5, right panel). Likewise,
the gene expression showed a reduced, but not completely
abolished fold change for Mmp10 (Figure 3A) and also an up-
regulation of Dusp6. Although the discrete Boolean model could
not simulate gradual responses, MEK inhibition still resulted
in the activation of several downstream target genes necessary
for PC12 cell differentiation, while none of these were active
under JNK inhibition. In summary, modeling and simulation
suggested that PC12 differentiation involved the activity of
both JNK/JUN, MAPK/ERK and PI3K/AKT signaling pathways.
The establishment of a positive, autocrine feedback loop was
indispensable to active late and persistent gene expression.

4. DISCUSSION

PC12 cells are a well established model to study the cellular
decisions toward proliferation or differentiation. Nevertheless,
there is still a lack of understanding on how protein signaling
and gene regulation interact on different time scales to decide
on a long-term, sustained phenotype. Given the fact that PC12
cell cycle and differentiation last up to 4 and 6 days, respectively
(Greene and Tischler, 1976; Luo et al., 1999; Adamski et al., 2007),
late events occurring beyond the first hours are most likely to
be important for sustaining the cellular decision. However, few
studies that have compared the long-term effect of EGF and NGF
in PC12 cells. They focused either on NGF alone (Dijkmans et al.,
2008, 2009), on individual (Angelastro et al., 2000; Marek et al.,
2004; Lee et al., 2005; Chung et al., 2010), or early time-points
(Mullenbrock et al., 2011).

Previous studies have identified expression of immediate
early genes (IEG), such as Egr1, Junb, and Fos together with
delayed early genes (DEG), like Dusp6, Mmp3/10, Fosl1, and
Atf3 as necessary for PC12 cell differentiation (Vician et al.,
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FIGURE 4 | Network simulation of time sequential pathway activation and experimental validation. (A) The heatmaps depict the path to attractor upon NGF

stimulation. Columns correspond to synchronous update steps of the Boolean network. Time progresses from left to right until a steady state is reached. Initially all

nodes, except NGF, are set to zero. Colored boxes correspond to activated nodes with the color denoting individual pathways/node categories. Cells are predicted to

differentiate, if the node “Cell differentiation” is active, as in the case for NGF, or NGF+PI3Ki treatment. (B) Left: phase contrast images for days 2, 4, and 6 are shown

for the 4 different conditions: NGF (control), NGF+MEKi, NGF+PI3Ki and NGF+JNKi. Red arrows depict sites of neurite outgrowth in differentiating PC12 cells. Bar:

100 µm. Right: statistical analysis of PC12 cell differentiation from phase contrast imaging for the different conditions are shown as convex hull (CH) to cell area (CA)

ratio. Bars show Mean ± SEM, n = 2, (*t-test p-value < 0.05).

1997; Levkovitz et al., 2001; Dijkmans et al., 2008; Mullenbrock
et al., 2011). However, we found all these genes strongly
regulated by both EGF and NGF stimulation (Supplementary
Table 5), however, showing differences in their expression
kinetics (Figure 1). Akin to differences in the pERK dynamics,
these results suggest that cellular decisions toward differentiation
or proliferation are driven by the differences in the gene
expression kinetics.

It has been suggested before that distinct cellular stimuli
activate similar sets of response genes, whose expression

dynamics, rather than their composition, determine cellular
decisions (Murphy and Blenis, 2006; Amit et al., 2007; Yosef
and Regev, 2011). Single expression bursts are likely to stimulate
proliferation, while complex, wave-like expression patterns
induce differentiation (Bar-Joseph et al., 2012). Accordingly, EGF
elicited a pulse-like gene response, while NGF induced a complex,
wave-like gene response (Figure 1B). After EGF stimulation the
expression of IEGs, Egr1, Fos, and Junb was quickly attenuated
through the rapid up-regulation of their negative regulators,
namely Fosl1, Atf3, Maff, Klf2, and Zfp36l2 and contributing to
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FIGURE 5 | Quantification of pERK, pAKT and pJNK levels under NGF and individual inhibitor treatments. Determination of pERK/ERK, pAKT/AKT and

pJNK/JNK under NGF, NGF+MEKi, NGF+JNKi and NGF+PI3Ki treatment. Left panel: pERK/ERK levels decrease over time under NGF plus MEK and JNK inhibition.

In contrast, PI3K inhibition shows a similar increase and sustained pERK/ERK levels over time compared to NGF treated PC12 cells alone. Interestingly, pAKT/AKT is

increased under NGF+MEKi treatment, which is particularly significant in the early timepoints (30min and 1 h) compared to NGF alone or the other two inhibitors. The

latter two show decreased pAKT/AKT levels over time (middle panel). A * denotes a p-value < 0.05, data points obtained in duplicates and triplicates.

a pulse-like gene expression. Furthermore, Fosl1 counteracts Fos
and AP1 (Hoffmann et al., 2005) and Atf3 has been shown to
modulate Egr1 activity (Giraldo et al., 2012), while Maff and
Klf2 negatively regulate serum response and STAT-responsive
promoter elements (Amit et al., 2007). The same genes respond
after NGF stimulation, however with a delayed response and
might be one of the reasons for the stronger and longer gene
and pERK response under NGF stimulation (Murphy et al., 2002,
2004; Murphy and Blenis, 2006; Saito et al., 2013).

A recent study by Mullenbrock et al. (2011) compared
the transcriptome response of PC12 cells to EGF and NGF
stimulation up to 4 h. Using chromatin immunoprecipitation
they found a preferential regulation of late genes through AP1
and CREB TFs after NGF stimulation, which is in line with
our findings (Figure 2A). However, we predicted a constitutive
significance for AP1 up to 24 h, while CREB1 displayed
a transient importance, being most abundant at 6 h after
stimulation. Furthermore, we found a switch in the composition
of transcriptional master regulators between 4 and 12 h. During
this time, late TFs, such as BACH2, ETS1 and ELF2 become
active.

Supplementary Image 5 depicts a Volcano plot of their
target genes. Beyond the early gene targets, such as Fosl1 or
Junb, the late TFs additionally target related to cytoskeleton,
morphogenesis and apoptosis, such as Tumor Necrosis Factor
Receptor Superfamily, Member 12A (Tnfrsf12a), Doublecortin-
Like Kinase 1 (Dclk1), Nerve Growth Factor Inducible Vgf,
Coronin, Actin Binding Protein, 1A (Coro1a, Growth Arrest
And DNA-Damage-Inducible, Alpha (Gadd45a) and Npy. Of
note, we found Rasa2 among the targets, which has recently
been identified as a driver for differentiation through a negative
feedback between PI3K and RAS (Chen et al., 2012).

A recent study by Aoki et al. (2013) investigated the down-
stream gene response upon light-induced intermittent and
continuous ERK activation in normal rat kidney epithelial cells.
Similar to the TF activity after EGF and NGF stimulation in PC12
cells, intermittent pERK activity caused up-regulation of Fos,
Egfr, Ier2, and Fgf21, which were putatively controlled through
serum response factor (SRF) and CREB binding sites, while

sustained pERK activity caused gene regulation controlled by
AP1 and BACH1. One can speculate that it is more the temporal
dynamics of pERK and less the upstream ligands, such as EGF
or NGF, that eventually encode the transcriptional program
deciding on the cell fate.

To elucidate the various pathways and downstream target
genes under NGF stimulation we constructed a Boolean model
based on our transcriptome and additional literature data.
A prior knowledge network revealed a highly interconnected
pathway map transmitting NGF-induced signals. Training the
network via inhibition ofMEK, JNK or PI3K reduced the number
of edges and nodes by about 80% and revealed the MAPK/JNK
pathway as second signaling hub next to MAPK/ERK. Moreover,
blocking the JNK pathway had a more drastic effect on cell
differentiation than blocking MAPK/ERK via inhibition of
MEK through UO126. Indeed, studies on the effect of MEK
inhibition for PC12 cell differentiation are inconclusive. Early
studies report how MEK inhibition completely averted PC12
cell differentiation (Pang et al., 1995; Klesse et al., 1999),
while recent experiments suggest a decrease, rather than full
inhibition of differentiation (Levkovitz et al., 2001; Chung et al.,
2014). Our results were in line with the latter. Despite a
significant reduction in pERK (Figure 5), our cell morphology
measurements detected merely a decrease in the formation of
neurites, rather than full inhibition of differentiation. The reason
for this discrepancy could lie in the time scale of observation.
MEK inhibition delayed differentiation and it took 6 days to
eventually overcome this delay (Figure 4B). This confirmed the
modeling results, which established JNK as key regulator that
is closely interlinked with MAPK/ERK signaling. In concert
with pERK, also pJNK becomes constitutively active upon NGF
stimulation (Figure 2C). Moreover, blocking pERK through
MEK even increased pJNK (and pAKT) levels, while pERK
decreased after JNK inhibition, verifying a crosstalk between JNK
and ERK pathways. Previous reports suggested such a crosstalk
due to dual-phosphatase interaction (Fey et al., 2012), while
other studies proposed that JNK phosphorylates RAF (Adler
et al., 2005; Chen et al., 2012) and thereby contributing to
MAPK/ERK activity. However, the mechanistic details governing
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the crosstalk remain unclear so far. In conclusion, while previous
studies assigned parallel, non-redundant roles to MAPK/ERK
andMAPK/JNK (Waetzig and Herdegen, 2003), our results show
that JNK signaling might be even the main driver for PC12 cell
differentiation.

Next to the negative feedback loops through Klf4, Zfp36, and
Btg2, arresting cell cycle and attenuating mRNA abundance, we
included also two positive feedback loops via uPAR and integrin
signaling as well as through Neuropeptide Y and PKC/PLC
signaling. Positive feedback loops are a common regulatory
pattern in molecular biology to induce bistability switch-like
behavior, particularly in cell fate decisions and differentiation
(Xiong and Ferrell, 2003; Mitrophanov and Groisman, 2008;
Kueh et al., 2013). In fact, multiple feedbacks deciding between
PC12 cell differentiation and proliferation, have been studied on
the level of MAPK signaling (Santos et al., 2007; von Kriegsheim
et al., 2009). Recently, Ryu et al. (2015) used a FRET construct to
quantify pERK dynamics on a single cell level after growth factor
stimulation. While the cell population average still resembled
the hitherto described transient and sustained pERK activity
after respective EGF and NGF stimulation, the authors found
a highly heterogenous response on the single cell level. Pulsed
stimulation, however, not only synchronized MAPK activity
between cells, but also triggered PC12 differentiation upon EGF
stimulation, if the integrated pERK signal was large enough.
The authors concluded that thus not only MAPK signaling, but
also further pathways are responsible for the cell fate decision.
Sparta et al. (2015) used a similar experimental approach to
single cell response of human MCF10A-5e cells to show that
EGFR activity induced a frequency modulation response, while
TrkA activity caused amplitude modulation of pERK levels.
The authors explained these finding by additional receptor-
dependent signaling networks beyond the core Ras-Raf-MEK-
ERK pathway. Extending on this idea, our data and model
suggest autocrine signaling as further feedbacks that sustain the
expression of differentiation inducing TFs. Indeed, uPAR and
also Npy activity were strongly correlated with differentiation
(Figure 3A) and neither Npy nor uPAR signaling were activated
upon EGF stimulation (data not shown). In line with this finding
previous studies reported that uPAR expression is necessary for
NGF-induced PC12 cell differentiation (Farias-Eisner et al., 2000;
Mullenbrock et al., 2011). SERPINE1 regulating the plasminogen
activator-plasmin proteolysis was shown to promote neurite
outgrowth and phosphorylation of the TrkA receptor and ERK
(Soeda et al., 2006, 2008). In our model we included the necessity

of uPAR signaling though the activation of late genes, such as
Klf5, yet the causal relationship between uPAR signaling and
late gene expression remains unclear. However, uPAR signaling
could constitute the additional positive feedbacks beyond MAPK
signaling that were predicted by Ryu et al. (2015), which would
be interesting to test on the single cell level. Reporters for uPAR
and/or JNK activity should likewise show a heterogenous activity
and correlate with the per-cell differentiation status, which could
potentially be modeled within a stochastic differential equation
framework.

In conclusion, our approach has identified the short and
long-term transcriptional activity in PC12 cells after NGF and

EGF stimulation. Modeling the pathway orchestration using a
Booleanmodel we identified feedback regulations beyondMAPK
signaling that attenuate and sustain the cellular decision toward
differentiation. Extending on previous studies we established JNK
as a key player in PC12 cell differentiation that might have equal,
if not even more importance than ERK during this process.
Over time AP1 was accompanied by a variety of transcription
factors serving signal attenuation, signal maintenance and
morphological change of the cell, which demonstrates that the
decision toward differentiation is a time sequential process over
at least 12 h.
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