
RESEARCH ARTICLE

Insecticide resistance levels and mechanisms

in Aedes aegypti populations in and around

Ouagadougou, Burkina Faso

Athanase BadoloID
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Abstract

Background

Recent outbreaks of dengue and other Aedes aegypti-borne arboviruses highlight the

importance of a rapid response for effective vector control. Data on insecticide resistance

and underlying mechanisms are essential for outbreak preparedness, but are sparse in

much of Africa. We investigated the levels and heterogeneity of insecticide resistance and

mechanisms of Ae. aegypti from contrasting settings within and around Ouagadougou, Bur-

kina Faso.

Methodology/Principal findings

Bioassays were performed on larvae and adults to diagnose prevalence of resistance, and

to assess levels where resistance was detected. Investigation of resistance mechanisms

was performed using synergist bioassays, knockdown resistance (kdr) target site mutation

genotyping and quantitative PCR expression analysis of candidate P450 genes.

Larval dose-response assays indicated susceptibility to the organophosphates tested.

Adult females were also susceptible to organophosphates, but resistance to carbamates

was suspected in urban and semi-urban localities. Females from all localities showed resis-

tance to pyrethroids but resistance prevalence and level were higher in urban and especially

in semi-urban areas, compared to the rural population. Environment was also associated

with susceptibility: adults reared from larvae collected in tires from the semi-urban site were

significantly less resistant to pyrethroids than those collected from large outdoor drinking

water containers (‘drums’). Susceptibility to both pyrethroids tested was largely restored by

pre-exposure to Piperonyl Butoxide (PBO), suggesting a strong metabolic basis to

resistance.

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0007439 May 23, 2019 1 / 17

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Badolo A, Sombié A, Pignatelli PM, Sanon
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The 1534C kdr mutation was nearly fixed in semi-urban and urban areas but was far less

common in the rural area, where the 1016I kdr mutation frequency was also significantly

lower. P450 gene analysis detected limited over-expression of single candidates but signifi-

cantly elevated average expression in the semi-urban site compared to both a susceptible

laboratory colony, and females from the other collection sites.

Conclusions/Significance

Our results reveal pyrethroid resistance and paired kdr mutations in both urban and semi-

urban sites at levels that are unprecedented for mainland Africa. The combination of target

site and metabolic mechanisms is common in Ae. aegypti populations from other continents

but is a worrying finding for African populations. However, organophosphate insecticides

are still active against both larvae and adults of Ae. aegypti, providing useful insecticidal

options for control and resistance management.

Author summary

Several African countries including Burkina Faso have experienced dengue outbreaks

recently. In outbreaks, dengue control relies on the control of its vector but data on Aedes
aegypti resistance to insecticide, a key for efficient control, are often lacking, especially for

the African continent. We conducted a study in localities within and around Ouagadou-

gou to assess the Ae. aegypti resistance to insecticides and investigate the mechanisms

involved. We collected larvae of Aedes aegypti from three different localities and different

breeding sites to assess larval and adult susceptibility to insecticides. Aedes aegypti adults

showed high resistance to pyrethroid insecticides with the prevalence and intensity of

resistance depending on the locality and type of breeding site. Adults showed less pro-

nounced resistance to carbamates, and both larvae and adults remain susceptible to organ-

ophosphate insecticides. The resistance to pyrethroid insecticides is partly explained by a

high frequency of a pair of kdr mutations (1534C and 1016I) and the overexpression of

genes of the P450 family linked to insecticide degradation in the mosquito. Datasets on

both resistance and mechanisms in Ae. aegypti from the African continent are quite rare

and are important for dengue control in Burkina Faso and elsewhere.

Introduction

The African continent is particularly at risk of arbovirus-disease outbreaks, a situation

enhanced by the high number of vector species, the lack of organised vector control, a deficit

of vector biologists and the absence of prevention policies for neglected tropical diseases [1].

Aedes aegypti is the main vector involved in the transmission of the most important arbovi-

ruses—dengue, yellow fever, Zika and chikungunya—which occur as recurrent outbreaks in

parts of the African continent [2]. Approximately 50% of the world’s population lives in areas

at risk of dengue virus infection, and in Africa, dengue has been recorded in 34 countries in

the past 50 years [3,4]. West Africa has been identified as a potential dengue hotspot because

of the co-occurrence of rapid urbanization without adequate sanitation and the widespread

presence of Ae. aegypti [5].
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Burkina Faso has a long history of dengue epidemics, with the first reported in 1925 [3] and

another in 1982 [6]. Dengue cases were recorded regularly but at low levels from 2006 [7,8]

until an outbreak in 2016 resulted in 2,600 cases and 21 deaths [9]. In 2017, a larger outbreak

in the city of Ouagadougou spread to other regions, ultimately resulting in 14,455 cases and 29

deaths nationwide [10]. These outbreaks highlighted the vulnerability of Burkina Faso to den-

gue and other Aedes-borne arboviral diseases.

Typically, dengue prevention relies on vector control through larval source reduction and

case management, but in outbreak periods, insecticidal space spraying is usually employed to

target adult mosquitoes [11]. Worldwide, dengue vectors have developed resistance to most

insecticides used in public health [12] but data from Africa are sparse, and the mechanisms

involved in resistance in African Aedes populations are very poorly understood [1].

The best documented mechanisms of Ae. aegypti insecticide resistance involve mutations in

the voltage gated sodium channel (VGSC) target site of pyrethroids and Dichloro-Diphenyl-

Trichloroethane (DDT), and metabolic detoxification. Multiple VGSC knockdown resistance

(kdr) mutations have been identified in Ae. aegypti but only V410L, V1016G, I1011M and

F1534C have been validated as being directly causally-associated with resistance to pyrethroid

insecticides [13–15]—and only one of these, F1534C, has been detected in Africa to date [16].

Other mutations (e.g. V1016I and S989P) are involved in the resistance at least when associ-

ated with other VGSC variants [12]. Metabolic resistance is also important in Ae. aegypti popu-

lations at multiple geographic locations, and many genes of the P450 family, especially from

the CYP9 and CYP6 subfamilies have been associated with resistance to pyrethroids [12,17].

Aedes aegypti is rarely a target for vector control in Africa, though in Cape Verde insecti-

cide-based vector control has been established since 2009 after the first dengue cases were

diagnosed [18]. Current data suggest a more heterogeneous picture of insecticide resistance

across Africa than in Latin America and South-East Asia, but in mainland West Africa there is

evidence of established or emerging resistance to DDT, carbamates and pyrethroids [1].

Knowledge of the underlying mechanisms is very limited in African populations, but resis-

tance to DDT and permethrin has been linked to a high frequency of the 1534C kdr mutation

in Ghana, whilst the 1016I mutation which, when co-occurring with 1534C yields broader and

stronger pyrethroid resistance [19], was very rare [16]. This is in contrast to Cameroon, where

resistance to pyrethroids has evolved within a decade from susceptibility to well-established

resistance, apparently in the absence of kdr mutations [20,21]. On the island of Madeira, the

Ae. aegypti population exhibit strong pyrethroid resistance, underpinned by dual kdr muta-

tions (V1016I and F1534C) and overexpression of metabolic genes. Since the Madeira popula-

tion was founded only recently, it suggests, worryingly, that a suite of resistance mechanisms

can establish rapidly after introduction to an area [22].

Information on insecticide resistance is a basic requirement when considering tools or

approaches for dengue control. In this study, we characterise the resistance of Ae. aegypti and

investigate underlying mechanisms in urban, semi-urban and rural localities of Ouagadougou,

the capital city of Burkina Faso. Key findings include the vector population’s susceptibility to

organophosphates and strong but variable resistance to pyrethroids between localities, linked

to the 1534C and 1016I kdr mutations and to P450 gene overexpression.

Materials and methods

Collection localities

Aedes aegypti larvae were sampled from two localities within, and one beyond the perimeter of

the city of Ouagadougou (Fig 1), selected for differences in their ecological characteristics,

human population size and housing type.
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1200 Logements (12˚ 22’ 3.569’’N, 1˚ 29’ 50.24’’W): located within central Ouagadougou

close to the international airport; housing has piped water supply with good sanitation and

drainage, electricity and waste management systems. Potential Aedes breeding sites are pre-

dominantly discarded tires and small containers (volume <5L).

Tabtenga, (12˚ 21’ 58.039’’N, 1˚ 26’ 59.074’’W) located approximately 5 km East of 1200

Logements, Tabtenga is a semi-urban district, lacking a centralized water supply, electricity or

waste management systems. Potential Aedes breeding sites include tires, drums (large ceramic

water containers) and small containers.

Goundry (12˚31´4.262”N, 1˚20´25.771”W): a small rural farming community situated 25

km north-east of Ouagadougou; mostly small scale cultivation and livestock, with no water

supply, electricity or waste management systems. Potential Aedes breeding sites are primarily

drums, or water containers provided for animals.

Larval collection and laboratory rearing

During the rainy season from August to October 2016, larvae were collected in tires from 1200

Logements, in drums and tires from Tabtenga, and in drums from Goundry. Water containing

larvae from breeding sites was filtered using sieves and the larvae transferred to the laboratory.

Many breeding sites were sampled from each locality and larvae were pooled for subsequent

rearing. Larvae were reared using dried cat food in the insectary until F0 adult mosquitoes

of three to five days old were obtained for bioassay tests. The insectary conditions were

27.7±1.4˚C temperature, 79.1±5.5% relative humidity, 12h light/dark photoperiod.

Larval susceptibility tests

Larval bioassays were performed according to WHO dose-response assay protocols [23] on 3rd

and 4th instar larvae after one day of acclimation to the laboratory conditions as described

Fig 1. Map of the study localities. Fig 1A represents the map of Burkina Faso showing the capital city Ouagadougou (circled) and the study localities (colored

squares). Fig 1B shows the relative location of the study sites, Goundry, Tabtenga and 1200 logements (1200LG). On both figures, longitude is on X axis and

latitude is on Y axis.

https://doi.org/10.1371/journal.pntd.0007439.g001
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above. Three organophosphate insecticides were tested, at five concentrations for each insecti-

cide: temephos (0.25 mg/L to 20.25 mg/L); fenitrothion (0.25 mg/L to 20.25mg/L) and mala-

thion (6.25 mg/L to 168.75 mg/L). One hundred Ae. aegypti larvae were exposed to each

concentration, along with a negative control (no insecticide); numbers of dead and alive larvae

were recorded at the end of the 24 h exposure period. We were unable to obtain a laboratory

susceptible strain as a standard on which to simultaneously perform bioassays locally. There-

fore, to compare with values estimated from the data (see below) we obtained LC50 values (in

mg/L) from published literature to allow computation of resistance ratios. Moyes et al. [12]

reviewed published data on temephos larval assays using the Ae. aegypti Rockefeller strain, and

calculated a mean LC50 = 0.0042 (N = 30). We found three studies that estimated malathion

LC50 values for susceptible strains: Rockefeller = 0.27 [24]; Rockefeller = 0.40 [25]; GA1

strain = 0.097 [26], and took the median of these values (0.27 mg/L) as the reference LC50. For

fenitrothion we identified only one study with the Rockefeller strain (0.009 mg/L; [25], which

we used as our reference value.

Adult susceptibility tests

Adult bioassays used females (three to five days post-eclosion) reared from field-collected lar-

vae and were performed according to standard protocols [27]. Five insecticides were tested:

0.75% permethrin; 0.05% deltamethrin; 0.1% bendiocarb; 1% fenitrothion and 5% malathion;

and the resistance status of each population interpreted according to WHO criteria [27].

Whilst these are not all accepted diagnostic doses for Ae. aegypti, they are the most commonly

used [12]. One hundred adult mosquitoes from each locality were exposed to each insecticide,

along with 50 mosquitoes exposed to control (no insecticide) papers. Immediately following

1h exposure, knockdown was recorded, and mortality recorded after 24h. Mosquitoes were

stored over silica gel at -20˚C for later DNA analysis, and samples of survivors and control

were kept in RNAlater at -20˚C for gene expression analysis.

The CDC bottle assay technique was used also to test for higher levels of resistance to those

insecticides for which resistance was detected in the WHO assays. For this purpose, a pro-

longed exposure time of 2h was employed with knockdown recorded at the end of the expo-

sure period and mortality recorded 24h later. Technical grade insecticides (>90% purity;

Sigma-Aldrich) were used at discriminating concentrations [28]. Stock solutions were pre-

pared at concentrations of 12.5 μg/ml for bendiocarb, 10 μg/ml for deltamethrin, 50 μg/ml for

fenitrothion and 15 μg/ml for permethrin. For each insecticide, 1 ml was used to coat the 250

ml bottles, which were dried and kept in a fridge until use. In addition, the synergist piperonyl

butoxide (PBO), which primarily blocks activity of P450s and some esterases [29], was used to

assess a possible role for metabolic resistance mechanisms, at the recommended concentration

of 400 μg/ml [28] in pre-exposure assays, followed by pyrethroid exposure.

Detection of kdr mutations

DNA was extracted from two legs of each mosquito, which were transferred using clean for-

ceps to PCR plate wells. The wells were sealed and the plate briefly centrifuged to ensure the

legs were at the bottom of the well. Twenty μl of STE buffer (0.1M NaCl, 10 mM TrisHCl

pH = 8.0, 1mM EDTA pH8.0) was added to each well containing the mosquito legs. The plates

were heated at 95˚C for 90 min and briefly spun again. The resultant extracts were stored at

-20˚C until use. The V1016I, F1534C, S989P and V1016G VGSC mutations were genotyped

using the Taqman qPCR method [30]. Reactions were performed in 96 well plates by adding

5 μl of Taqman gene expression SensiMix (Applied Biosystem, Foster city, USA), 0.125 μl of

primer/probe, 3.875 μl of molecular grade sterile water and 1 μl of the DNA extract. Reactions
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were run on an Agilent MX3000P qPCR thermal cycler using cycling conditions of an initial

denaturation of 10 min at 95˚C, followed by 40 cycles of 92˚C for 15 min and 60˚C for 1 min.

Candidate gene expression analysis

Control mosquitoes from bioassays preserved in RNAlater were used for RNA extraction and

cDNA preparation. Mosquitoes were washed in distilled water and pooled in batches of five

per tube for RNA extraction using the PicoPure RNA Isolation Kit (ThermoFisher) according

to manufacturer’s instructions. Quantity and quality of RNA was checked using a NanoDrop

spectrophotometer and was kept at -80˚C until further use.

Complementary DNA (cDNA) was synthetized using reverse transcriptase with Oligo(dt)

20 primer according to manufacturer’s instructions.

Candidate genes for expression analysis were chosen based on previous implication of

involvement in metabolic resistance [12,17]. All primer sequences and their origins are shown

in S1 and S2 Tables. Standard curve analyses were performed for each primer pair to check the

specificity and efficiency of amplifications. Seven cytochrome P450 candidate genes were cho-

sen for analysis, along with two normalising genes (S1 Table). Real-time quantitative PCR

reactions were performed in a total volume of 20 μl (7.8 μl DDW+10 μl SYBRgreen, 0.6 μl of

each primer and 1 μl of cDNA) under the following conditions: 95˚C for 3 min, followed by 40

cycles of 95˚C for 10 s and 60˚C for 10 sec. The relative expression level and fold change (FC)

of each candidate gene relative to the susceptible Rockefeller strain was calculated using the

ΔΔcT method [31].

Data analysis

Larval 50% and 95% lethal concentrations and their confidence limits were calculated by fitting

a logistic regression to mortality after 24h, using an R script for analysis of bioassays and probit

graphs [32]. To interpret results in terms of susceptibility, we calculated resistance ratios com-

pared to susceptible strain values, as described above, and interpreted resistance ratios as fol-

lows: <5, little resistance; 5–10, moderate resistance; >10, substantial resistance [33]. Adult

bioassay data were analysed according to WHO criteria [27]: a population is considered resis-

tant if the mortality after 24h is less than 90% and susceptible when the mortality is over 98%.

Between the two values, the population is considered suspected to be resistant and confirma-

tion is needed.

A generalized linear model (GLiM) was fitted to the 2h CDC bottles bioassay mortality for

pyrethroid insecticides. The model initially included pyrethroid insecticide type, container

type, pre-exposure to PBO, and all interactions, with terms removed sequentially until the

minimal model was obtained. Gene expression data (ΔcT) values were compared between

each locale and the Rockefeller strain using t-tests, following checks using F-tests for homoge-

neity of variances. Variation in fold change (calculated as 2-ΔΔcT, relative to the average of

Rockefeller) among collection locations was tested using multivariate analysis of variance

(MANOVA) for all genes, following checks for normality (Kolmogorov-Smirnov test) and

homogeneity of variances (Levene’s test), and ANOVA for individual genes with Tukey’s test

for pairwise comparisons. All tests were performed using SPSS v 23. Allele frequencies were

compared among localities using χ2 tests.

Ethics statement

The research protocol entitled (16–030) “Dengue in Burkina Faso: establishing a vector biology

evidence base for risk assessment and vector control strategies for an emerging disease” (16–

030) received ethical approval from the National Ethical Committee for Medical Research,
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Ministry of Health in Burkina Faso (Deliberation N˚2016-6-073) on 6th June 2016 and the

Research Ethics Committee at the Liverpool School of Tropical Medicine on 15th July 2016.

When larvae were collected inside or near a residence, permission (signed consent) from the

owners/residents was obtained before entering their property or land.

Results

Insecticide susceptibility bioassays

Effect of exposure to malathion, fenitrothion and temephos on Ae. aegypti larvae collected

from urban, semi-urban and rural localities of Ouagadougou are shown in Table 1. There were

significant differences in the estimates obtained for both LC50 values and LC95 among the

localities, although the rank order of these was inconsistent across the three insecticides.

Importantly, in all cases the resistance ratios calculated from the LC50 values were low, and in

no case did they indicate any evidence of significant resistance.

Adult mosquito bioassay results are shown in Fig 2 for the WHO tube bioassays and Fig 3

for the CDC bottle bioassays. As there was no evidence of resistance to the organophosphate

insecticides malathion and fenitrothion in any of the collection localities using the WHO bio-

assays, CDC assays were not performed for these insecticides. WHO test results for bendiocarb

differed between collections (χ2
3 = 53.4, P<<0.001) with Goundry susceptible, but 1200 Loge-

ments (1200LG) and Tabtenga resistant. However, in the Tabtenga collections, mosquitoes

sampled from drums were significantly more resistant than those from tires (χ2
1 = 10.9,

P<0.001), while tire-collected mosquitoes showed similar bendiocarb bioassay results to those

collected from 1200LG (χ2
1 = 2.4, P = 0.12). No evidence of higher-level bendiocarb resistance

was detected in either site in the CDC bottle bioassays (Fig 3).

For both pyrethroids, WHO bioassays showed confirmed resistance (i.e. <90% mortality)

in each collection but with significant variation in prevalence (permethrin: χ2
3 = 298.9,

P<<0.001; deltamethrin: χ2
3 = 186.4, P<<0.001). In each case, mortality was by far the high-

est in Goundry and lowest in the Tabtenga drum collections (Fig 3), but there were no signifi-

cant differences between WHO bioassay results for the tire-collected mosquitoes from

Tabtenga and 1200LG (permethrin: χ2
1 = 1.3, P = 0.25; deltamethrin: χ2

1 = 1.4, P = 0.24).

Results from the 2h CDC assays indicated some reduction in susceptibility in Goundry, with

mortalities >90% but<98% for permethrin and deltamethrin, respectively. In both cases,

PBO pre-exposure restored full susceptibility (Fig 3). Mortality was lower in the 1200LG

females (and largely restored by PBO) and lower still in those from both container types from

Table 1. Summary of dose-response values from larval bioassays (LC50 and LC95), mg/L, with 95% confidence limits (95%CL).

Insecticide Locality LC50 (95%CL) LC95 (95%CL) RR50

Malathion Goundry 0.1210a (0.0702–0.2053) 0.4065 a (0.2305–2.0925) 0.45

1200LG 0.0792 a (0.0507–0.1176) 0.4465 a (0.2591–1.2836) 0.29

Tabtenga 0.0722 a (0.0507–0.1176) 0.2762 a (0.1924–0.5070) 0.27

Fenitrothion Goundry 0.0023 a (0.0012–0.0038) 0.0105 a (0.0057–0.0551) 0.21

1200LG 0.0118 b (0.0089–0.0156) 0.0362 b (0.0252–0.0693) 1.23

Tabtenga 0.0052 c (0.0036–0.0071) 0.0278 c (0.0182–0.0561) 0.57

Temephos Goundry 0.0018 a (0.0009–0.0033) 0.0042 a (0.0026–0.0516) 0.43

1200LG 0.0045 b (0.0029–0.0068) 0.0236 b (0.0138–0.0684) 1.07

Tabtenga 0.0038 b (0.0028–0.0050) 0.0177 b (0.0123–0.0322) 0.90

Resistance ratios (RR50) were calculated by comparison with published values for the Rockefeller susceptible strain (see Methods). Different superscript letters (a,b,c)

within a column highlight values that are significantly different based on non-overlapping confidence limits.

https://doi.org/10.1371/journal.pntd.0007439.t001
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Tabtenga (Fig 3; non-overlapping confidence limits indicate significance). In the Tabtenga col-

lections, insecticide type, container and PBO all exerted highly significant influences on mor-

tality, but the lack of any significant model interaction terms (Table 2), suggests independent

effects, i.e. the differences between insecticides and the effects of PBO synergism were similar

across container types.

Molecular analysis of resistance mechanisms

The target site mutations kdr S989P, V1016G, F1534C, and V1016I were genotyped in 48, 75,

and 43 Ae. aegypti females from 1200LG, Tabtenga and Goundry, respectively (S5 Table).

Only the V1016I and F1534C mutations were detected. The 1534C mutation was almost fixed

in the urban (1200LG) and the semi-urban (Tabtenga) localities (which are separated by about

5 km) with allele frequencies of 0.94 and 0.97, respectively, but was far less common in rural

Goundry (separated by about 25 km from the other localities), with an allele frequency of 0.34

(χ2
2 = 149.8, P<<0.001). The V1016I kdr mutation was less common in all collection sites, but

again it was found at higher frequencies in 1200LG (0.22) and Tabtenga (0.27) than in Goun-

dry (0.06) (χ2
1 = 18.6, P<0.001). Similarly, the frequencies of combined genotypes differed

markedly (Fig 4) with the dual wild type genotype absent from 1200LG and Tabtenga but com-

mon in Goundry. Assuming that a single allele (across the two loci) is unlikely to exert much

Fig 2. WHO 1h tube bioassay mortality (x-axis) from each site, with breeding site type indicated. Error bars show 95% binomial confidence intervals.

https://doi.org/10.1371/journal.pntd.0007439.g002
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influence on resistance phenotype [34], we compared the frequencies of genotypes with zero

or one mutant alleles with those with two or more mutations across populations (Fig 4). Fre-

quencies differed dramatically (χ2
1 = 48.3, P<0.001) as a result of the Goundry genotypes,

with no significant differences (χ2
1 = 0.19, P = 0.66) between 1200LG and Tabtenga.

Expression of Cyp6 and Cyp9 subfamily P450 candidate genes was analysed by comparing

insecticide-unexposed mosquito samples from each locality relative to the Rockefeller suscepti-

ble strain. The P450 genes were generally expressed at low-moderate levels relative to

Fig 3. CDC 2h bottle bioassay mortality (x-axis) from each site, with breeding site type indicated. Error bars show 95% binomial confidence intervals.

https://doi.org/10.1371/journal.pntd.0007439.g003

Table 2. Generalized linear model analysis of 2h pyrethroid insecticide exposure; CDC bottle bioassay data for collections from Tabtenga.

Source Wald χ2
1 P-value Mortality difference

Intercept 33.6 <<0.001

Container 31.2 <<0.001 tire > drum

Insecticide 33.1 <<0.001 deltamethrin> permethrin

PBO 246.2 <<0.001 PBO > no PBO

The model includes container type, pyrethroid insecticide type and pre-exposure to a synergist as factor. All interaction terms were included initially but were non-

significant and the minimal model is shown

https://doi.org/10.1371/journal.pntd.0007439.t002
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Rockefeller and whilst expression was highest in Tabtenga females for every gene (Fig 5), no

significant differences in expression from Rockefeller or among collections were detected for

any individual gene after correction for multiple testing (minimum uncorrected P = 0.02).

However, comparing fold differences (relative to Rockefeller) of the P450 genes jointly

revealed significant variation among the three collection locations (MANOVA, Hotelling’s

T2
12,14 = 7.3, P = 0.027), with higher average expression for the Tabtenga collections than

1200LG or Goundry, neither of which differed from Rockefeller (Fig 5). This suggests that

whilst none of the candidate P450 genes showed strong variation, their aggregate expression

level may contribute to the variation in resistance phenotypes observed.

Discussion

Resistance to insecticides in Aedes vectors of arboviruses is a major challenge for disease con-

trol globally. Here we investigated the susceptibility to commonly-used larval and adult insecti-

cides in three contrasting localities of Ouagadougou, Burkina Faso, to provide essential

information to aid rational insecticide choices for preventative control and dengue outbreaks.

Unfortunately, a severe outbreak of dengue started before the end of our investigation, but our

preliminary data showing Ae. aegypti susceptibility to malathion supported its use for outdoor

Fig 4. Genotype frequencies at the VGSC mutation positions V1016I and F1534C in females from each collection location. Inset numbers show

the number of genotypes detected. VF/VF is wild type and VF/VC contains only one mutant allele; all other genotypes contain at least two mutant

alleles. �heterozygote at each position, therefore genotypes could not be determined.

https://doi.org/10.1371/journal.pntd.0007439.g004

Resistance to insecticides of Aedes aegypti populations from Burkina Faso

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0007439 May 23, 2019 10 / 17

https://doi.org/10.1371/journal.pntd.0007439.g004
https://doi.org/10.1371/journal.pntd.0007439


spraying in hotspots during the outbreak. We also investigated the resistance mechanisms that

may be involved in resistance, with particular relevance to pyrethroids. Overall, our study

recorded no resistance to organophosphates, moderate and spatially-variable resistance to car-

bamates, and strong but highly-variable resistance to pyrethroids, likely driven by dual kdr
mutations and metabolic resistance.

Variable susceptibility to insecticide

Aedes aegypti control commonly employs organophosphates, particularly temephos and mala-

thion, to control larval and adult stages, respectively. The LC50 values we obtained for teme-

phos are very similar to values obtained for the Rockefeller susceptible strain [12] and whilst

fewer published data are available for fenitrothion and malathion as larvicides, our data are

compatible with a fully susceptible phenotype. These results reflect the overall picture from

studies in Africa where, to date, temephos resistance appears absent [1], in contrast to the situ-

ation in Asia and especially Latin America [12]. We did not test other common larvicides such

as Bacillus thuringiensis var israeliensis (Bti) or pyriproxyfen in this study, but there are cur-

rently no reports of resistance to either in Ae. aegypti [12], suggesting that multiple options for

larval control exist in Burkina Faso, and likely elsewhere in mainland Africa.

In different parts of the world with longer histories of dengue control, Ae. aegypti popula-

tions are resistant to organophosphates [35–37], though inconsistencies in the diagnostic

doses applied limit comparability [12]. In fact, the dose we applied for malathion is correct for

Anopheles, but five-fold higher than that recommended for Ae. aegypti [27], although the rec-

ommended dose is very seldom applied [12]. Nevertheless, the dose used for fenitrothion is

recommended for both Aedes and Anopheles [27], and, since full susceptibility was recorded

for both insecticides, a conclusion of no resistance to organophosphates seems reasonable.

Fig 5. Expression of candidate P450 genes in relation to the susceptible Rockefeller laboratory strain, against which the dashed line indicates

parity. Bars show mean fold change ± 95% confidence intervals. The final bars show the average expression across all genes.

https://doi.org/10.1371/journal.pntd.0007439.g005
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Though uncommon, there are a few reports of relatively low-prevalence resistance to organo-

phosphate adulticides from elsewhere in Africa [1]. Therefore, more detailed investigation

of variation in the susceptibility profiles in adult female Ae. aegypti to malathion is recom-

mended using the more informative dose-response methodologies. At present though, suscep-

tibility to organophosphates in the localities we surveyed, coupled with the general rarity of

organophosphate resistance in Africa, suggests that insecticides from this class are viable

options for outbreak control. In contrast, we detected WHO-defined resistance to a carbamate,

bendiocarb, in the urban (1200LG) and semi-urban (Tabtenga) sites, though not in the rural

site (Goundry). Bendiocarb is less commonly used for Aedes control than organophosphates

and pyrethroids, but a recent trial in Mexico found that bendiocarb was much more effective

than deltamethrin for indoor residual spraying against a pyrethroid resistant population [38].

Full mortality in the 2h CDC bottle bioassays suggests that bendiocarb resistance is not at a

high level in our survey sites, but it would still appear to be a less favourable option for adult

control than organophosphates at present in Burkina Faso.

Populations from the urban and semi-urban areas showed moderate to very high resistance

to both of the pyrethroid insecticides tested, and though at much lower prevalence, resistance

was also detected to permethrin and deltamethrin in the rural site. From the WHO assays it

was unclear whether resistance might differ between Tabtenga and 1200LG because results

were almost identical when comparing adult females raised from collections from tires, but

much lower mortalities were found in the collections from drums in Tabtenga. The longer

duration CDC assays resolved this uncertainty, with significantly lower mortality in the Tab-

tenga than the 1200LG tire collections. Yet, in both the WHO and CDC assays, the Tabtenga

drum collections showed significantly lower mortality than those from tires. The cause of this

difference is unclear but seems most likely to be environmental, perhaps related to poorer

developmental conditions in tires (e.g. lower food availability in these shaded habitats) or tox-

ins leaching from the tires, although these have previously been linked to induction of P450s

and potentially increased resistance in Ae. albopictus [39,40]. We are not aware of any previous

demonstrations of such an effect of natural environmental variation on Ae. aegypti resistance,

but given variation in the frequency of types of breeding sites found among areas [41], this

could have an important impact on local resistance and deserves further investigation.

Pyrethroid resistance is found worldwide in Ae. aegypti [12], though the prevalence and

higher-level resistance we detected in Tabtenga appears to be as strong as any yet reported

from Africa [1]. The source of selection that may have driven resistance to this level is unclear.

There is no history of targeted vector control for Ae. aegypti using pyrethroid insecticides in

Burkina Faso, and the nature of the breeding sites means that run-off from agricultural appli-

cation is a far less likely selective pressure than for Anopheles [42]. Increased insecticide pres-

sure from malaria control interventions, is frequently linked to rising pyrethroid resistance in

Anopheles [43–45]. Indeed in Goundry, Anopheles gambiae pyrethroid resistance and kdr
mutation frequency increased between 2008 to 2011, which has been attributed to successive

bednet distribution campaigns in Burkina Faso [46]. These may also have affected Ae. aegypti
pyrethroid resistance in the three localities, although domestic use of insecticides may also

constitute an important source of selection [47,48], especially in more affluent urban and

semi-urban localities. Further work to identify sources of selection is clearly required if resis-

tance management programs are to be a successful part of Aedes control programs.

Pyrethroid resistance mechanisms

We genotyped four possible kdr mutant positions in our survey. The S989P and V1016G

mutants which are important for pyrethroid resistance in Asia [12], and also Saudi Arabia [30]
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were absent in our study site. The 1534C kdr mutation is common in Ae. aegypti and has a

worldwide distribution [12]. We found this mutation to be almost fixed in the urban and

semi-urban localities, though far less common in the rural area. This mutation is known to

occur in neighboring Ghana [16] though the highest allele frequency reported there (60%) is

much lower than in Tabtenga or 1200LG. Similarly, the V1016I mutation, which was only

detected in a single individual in Ghana, [16] is much more common in the localities we sur-

veyed (>20%), and again was significantly less common in Goundry, than in 1200LG and Tab-

tenga. Excluding Goundry, the frequencies of these mutations in our sites confirm results

from recent (2017) collections in another urban area of Ouagadougou [34], and are very simi-

lar to those detected on the island of Madeira, where the Ae. aegypti population is thought to

have been very recently introduced [22]. Apart from Ghana and the recent data from Burkina

Faso, there are few other results from mainland Africa, though in central Africa, neither kdr
mutation has yet been found, despite established pyrethroid resistance [21].

In South and Central America [49–51], and in the Caribbean [37] the co-occurrence of the

1534C and 1016I mutations is common and usually present as either (1) 1014V/1534C or (2)

1014I/1534C. Both of these haplotypes can confer pyrethroid resistance when present as a

homozygote for haplotype 1, a heterozygote of haplotypes 1 and 2, and especially a homozy-

gote of haplotype 2 [19]. In Goundry, these mutant genotypes comprised only 14% of the sam-

ple, but in the other sites the combined mutant genotype frequency was around 90%, although

double mutant homozygotes were rare (<10%). The much higher frequencies of resistant

genotypes in 1200LG and Tabtenga than Goundry are likely to explain a significant portion of

the difference in permethrin and deltamethrin resistance.

Pre-exposure to PBO restored a substantial part of the susceptibility to permethrin and

deltamethrin, most noticeably in Tabtenga where the resistance level (as measured in the 2h

CDC assays) was highest. Although enhanced insecticide penetration may also be involved,

the PBO result suggests the involvement of metabolic resistance mechanisms involving

P450s, and perhaps esterases [52]. Metabolic resistance in Ae. aegypti mediated by P450s

appears very common [12,17], and whilst several genes are frequently implicated in resis-

tance, some of which are proven pyrethroid-metabolizers, the role of specific genes remains

unclear [12]. We examined seven candidate P450 genes, most of which have been shown to

metabolize pyrethroids, and including four from the geographically-closest population

(Madeira) from which transcriptomic data have been obtained [22]. Whilst individually we

did not detect strong or significant overexpression of individual genes, a trend of stronger

overexpression was evident in the Tabtenga collection, which overall was significantly

greater than the susceptible Rockefeller strain or the other two collection sites. Some of these

genes may play a role in the metabolic resistance phenotype suggested by the strong action of

PBO, which underpins variation between Tabtenga and 1200LG, but perhaps more as an

aggregate overexpression than one dependent on specific genes. Alternatively, it is possible

that the P450 genes probably important for resistance elsewhere, may be less so in African

mainland populations and we did not assay the most important genes for metabolic resis-

tance. Transcriptomic studies of Ae. aegypti from Africa will be required to help resolve this

uncertainty.

Conclusion

Our results show a variable but alarmingly high level of pyrethroid resistance, underpinned

by dual kdr mutations and metabolic resistance, perhaps involving some of the P450 genes

we screened. Operational consequences of this resistance are unknown, but the use of pyre-

throids for spraying as an outbreak control method would now appear to be unlikely to have
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significant impact. Moreover, with the source of selection unknown, return to susceptibility

seems improbable. In contrast, susceptibility to both larvicidal and adulticidal organophos-

phates indicates that effective options for control still exist. Additional insecticide classes, and

non-insecticidal interventions, should also be tested in order to operate a successful resistance

management programme. Typically, insecticide resistance is considered a highly heritable

trait, but our results also highlight how differences in breeding habitats can exert a strong

influence on resistance. This phenomenon has been little-investigated and warrants further

research.
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Félix Yaméogo, Dimitri W. Wangrawa, Antoine Sanon.

Methodology: Athanase Badolo, Patricia M. Pignatelli, Philip J. McCall, David Weetman.

Project administration: Athanase Badolo, Antoine Sanon.

Resources: Hirotaka Kanuka.

Software: Athanase Badolo, David Weetman.

Supervision: Philip J. McCall, David Weetman.

Validation: Philip J. McCall, David Weetman.

Resistance to insecticides of Aedes aegypti populations from Burkina Faso

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0007439 May 23, 2019 14 / 17

http://journals.plos.org/plosntds/article/asset?unique&id=info:doi/10.1371/journal.pntd.0007439.s001
http://journals.plos.org/plosntds/article/asset?unique&id=info:doi/10.1371/journal.pntd.0007439.s002
http://journals.plos.org/plosntds/article/asset?unique&id=info:doi/10.1371/journal.pntd.0007439.s003
http://journals.plos.org/plosntds/article/asset?unique&id=info:doi/10.1371/journal.pntd.0007439.s004
http://journals.plos.org/plosntds/article/asset?unique&id=info:doi/10.1371/journal.pntd.0007439.s005
https://doi.org/10.1371/journal.pntd.0007439


Visualization: Athanase Badolo, David Weetman.

Writing – original draft: Athanase Badolo.

Writing – review & editing: Antoine Sanon, Hirotaka Kanuka, Philip J. McCall, David

Weetman.

References
1. Weetman D, Kamgang B, Badolo A, Moyes CL, Shearer FM, Coulibaly M, et al. Aedes Mosquitoes and

Aedes-Borne Arboviruses in Africa: Current and Future Threats. Int J Env Res Public Heal. 2018; 15.

https://doi.org/10.3390/ijerph15020220 PMID: 29382107

2. Powell JR. Mosquito-Borne Human Viral Diseases: Why Aedes aegypti? Am J Trop Med Hyg. 2018; 98:

1563–1565. https://doi.org/10.4269/ajtmh.17-0866 PMID: 29557341

3. Amarasinghe A, Kuritsk JN, Letson GW, Margolis HS. Dengue virus infection in Africa. Emerg Infect

Dis. 2011; 17: 1349–1354. https://doi.org/10.3201/eid1708.101515 PMID: 21801609

4. Jaenisch T, Junghanss T, Wills B, Brady OJ, Eckerle I, Farlow A, et al. Dengue expansion in Africa-not

recognized or not happening? Emerg Infect Dis. 2014; 20. https://doi.org/10.3201/eid2010.140487

PMID: 25271370

5. Stoler J, al Dashti R, Anto F, Fobil JN, Awandare GA. Deconstructing “malaria”: West Africa as the next

front for dengue fever surveillance and control. Acta Trop. 2014; 134: 58–65. https://doi.org/10.1016/j.

actatropica.2014.02.017 PMID: 24613157

6. Gonzalez JP, Du Saussay C, Gautun JC, McCormick JB, Mouchet J. [Dengue in Burkina Faso (ex-

Upper Volta): seasonal epidemics in the urban area of Ouagadougou]. Bull Soc Pathol Exot Fil. 1985;

78: 7–14. Available: http://www.ncbi.nlm.nih.gov/pubmed/3886182
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15. Haddi K, Tomé HVV, Du Y, Valbon WR, Nomura Y, Martins GF, et al. Detection of a new pyrethroid

resistance mutation (V410L) in the sodium channel of Aedes aegypti: A potential challenge for mosquito

control. Sci Rep. 2017; https://doi.org/10.1038/srep46549 PMID: 28422157

16. Kawada H, Higa Y, Futami K, Muranami Y, Kawashima E, Osei JHN, et al. Discovery of Point Mutations

in the Voltage-Gated Sodium Channel from African Aedes aegypti Populations: Potential Phylogenetic

Reasons for Gene Introgression. PLoS Negl Trop Dis. 2016; 10: e0004780. https://doi.org/10.1371/

journal.pntd.0004780 PMID: 27304430

17. Smith LB, Kasai S, Scott JG. Pyrethroid resistance in Aedes aegypti and Aedes albopictus: Important

mosquito vectors of human diseases. Pestic Biochem Physiol. 2016; 133: 1–12. https://doi.org/10.

1016/j.pestbp.2016.03.005 PMID: 27742355

Resistance to insecticides of Aedes aegypti populations from Burkina Faso

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0007439 May 23, 2019 15 / 17

https://doi.org/10.3390/ijerph15020220
http://www.ncbi.nlm.nih.gov/pubmed/29382107
https://doi.org/10.4269/ajtmh.17-0866
http://www.ncbi.nlm.nih.gov/pubmed/29557341
https://doi.org/10.3201/eid1708.101515
http://www.ncbi.nlm.nih.gov/pubmed/21801609
https://doi.org/10.3201/eid2010.140487
http://www.ncbi.nlm.nih.gov/pubmed/25271370
https://doi.org/10.1016/j.actatropica.2014.02.017
https://doi.org/10.1016/j.actatropica.2014.02.017
http://www.ncbi.nlm.nih.gov/pubmed/24613157
http://www.ncbi.nlm.nih.gov/pubmed/3886182
https://doi.org/10.1002/jmv.20593
http://www.ncbi.nlm.nih.gov/pubmed/16555290
https://doi.org/10.1371/journal.pntd.0002859
https://doi.org/10.1371/journal.pntd.0002859
http://www.ncbi.nlm.nih.gov/pubmed/24945324
https://www.who.int/csr/don/18-november-2016-dengue-burkina-faso/en/
https://www.who.int/csr/don/18-november-2016-dengue-burkina-faso/en/
https://www.who.int/csr/don/6-november-2017-dengue-burkina-faso/en/
https://www.who.int/csr/don/6-november-2017-dengue-burkina-faso/en/
https://doi.org/10.1371/journal.pntd.0004551
https://doi.org/10.1371/journal.pntd.0004551
http://www.ncbi.nlm.nih.gov/pubmed/26986468
https://doi.org/10.1371/journal.pntd.0005625
http://www.ncbi.nlm.nih.gov/pubmed/28727779
https://doi.org/10.1073/PNAS.1305118110
http://www.ncbi.nlm.nih.gov/pubmed/23821746
https://doi.org/10.1371/journal.pntd.0003085
http://www.ncbi.nlm.nih.gov/pubmed/25166902
https://doi.org/10.1038/srep46549
http://www.ncbi.nlm.nih.gov/pubmed/28422157
https://doi.org/10.1371/journal.pntd.0004780
https://doi.org/10.1371/journal.pntd.0004780
http://www.ncbi.nlm.nih.gov/pubmed/27304430
https://doi.org/10.1016/j.pestbp.2016.03.005
https://doi.org/10.1016/j.pestbp.2016.03.005
http://www.ncbi.nlm.nih.gov/pubmed/27742355
https://doi.org/10.1371/journal.pntd.0007439


18. Rocha HDR, Paiva MHS, Silva NM, de Araujo AP, Camacho Ddos R, Moura AJ, et al. Susceptibility pro-

file of Aedes aegypti from Santiago Island, Cabo Verde, to insecticides. Acta Trop. Elsevier B.V.; 2015;

152: 66–73. https://doi.org/10.1016/j.actatropica.2015.08.013 PMID: 26307496

19. Brito LP, Carrara L, De Freitas RM, Lima JBP, Martins AJ. Levels of Resistance to Pyrethroid among

Distinct kdr Alleles in Aedes aegypti Laboratory Lines and Frequency of kdr Alleles in 27 Natural Popu-

lations from Rio de Janeiro, Brazil. Biomed Res Int. 2018; 2018. https://doi.org/10.1155/2018/2410819

PMID: 30112367

20. Kamgang B, Marcombe S, Chandre F, Nchoutpouen E, Nwane P, Etang J, et al. Insecticide susceptibil-

ity of Aedes aegypti and Aedes albopictus in Central Africa. Parasit Vectors. BioMed Central Ltd; 2011;

4: 79. https://doi.org/10.1186/1756-3305-4-79 PMID: 21575154

21. Kamgang B, Yougang AP, Tchoupo M, Riveron JM, Wondji C. Temporal distribution and insecticide

resistance profile of two major arbovirus vectors Aedes aegypti and Aedes albopictus in Yaounde, the

capital city of Cameroon. Parasit Vectors. Parasites & Vectors; 2017; 10: 469. https://doi.org/10.1186/

s13071-017-2408-x PMID: 29017606

22. Seixas G, Grigoraki L, Weetman D, Vicente JL, Silva AC, Pinto J, et al. Insecticide resistance is medi-

ated by multiple mechanisms in recently introduced Aedes aegypti from Madeira Island (Portugal).

PLoS Negl Trop Dis. 2017; 11: e0005799. https://doi.org/10.1371/journal.pntd.0005799 PMID:

28742096

23. WHO. WHO | Test procedures for insecticide resistance monitoring in malaria vector mosquitoes.

World Heal Organ Tech Rep Ser. World Health Organization; 2013; 39.

24. Bisset JA, Rodriguez MM, French L, Severson DW, Gutierrez G, Hurtado D, et al. Insecticide Resis-

tance and Metabolic Mechanisms Involved in Larval and Adult Stages of Aedes aegypti Insecticide-

Resistant Reference Strains from Cuba. J Am Mosq Control Assoc. 2014; 30: 298–304. https://doi.org/

10.2987/14-6431.1 PMID: 25843136

25. Rodriguez MM, Bisset JA, Fernandez D. Levels of insecticide resistance and resistance mechanisms in

Aedes aegypti from some Latin American countries. J Am Mosq Control Assoc. 2007; 23: 420–429.

https://doi.org/10.2987/5588.1 PMID: 18240518

26. Tikar SN, Mendki MJ, Chandel K, Parashar BD, Prakash S. Susceptibility of immature stages of Aedes

(Stegomyia) aegypti; vector of dengue and chikungunya to insecticides from India. Parasitol Res. 2008;

102: 907–913. https://doi.org/10.1007/s00436-007-0848-5 PMID: 18172687

27. WHO. Test procedures for insecticide resistance—Technical Update 2016 [Internet]. 2016. https://

www.who.int/malaria/publications/atoz/WHO-insecticide-resistance-test-procedures-2016-

presentation-en.pdf?ua=1

28. CDC. Guideline for Evaluating Insecticide Resistance in Vectors Using the CDC Bottle Bioassay [Inter-

net]. CDC Methods. Centers for Disease Control; 2012.

29. Bingham G, Strode C, Tran L, Khoa PT, Jamet HP. Can piperonyl butoxide enhance the efficacy of

pyrethroids against pyrethroid-resistant Aedes aegypti? Trop Med Int Heal. 2011; 16: 492–500. https://

doi.org/10.1111/j.1365-3156.2010.02717.x PMID: 21324051

30. Al Nazawi AM, Aqili J, Alzahrani M, McCall PJ, Weetman D. Combined target site (kdr) mutations play

a primary role in highly pyrethroid resistant phenotypes of Aedes aegypti from Saudi Arabia. Parasit

Vectors. Parasites & Vectors; 2017; 10: 161. https://doi.org/10.1186/s13071-017-2096-6 PMID:

28347352

31. Schmittgen TD, Livak KJ. Analyzing real-time PCR data by the comparative C(T) method. Nat Protoc.

2008; 3: 1101–1108. Available: http://www.ncbi.nlm.nih.gov/pubmed/18546601 PMID: 18546601
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