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ABSTRACT Two categories of immune responses—
innate and adaptive immunity—have both polygenic
backgrounds and a significant environmental compo-
nent. The goal of the reported study was to define
candidate genes and mutations for the immune traits of
interest in chickens using machine learning–based
sensitivity analysis for single-nucleotide polymorphisms
(SNPs) located in candidate genes defined in quantita-
tive trait loci regions. Here the adaptive immunity is
represented by the specific antibody response toward
keyhole limpet hemocyanin (KLH), whereas the innate
immunity was represented by natural antibodies toward
lipopolysaccharide (LPS) and lipoteichoic acid (LTA).
The analysis consisted of 3 basic steps: an identification
of candidate SNPs via feature selection, an optimisation
of the feature set using recursive feature elimination, and
finally a gene-level sensitivity analysis for final selection
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of models. The predictive model based on 5 genes
(MAPK8IP3 CRLF3, UNC13D, ILR9, and PRCKB)
explains 14.9% of variance for KLH adaptive response.
The models obtained for LTA and LPS use more genes
and have lower predictive power, explaining respectively
7.8 and 4.5% of total variance. In comparison, the linear
models built on genes identified by a standard statistical
analysis explain 1.5, 0.5, and 0.3% of variance for KLH,
LTA, and LPS response, respectively. The present study
shows that machine learning methods applied to systems
with a complex interaction network can discover
phenotype-genotype associations with much higher
sensitivity than traditional statistical models. It adds
contribution to evidence suggesting a role of MAPK8IP3
in the adaptive immune response. It also indicates that
CRLF3 is involved in this process as well. Both findings
need additional verification.
Key words: immune response, chic
ken, marker gene, machine learning
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INTRODUCTION

Immune response is a complex trait that is controlled by
multiple interacting genes with different magnitudes of
phenotypic effects, as well as the environment.Genomic re-
gions related to the complex traits are defined as quantita-
tive trait loci. Deciphering genetic bases of complex traits
leads from defining of the QTL toward pointing at a single
mutation responsible for a considerable amount of the
genetic trait variations called a quantitative trait nucleo-
tide (QTN). An active part of the innate immunity is
expressed by the presence of natural antibodies (NAbs).
NAbsare immunoglobulins thatdoesnotneedanyexternal
stimulationof the immunesystemtobesecretedbyB-1cells
in large quantities (Ochsenbein et al., 1999). NAbs are very
effective as a first barrier to pathogen invasion. They are
polyreactive and present in high abundance in the host or-
ganism (Frank, 2002). All of that makes them crucial for
the initial steps of the immune response, before theacquired
antibodies are generated (Siwek and Knol, 2005).

The other type of immune response, adaptive immu-
nity, is a targeted specific response to antigens that
appear in the environment. The presence of significant
amount of an antigen triggers production of antibodies
that are specific to this particular antigen.
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The present study takes into account both types of im-
mune responses in chickens. In addition to response to
LPS and LTA representing the innate response, the spe-
cific antibody response toward keyhole limpet haemo-
cyanin (KLH), representing an adaptive immune
response, was examined. KLH is a high-molecular-
weight protein antigen collected from the hemolymph
of the sea mollusk, Megathura crenulata. KLH induces
Th2-like type of immune response. This protein is
commonly used as a soluble model protein in biological
studies (Bliss et al., 1996).

The present study is an extended analysis of the data
already described by Siwek et al. (2015). The original
study was conducted using standard statistical methods,
and while it revealed connection between the genetic
traits, the effect was week. The linear models based on
the QTNs identified in the original study explain no
more than 1% of variance in the immune response.

The original analysis was performed using the assump-
tion that QTNs are independent and have a simple addi-
tive influence on the immune response. The present
study goes beyond these assumptions and uses machine
learning–based sensitivity analysis that can detect
nonadditive and nonlinear effects (Saltelli et al., 2000;
Sobol, 2001; Helton et al., 2006). Therefore, within this
approach, the effect of a single QTN is therefore not ana-
lysed in isolation but in the context of its interactions
with other QTNs.

To this end, we apply a novel protocol of analysis
which is based on machine learning (ML). ML methods
are used preferentially when one has no a priori knowl-
edge about the relationships between the variables
describing the system. These methods are particularly
useful when the relationships are complex and nonlinear.
There are multiple methods and learning algorithms
that fall under this general term. They are broadly
divided into supervised and unsupervised learning. In
the first class, one is interested in building a predictive
model for one of the properties of the system under scru-
tiny, which is often called a decision variable, using other
properties as descriptive variables. ML model is devel-
oped to predict the decision variable based on the de-
scriptors, using a set of examples for which both
descriptors and responses are known. On the other
hand, in the unsupervised learning, no special variable
is defined, and the goal of the analysis is identification
of a deeper structure in the data. The present study
aims at finding relationships between genetic variables
and the immune response; hence, it belongs to the area
of supervised learning. Numerous methods have been
developed and used for building such models. A recent
study compared performance of 179-ML algorithms
belonging to 17 classes (Fern�andez-Delgado et al.,
2014). It only included the most popular algorithms for
which implementation exists in R, WEKA, or Matlab.
The algorithm that was recommended as best overall
by the authors is random forest (RF) (Breiman, 2001).
RF is a general purpose machine learning algorithm for
classification and nonparametric regression, that is,
widely across multiple disciplines, with many
applications in bioinformatics, for example, in gene
expression studies (Díaz-Uriarte and De Andres, 2006;
Kursa, 2014), discovering protein-protein interactions
(Qi et al., 2006; You et al., 2015), or genetic association
studies (Chen et al., 2007; Goldstein et al., 2011; Botta
et al., 2014).
RF is an ensemble of decision or regression trees,

which is used both as a tool for classification and for
feature selection. This is possible because RF provides
a robust, internally cross-validated, estimate of the
importance of variable Imp(V) that is obtained using
sensitivity analysis. Each tree in an ensemble is built us-
ing different samples of the data, and each split of the
tree is built on a variable selected from a subset of all var-
iables. The randomness injected in the process of tree
construction has 2 effects. On one hand, it decreases
the classification accuracy of an individual tree signifi-
cantly, on the other, it decorrelates individual classifiers
and helps to decrease overfitting. What is more, for each
tree, there is a subset of objects not used for construction
of this tree, the so-called out-of-bag (OOB) objects. This
allows for unbiased estimate of the classification error
and Imp(V). To estimate the latter, the following pro-
cedure is used. For a given variable X, a subset SX of
trees that used X is identified. Then for each tree from
SX, the prediction error on the OOB objects is measured.
Then the values of X are randomly permuted among
OOB objects, thus removing any information on the
true values of X, and the prediction error for these ob-
jects is measured. The average increase of the prediction
error on the OOB objects, due to removal of the informa-
tion on X, is a measure of its importance.
Unfortunately, in most cases, it is not easy to find the

threshold of importance that separates relevant vari-
ables from the irrelevant ones. This is particularly diffi-
cult when the number of objects is small and the
number of variables is very large. To this end, the Boruta
algorithm for all-relevant feature selection (Kursa et al.,
2010) has been proposed. It uses the importance score
from multiple runs of the RF algorithm to discover the
informative variables. In each iteration, the original
data set is extended by adding a randomized copy of
each variable. The importance of each variable is
compared with a maximal importance achieved by a
random variable. Only these variables that have impor-
tance higher than the maximal importance of random-
ized variables in a sufficiently numerous iterations are
deemed relevant. Boruta is used as an equivalent of the
ordinary statistical test of significance in systems with
complex, nonlinear relationships between descriptors
and decision variables. For example, it has been used
in the study of microbial influence on neurodevelopmen-
tal disorders (Hsiao et al., 2013), for identification of
gastrointestinal microbiome signatures of pediatric pa-
tients with irritable bowel syndrome (Saulnier et al.,
2011), or study of immune response to HIV (Ackerman
et al., 2013). The algorithm is used by a protocol for
analysis of genetic polymorphism (Salehe et al., 2017),
identification of genetic markers of obesity (Montañez
et al., 2017), or analysis of genetic variance in
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populations or subpopulations of a Mediterranean shrub
(Herrera and Bazaga, 2016).
The protocol implemented in the present study is

based on that used earlier for investigation of causes of
crashes of climatic models (Paja et al., 2015). It uses
RF classification algorithm to build nonparametric
regression between descriptive variables (single nucleo-
tide polymorphisms [SNPs]) and decision variables (im-
mune response) and to estimate importance of variables.
Boruta algorithm for all-relevant feature selection is
used for establishing hyperparameters of the algorithm,
namely the number of relevant variables in the system.
MATERIALS AND METHODS

For brevity, only a brief summary of the experimental
design is reported here; the more detailed description can
be found in the original article (Siwek et al., 2015). This
allows us to concentrate on the analytical protocol,
which is the main contribution of the present study.
Experimental Design

Experimental Population Biological material has been
obtained from the experimental population, created by
crossing 2 breeds of hens: Zk (Green-legged Partridge-
like) and WL (White Leghorn). All birds were kept on
a floor system on a farm at the University of Life Sciences
in Lublin. Chickens obtained routine vaccines against
the Salmonella, Gumboro disease, bronchitis, Bourse
Fabricius disease, and encephalomyelitis. Population de-
tails are given in the previous study (Siwek et al., 2010).
The final F2 generation, which was mostly used in the
current analysis, consisted of 506 birds which were ob-
tained in 6 hatches. Immune responses were defined as
NAbs to KLH and environmental antigens LPS and
LTA and specific antibody response to KLH. Phenotypic
data were expressed by titers as the log2 values of the
highest dilution giving a positive reaction for KLH
(Siwek et al., 2003) and for LTA and LPS (Siwek et al.,
2006), respectively.
SNPGenotyping For the SNP genotyping, an Illumina
custom 384-plex oligonucleotide pool assay was
designed, and the GoldenGate Genotyping assay (Illu-
mina Inc., San Diego, CA) was conducted. Detailed
description of the SNP selection and genotyping and the
quality control is given in the original analysis study
(Siwek et al., 2015). After removal of the SNPs of low
quality and zero variance, 218 SNPs were used in the
present study as descriptive variables.
The results of the experiments are 4 independent data

sets:

1. level of NAbs for LPS,
2. level of NAbs for LTA,
3. level of NAbs for KLH, measured immediately after

exposure (further referred to as KLH0),
4. level of antibodies specific to KLH, measured 7 d after

exposure (further referred to as KLH7).
After removing observations with incomplete data,
data sets 1 to 3 consist of 412 individual chickens,
whereas data set 4 consists of 413 birds. For further anal-
ysis, qualitative variables were converted to numeric
variables (variables tagged as “AA” were changed to 1,
“AB” or “BA” to 2), and missing values of SNP genotypes
(or tagged as “NC”) were replaced with the mode value of
the all birds.
Data Analysis

We performed a sensitivity analysis based on machine
learning models of immune response. This technique is
based on a simple idea. To assess the influence of a given
variable on a phenomenon under scrutiny, we first build
a predictive model using a full set of selected variables
and then remove the tested variable from the descrip-
tion. The decrease of the model predictive power is a
measure of influence of the tested variable on the studied
phenomenon. This idea can be easily implemented to
test importance of a subset of variables (e.g., all SNPs
from a single gene). In such a case, one has to remove
a given subset of variables from the description and mea-
sure the decrease of predictive power of the model.

The analyses performed within the present study
follow the same principle that is used for establishing
the importance of variables in RF—decrease of the clas-
sification accuracy due to removal of information is a
measure of the relevance of this information. The proto-
col was implemented in R (R Core Team, 2012), using
randomForest and Boruta packages (Liaw and Wiener,
2002; Kursa and Rudnicki, 2010).

The first stage of the analysis, consisting of 2 steps, is
performed using all available data for each data set. In
the first step, data normalisation and removal of the
batch effects are performed for each data set. In the sec-
ond, Boruta is used for each data set to determine the
number of relevant variables. This number is used later
as the meta-parameter of the simulation protocol in
feature selection based directly on RF.

The remaining part of the protocol is performed using
cross-validation, where a model is built using part of the
data and tested on the remaining part. In the second
stage, the analysis informative SNPs for each data set
were determined, and predictive models were built using
all relevant SNPs. Finally, the sensitivity test of the
models to removal of the information corresponding to
entire genes is performed, which allows to identify sub-
sets of genes that lead to best predictive models. All
the crucial steps in the analysis are described in more
detail in the following sections.
Data Normalization It is universally acknowledged
that combining data from different batches in straight-
forward manner can lead to misleading results (Leek
et al., 2010). Therefore, the extent of batch effects was
carefully checked for all immune traits. Two possible
confounding variables examined were the time of mea-
surement and the sex of the chicken. Significant batch
effects were observed for the time of measurements
(Figure 1), whereas there was no difference between



Figure 1. Boxplot for KLH7 data set. The blue line depicts the mean value of KLH7 response calculated for all individuals and batches, and the red
dots mark the mean value of KLH7 in each batch.
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sexes. To remove differences between batches, the data
were transformed to Z-scores within each batch and
merged to a single set after the transformation.
Identification of the Optimal Set of Informative
SNPs The informative SNPs are identified using RF
modelling and feature selection based on the RF esti-
mate of the importance of variable Imp(V).

The core protocol is rather straightforward. First, we
find the informative SNPs, by taking average ranking of
SNPs’ importance obtained frommultiple independently
built instances of RF classifier. Then, we remove itera-
tively the least important SNP from the list and
construct RF classifier on the decreasing number of
SNPs. The ranking of SNPs is performed at each step
because removing of one SNP can change the ranking
of the remaining ones. The procedure is repeated until
the classification error starts to grow after removing
SNPs. The SNPs that are used by the model with the
smallest error constitute the optimal set.

The procedure described previously is rather simple,
nonetheless, its implementation requires special care to
avoid overfitting. It may arise when the same data are
used for generation of a model and for estimation of its
performance. To avoid that, one can assign half of the
data for model building and remaining half for evalua-
tion of results. Such a setup results in rather inefficient
usage of data—the model is built using only half of the
data. What is more, when the number of objects in the
sample is low, results may strongly depend on the
composition of the sample. The better solution is to
apply the cross-validation procedure. In the k-fold
cross-validation procedure, the sample is divided into k
parts. Then k-1 parts are used to generate the model,
and the remaining part is used for evaluation. The pro-
cedure is repeated k times, with each part serving once
as a test set and k-1 times contributing to the training
set. Such a procedure gives estimates both for average
and SD of the models’ error. Unfortunately, when the
sample size is small, the results may still depend on a
particular split of data. In effect, both estimates may
be biased by a particular split. To alleviate this problem,
we repeat the cross-validation several times, with inde-
pendent splits of data at each iteration.
In the first step, the initial set of SNPs, that will be

further optimised, is obtained. This step is performed
in 99 independent repeats of the 3-fold cross-validation
procedure (Figure 2). Within each iteration, first the
set of relevant features is selected for the training set.
Then the RF regression model is built using selected var-
iables, and the quality of the model is tested on the test
set. The feature selection is performed with the help of
the resampling scheme, based on 10 repeats of 3-fold
cross-validation. In each iteration, the training is split
into 3 parts, and 3 different samples are created as a
combination of these parts. Then the RF model is built
on each sample, and the Imp(V) for each variable is



Figure 2. Selection of the relevant variables using random forest importance in the double cross-validation scheme. The external cross-validation is
used to establish good estimate of classification.
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collected. The sum of Imp(V) from the 30 samples is then
used to rank variables. The 30 variables with the highest
Imp(V) are selected. These variables are used to build a
RF model for the training set and validate the prediction
on the test set. The number of variables that are used for
model building is a meta-parameter of the procedure,
which was obtained with the help of Boruta algorithm
for all-relevant feature selection. To this end, Boruta
was used for the KLH7 data set, and the number of truly
relevant variables was established. The number of rele-
vant variables established for KLH7 was used as a
parameter for all other data sets because we wanted to
keep the number of hyperparameters in the protocol as
low as possible. The initial models for KLH7 were best,
and therefore, we decided to develop an entire protocol
for this data set and then repeat without further optimi-
sations for other data sets. The resampling scheme with
a fixed number of features returned at each iteration is
similar to one used by Boruta but has significantly lower
computational cost. What is more, the number of rele-
vant variables is subjected to verification and optimisa-
tion in the second stage; hence, potentially higher
accuracy of Boruta is not necessary.

The average of the variance explained in the test set
from the 99 repeats of the procedure is our reference
baseline performance, used for comparisons at the later
steps.

In the next step, we perform a sensitivity analysis on
the SNP level. The initial set of variables consisted of
the SNPs that were used at least 150 times in the first
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step. The redundant SNPs from this initial list were
removed using recursive feature elimination algorithm
(Guyon et al., 2002). At each step, 300 RF models
were built on different subsamples of data for the current
set of variables. The number of trees in the forest (ntree
parameter) was set to 5,000, to ensure good estimate of
the Imp(V). The number of variables tried for each split
(mtry parameter) was set to 2. This parameter was
established by trial and error to give best predictive per-
formance of the classifier. The Imp(V), measured as the
increase of mean square error after permuting values of
the variable, was collected for variable for each model.
Then the SNP with the lowest average Imp(V) was
removed from the data set, and the procedure iteratively
repeated, until the performance of the model started to
drop. The model with the smallest number of SNPs
that gave stable level of explained variance in the valida-
tion set was selected as a final one. This procedure was
applied for KLH7, LPS, and LTA phenotypic traits
only. Models built for KLH0 trait had no predictive po-
wer in cross-validation, which was anticipated as there
should be no genetic contribution to KLH innate
response.
Significance of Genes The presence of an SNP in the
group of optimal SNPs shows that it carries information
on the immune response. Nevertheless, the informative-
ness may arise because of a correlation with other vari-
ables that are truly responsible for the changes in the
response. In particular, the SNP in question may be iden-
tified as relevant because it is in the linkage disequilib-
rium with another allele that is truly responsible for
the biological effect. By the same token, it may be diffi-
cult to estimate the true influence of a single SNP
because the presence of multiple correlated SNPs may
diminish apparent importance of the removed one.
What is more, SNPs are secondary objects because
they represent mutations in genes, which are primary
objects of genetic analysis. Indeed, the analysis of the
linkage disequilibrium among 218 SNPs indicated that
18 SNPs were in complete linkage (the Pearson coeffi-
cient of correlation r 5 1), 44 SNPs were in close linkage
(r � 0.99), and 92 SNPs were in linkage (r � 0.9). By
comparison, only 2 weakly linked (r � 0.28) SNPs were
found in 218 random SNPs.

Therefore, in the next step, the sensitivity analysis
was performed on the level of entire genes, with all
SNPs located within the same gene removed or added
to the feature set as a single variable. To estimate the in-
fluence of individual genes, first the reference model was
built using all SNPs selected in the procedure described
previously. Then the SNPs located within the gene un-
der scrutiny were removed from the description, and
the model was built on the reduced set of variables.
Both models were then evaluated on the test set. The
decrease of correlation between model and test set was
used as a measure of genes’ influence on the immune
response. This procedure is designed to counteract the
strong correlations between SNPs within a single gene.
Removal of a single member of the set of strongly corre-
lated variables has no influence on the classifier
performance—it is necessary to remove all of them to
see the effect. One should note the difference between
the sensitivity analysis and standard recursive feature
elimination protocol. In the latter, one iteratively
removes the least relevant variable from the description
of the data and stops when the quality of the model
starts to drop. In the sensitivity analysis, one removes
a set of variables from the predefined set of descriptive
variables and measures the drop of the quality of the
model. This analysis is performed for all variables, inde-
pendently from their position in the importance ranking.
Therefore, in the sensitivity analysis, we can see the ef-
fect of removing the set of higher ranked variables.
Three types of results of sensitivity analysis were

observed. For one class of genes, a significant decrease
of model quality was recorded. Another class consists
of genes for which the decrease was not significantly
different from zero. Finally, there was a class of genes
for which removal of the SNPs located within the gene
under scrutiny resulted in the improved quality of the
model.
This observation led to a final procedure for selection

of genes. First, the new reference set of SNPs was con-
structed, consisting of all genes that have a positive
contribution to the mode, that is, genes belonging to
the first class described previously. Then various combi-
nations of genes were removed from the reference to
examine whether models built using a smaller set of vari-
ables can achieve similar or possibly even better predic-
tive power than that obtained for reference set of
variables.
In all cases, the analysis was performed using 1,000 re-

peats of 3-fold cross-validation, resulting in 3,000
different models tested on 3,000 different validation
sets for each immune response examined in the present
study.
RESULTS

Identification of Informative SNPs

The feature selection procedure gives fairly stable re-
sults in all data sets. Out of 218 descriptive variables pre-
sent in the data set, only 56 variables have appeared at
least once in the 297 optimal variable sets for KLH7
data set. Among them, 10 SNPs were present in all 297
cases, and 29 SNPs were present in at least 150 cases.
In the case of the LPS data set, the number of SNPs
that appeared at least once was 61, 12 SNPs were pre-
sent in all cases, and 27 SNPs appeared in at least 150
cases. For the LTA data sets, the corresponding
numbers were 56, 15, and 30. Finally, for the KLH0,
the numbers are 59, 11, and 27. The detailed results of
feature selection procedure are presented in the
Supplementary Tables 1–4.
The results for the KLH0 are interesting because we

do not expect any genetic component for the innate
response to KLH0, nevertheless, the algorithm consis-
tently selects nonrandom variables to build models.
This can be expected because, due to random
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fluctuations, some variables can have random correla-
tions with a decision variable on the training set. Howev-
er, these correlations should not be carried over to the
test set, hence the classifiers built on random variables
should have no predictive power. This is indeed the
case—models built with the help of selected SNPs have
no predictive power at all; the average variance
explained by models in cross-validation is 0.00 6 0.05%.
The best predictive models were obtained for the

KLH7 data set. The average over ensemble of 297 models
was 11.6% of explained variance, and for the model built
using 29 most representative SNPs, it was 11.2%. The
procedure for elimination of SNP did not produce consis-
tent results, and the average result varied randomly be-
tween 11 and 12% of explained variance from step to
step; hence, we decided to report the value obtained
from the full set of 29 SNPs.
In the case of LPS and LTA data sets, the results were

similar and significantly weaker.
The average variance explained by 297 LPS models

was 3.7%, and for the model built using most representa-
tive SNPs, it was 4.4%. The recursive elimination of least
informative SNPs allowed for reduction of the variable
set to 15 SNPs.
The average variance explained by 297 LTA models

and for the model built using most representative
SNPs was 4.5%. The recursive elimination of SNPs
allowed for reduction of the set of variables to 20 SNPs.
The results obtained by all models built using the

most representative variables fall well within the distri-
bution of individual models because SD of all distribu-
tions is roughly 4%. One should note, however, that for
KLH7, the model built using 30 most representative var-
iables explains slightly less variance than the average of
297 models suggest. For LPS and LTA, the representa-
tive models explain slightly more variance than respec-
tive averages of individual models. It shows that
feature selection did not lead to overfitting for KLH
and slight overfitting for both LPS and LTA. The
detailed account of results can be seen in
Supplementary Table 5.
Sensitivity Analysis for Genes

The sensitivity analysis for genes was performed for 3
data sets, for which predictive models based on SNPs can
be built. In the first step, the SNPs in the optimal subsets
were associated with genes. In the case of KLH7, 18
genes were identified, 15 genes for LTA, and 9 genes
for LPS. The results of the significance analysis varied
between data sets. The most interesting results were ob-
tained for the KLH7 data set.
KLH7 For KLH7, 3 groups appeared in the set of genes.
Three genes—MAPK8IP3, CRLF3, UNC13D—have a
strong association with the KLH response. The removal
of SNPs associated with each of these genes led to
decrease of explained variance by at least 1%. For 7
other genes, the removal of their SNPs from the descrip-
tion decreased the quality of the models by between
0 and 0.5%. For the last 8 genes, the model built without
their SNPs were better than the reference model
(Table 1 and Figure 3).

In the next step, we checked the effect of removing all
SNPs from genes belonging to the third group from the
description. This result led to a significant increase of
the model quality—the variance explained increased
from 11.2 to 14.1%. What is more, even a model built us-
ing only 3 genes from the first group, with explained vari-
ance equal to 12.2%, is better than reference. In further
analysis, we used genes from the group I as the base
set. Then we examined effects of extending this base
set by SNPs from all possible combinations of genes
from the group II. For 2 sets consisting of SNPs
belonging to 4 variables, the results were very close to
the result obtained for the full set of 10 genes. The best
results were obtained for a set consisting of 5 genes
(Table 1). A more detailed presentation of results is
available in Supplementary Tables 6–8.
LPS For the LPS, all the 9 selected genes had a consid-
erable impact on the models (Table 2). Excluding SNPs
from each of these genes resulted in significantly
decreased result, by at least 0.8%. Therefore, the final
model consists of these 9 genes.
LTA For the LTA data set, the results were qualita-
tively similar to those obtained for KLH7 (Table 3).
The genes can be divided into 3 groups. The removal of
SNPs belonging to any of the 6 genes in the first group
led to a significant decrease of the model quality, by at
least 0.7%. For 3 genes from the second group, the
removal of SNPs from the variable set resulted in a
moderate decrease of model quality. For the remaining
group of genes, the removal of their SNPs from the
descriptive variables either had no effect or even
improved model results, by up to 0.5%. In the second
stage of sensitivity analysis, all possible combinations of
3 genes from group II were added to the genes from group
I. The best result was obtained for a set of 7 genes from
group I and gene SOX14 from group II.
DISCUSSION

As should be expected from the biological consider-
ations, we have not discovered a genetic influence on
the innate response for the KLH antibody (KLHd0).
For the remaining traits, we have been able to attribute
between 4.4 and 14.9% to genetic factors. The following
best results were obtained:

� KLH7: 14.9% explained variance by the model based
on 13 SNPs from 5 following genes: MAPK8IP3,
CRLF3, UNC13D, ILR9, and PRCKB;

� LPS: 4.5% explained variance by the model based on
15 SNPs from 9 following genes: ST6GAL1, TRAF7,
ITGB4, SPHK1, MAPK8IP3, PTGER4, CRLF3,
MAP2K4, and PROCR;

� LTA: 7.8% explained variance by the model based on 9
SNPs from 7 following genes: CRLF3, MAPK8IP3,
TNFRSF13B, SMURF1, PDGFA, PTGER4, and
SOX14.



Table 1. Sensitivity analysis of genes for KLH7.

Stage 1

Group

Gene SNPs Mean Mean diff.

Reference All SNPs 11.2% 0

I MAPK8IP3 15714774, 14068006, 16001483,
14692425,16690726 8.1% 23.1%

CRLF3 15827424, 15826603,
13508431, 15826598 8.9% 22.3%

UNC13D 15039342 10.2% 21.0%
II ILR9 10731333 10.7% 20.5%

PRCKB 15008890, 14075158 10.8% 20.4%
MAP2K3 15006760 10.9% 20.3%
ST6GAL1 15965697 10.9% 20.3%
CARD11 14071669, 15005804 11.1% 20.1%
PTGER4 16102750 11.1% 20.1%
GPC1 16651464 11.1% 20.1%

III SOX14 15947324 11.3% 0.1%
JAK2 14777688 11.3% 0.1%
PDGFA 14070244 11.4% 0.2%
NLRC3 29005402 11.4% 0.2%
JMJD6 15820319 11.5% 0.3%
MAP2K4 15035880, 15035854, 14105858 11.7% 0.5%

15810344
SMURF1 14072521, 15725673 11.7% 0.5%

Stage 2

Base group Additional genes Mean Mean diff.

I - 12.2% 1.0%
I Group II (7 genes) 14.1% 2.9%
I PRCKB 13.7% 2.5%
I IL9R 13.6% 2.4%
I ILR9, PRCKB 14.9% 3.7%

Final model MAPK8IP3, CRLF3,
UNC13D, PRCKB, ILR9

14.9% 3.7%

Stage 1: The numbers describe the performance of the random forest models, built
without the indicated gene. The reference row displays performance of model containing
all the genes. Horizontal lines separate 3 group pf genes. The SNPs that were present in
all 297 sets in the previous step are displayed in boldface. The SNPs that were present in
more than 90% of cases are displayed in italic. Stage 2: The effect of adding selected
genes and combinations of genes to the base set consisting of genes from the group I.

The SNPs that were present in all 297 sets in the previous step are displayed in
boldface.
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One should note that the results reported for the
models are obtained as average over 1,000 repeats of
the cross-validation procedure. Hence, for each response,
3,000 individual models have been built and tested on
the independent data. The results of these tests are
widely distributed around their respective mean values
(Figure 4). One can observe that for the LPS and even
the LTAmodels, some tests have negative predictive po-
wer. Even for KLH7, the explained variance in a signifi-
cant fraction of cases was below 10%.

It is worth noting that not all SNPs from these genes
were used to built models. Most SNPs are rejected by a
feature selection procedure, and in effect, about half of
the genes are represented by one SNP only.

It is interesting to compare the decrease of the model
quality in the sensitivity analysis, with the final quality
of the model. For the KLH7 trait, 5 variables (MAP-
K8IP3, CRLF3, UNC13D, PRCKB, and ILR9)
contribute to the final model. The sum of their sensitiv-
ities is 7.3% of lost explained variance, whereas the
model explains 14.9% of variance (Table 1). It is clear
that the difference must arise because of strong synergis-
tic interactions between variables.
For LPS, the opposite situation can be observed—the

sum of sensitivities is 8.9%, whereas the model explains
only 4.5% of variance (Table 2). In this case, the model
has both significant interactions and redundancy. In
the case of LTA, both quantities are roughly balanced.
The sum of sensitivities is 8.0%, whereas the final model
explains 7.8% of variance (Table 3). Nevertheless, it is
still likely that our model for LTA still has both: interac-
tions between variables and redundancy that cancel each
other. This hypothesis is supported by the observation
that removal of 11 variables from the initial model nearly
doubled the predictive abilities of the model. This could
be achieved only by removing misguided interactions. It
is unlikely that the such interactions were limited only to
the variables that were finally removed from the model.
Two genes, namely MAPK8IP3 and CRLF3 are

included in all 3 models. They are the 2 most important
genes both in the case of KLH and LTA response but
have relatively lower rank in the case of LPS. One should
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note, however, that the number of SNPs in the model is
different in each case. MAPK8IP3 in KLH7 data series is
represented by 5 SNPs, in LPS by 2 SNPs, and in LTA
by one SNP. Similarly, they are 4 SNPs from CRLF3
in KLH7, 3 in LPS, and 2 in LTA; moreover, one SNP
that is present in variables sets for LPS and LTA is ab-
sent in the variable set of KLH7.
One gene, namely PTGER4, represented by a single

SNP is included in the final model for LPS and LTA
data sets. Interestingly, this gene is also present in the
initial KLH model, but it is later removed by gene-
based sensitivity analysis. Initial KLH model includes
also ST6GAL1 and MAP2K4 present in the LPS model
as well as PDGFA, SOX14, and SMURF1 present in the
LTA models. One should note that SOX14 is repre-
sented by different SNPs in KLH and LTA models,
and also in the case of MAP2K4, one of 3 SNPs is
different.
Table 2. Sensitivity analysis of genes fo

Group

Gene SNP

Reference All S

I ST6GAL1 15965
TRAF7 14072
ITGB4 14110474,13507
PTGER4 16102
SPHK1 15039
MAPK8IP3 15714774, 16001
CRLF3 15826598, 15827
MAP2K4 15035880, 15810
PROCR 15968

The numbers describe the performance of
the gene. The reference row describes the ser
All these connections show that both innate and adap-
tive immune responses are strongly connected by a
network of dependencies. The central nodes of the
network observed in the experimental study are MAP-
K8IP3 and CRLF3, and their influence is modified by
other genes. The MAPK8IP3 gene is a part of MAPK
signalling pathway and has been associated with regula-
tion of JNK1 (MAPK8) (Kuboki et al., 2000), which in
turn controls T-helper-cell differentiation and cytokine
production (Rinc�on et al., 2000; Dong et al., 2002;
Jeffrey et al., 2007). MAPK8IP3 is also known to be
involved in carcinogenesis (Yuan et al., 2015). The
CRLF3 gene has been reported to be involved in regula-
tion of a cell cycle (Yang et al., 2009).

The 3 genes specific to KLH are IL9R, PRKCB, and
UNC13D. IL9R codes receptor of interleukin 9, which
in turn is a signal molecule secreted by T-helper cells
as a part of adaptive immune response. PRKCB
r LPS.

s Mean Mean diff.

NPs 4.4 0

697 3.1% 21.3%
516 3.0% 21.4%
637 3.4% 21.0%
750 3.4% 21.0%
217 3.5% 20.9%
483 3.5% 20.9%
424, 15040786 3.6% 20.8%
344, 14105858 3.6% 20.8%
294 3.6% 20.8%

the random forest models, built without
ies of models containing all the genes.



Table 3. Sensitivity analysis of genes for LTA.

Stage 1

Group

Gene SNPs Mean Mean diff.

Reference All SNPs 4.5% 0.00%

I CRLF3 15826598, 15040786 2.3% 22.2%
MAPK8IP3 15714774 3.0% 21.5%
TNFRSF13B 14072943 3.4% 21.1%
SMURF1 14072521, 15725673 3.5% 21.0%
PDGFA 14070244 3.6% 20.9%
PTGER4 16102750 3.8% 20.7%

II SOX14 10730793 3.9% 20.6%
FOXJ1 14110239 4.3% 20.2%
GPC1 15943775 4.3% 20.2%

III ITGB4 15821339, 14110474 4.5% 10.0%
SPHK1 15039217 4.7% 10.2%
IL9R 15732513 4.7% 10.2%
MAP2K4 15035854, 15035880, 15810344 4.9% 10.4%
ST6GAL1 15965697 4.9% 10.4%
JMJD6 15820338 5.0% 10.5%

Stage 2

Base group Additional genes Mean Mean diff.

I SOX14, FOXJ1, GPC1 7.1% 2.6%
I SOX14, FOXJ1, 7.9% 3.4%
I SOX14 7.8% 3.3%

The numbers describe the performance of the random forest models, built without the
gene. The reference row describes the series of models containing all the genes.

The SNPs that were present in all 297 sets in the previous step are displayed in
boldface.
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regulates glycolysis in B cells and is essential for their
long-term survival. Both these genes are involved in
regulation of the adaptive immune system. The third
gene unique to KLH response is UNC13D that regulates
secretory activity of the neutrophiles (Shirakawa et al.,
2004), which is part of the innate response. Out of 5
genes included in the model 2, namely IL9R and
PRKCB, are already known to be directly involved in
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Figure 4. Histograms of the performance of random forest models for KL
feature set for each trait. Histograms were generated using 1,000 iterations
the regulation of adaptive immune response. MAP-
K8IP3 plays multiple roles in the MAPK signalling
pathway, and one of them is possibly regulation of
T-helper-cell actions, similar to IL9R. The function of
CRLF3 is not well established, and UNC13D is involved
in the innate response. Inclusion of the latter in the
model does not mean that either UNC13D is involved
in adaptive response or that a model is wrong. It may
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H7, LPS, and LTA phenotypic traits. Models were built using optimal
of 3-fold cross-validation.



Table 4. Summary of the sensitivity analysis for all traits.

Gene Chromosome

KLH7 LPS LTA

P19 S15 P19 S15 P19 S15

EPHB1 9 1 11
GPC1 9 ** **
KLHL6 9 1 1 1
PROCR 9 1 *** 11
SOX14 9 * ***
ST6GAL1 9 ** *** *
CARD11 14 ** 11 1
IL9R 14 *** 11 1 * 11
MAP2K3 14 ** 11
MAPK8IP3 14 *** 11 *** 1 *** 11
NLRC3 14 *
PDGFA 14 * 11 ***
PRKCB 14 *** 11 1 11
SMURF1 14 * ***
SOCS1 14 1
TNFRSF13B 14 *** 1
TRAF7 14 1 ***
CRLF3 18 *** *** 11 ***
FOXJ1 18 1 11 ** 11
ITGB4 18 11 *** * 1
JMJD6 18 * 1 * 11
MAP2K4 18 * 1 *** *
SPHK1 18 *** *
UNC13D 18 *** 11
JAK2 Z *
PTGER4 Z ** *** 11 *** 11

The results of the present study are denoted as P19 and are compared
with results from Siwek et al. (2015), denoted as S15. The following sym-
bols are used. P19: *** gene included in the final model, ** positive
sensitivity score, negative sensitivity score; S15: 11 gene significant both
in RMM and CAR analysis, 1 gene significant only in CAR analysis.
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reflect the design of experiment and limitations of the
gathered data. The original experiment was designed
to maximise variance in the KLH adaptive response.
Owing to technical limitations, the data were collected
on the SNPs belonging to 36 out of possible hundreds
of genes related to immune response.
It is likely that UNC13D plays a role of proxy for other

genes with whom it is correlated, either because of the
linkage disequilibrium or coregulation. What is more,
we cannot exclude the possibility for any of the genes
included in the model. While results from modelling
are far from perfect, they are strong enough to warrant
further investigation into the role of CRLF3 and MAP-
K8IP3 in the adaptive immune response.
We refrain from giving the biological interpretation

for 2 remaining models, for several reasons. First, as
mentioned previously, the experiment itself was
designed to maximise adaptive response to KLH, and
hence, the variance in the innate response is only a
side effect. Second, the models for LTA and especially
for LPS have much lower explanatory power. What is
more, the complexity of the model grows with falling
explanatory power—the best model for KLH is built
using 5 genes, the intermediate model for LTA is built
on 7 genes, and the weakest model for LPS is built on
9 genes. Finally, multiple genes included in the models
are known for their role in adaptive, rather than
innate, response. For example, the PTGER4 gene
that is included in both LPS and LTA models is a
gene for prostaglandin receptor EP4 that has multiple
roles in the adaptive immune response (Woodward
et al., 2011). Taking all these factors into account, it
is most likely that the genes included in LPS and
LTA models act as proxy for other factors that were
not included in the collected data.

The genes identified in the present study as relevant
are in a broad agreement with those that were found pre-
viously in S15 (Table 4). The agreement is best for the
KLH7 trait, for which the genetic signal is strongest in
the data. The gene CRLF3 is present in our predictive
model but not in the set of genes connected with adap-
tive immunity to KLH found in S15. However, it has
been identified as significant for innate response to
LPS in S15. It is possible that CRLF3 acts by enhancing
the contributions of other genes to adaptive response,
and this cannot be discovered by a standard univariate
analysis. The agreement between genes with weaker as-
sociation with KLH response identified in both studies is
poor. Also, the results for 2 remaining data sets agree be-
tween 2 studies to a lesser extent.

The discrepancy between results of both studies is not
surprising, given that the analytical methods used in
both studies are very different. In particular, methods
used in the present study take into account complex re-
lationships between multiple variables, that cannot be
effectively identified in simpler univariate and bi-
variate analysis performed in S15. On the other hand,
some variables that have statistically significant associa-
tions with response may not be discovered by the current
approach because they may not be sufficiently useful for
the RF classifier, to be included in the list of important
variables. It is worth noting that agreement between
the lists of important genes is best for the best model
and worst for the worst model. This can be also ex-
pected—when the signal is strong enough, the noise be-
comes relatively small, and its influence on the results
of the analysis is diminished.

While comparison with the S15 on the gene level gives
fairly reasonable results, the comparison on the level of
individual SNPs is far more divergent. Only 6 SNPs
were identified as relevant in the previous study, one
for KLH, rs15820324, 4 for LPS, rs14110239,
rs15946185, rs16102750, and rs15731101, and one for
LTA, rs14110519. The rs15820324 was included in the
top 30 most important SNPs only 3 times in 297 cross-
validation models; hence, it never entered further model-
ling stages. Instead, 29 other SNPs were used in the
initial RF model, and 13 of them were used in the final
model. The linear model of KLH response based on the
single SNP rs15820324 explains 1.5% of variance. The
linear model built on the 13 SNPs selected in our proced-
ure explains 7.2% of variance in the response variable.
For comparison, the RF model based on the same 13
SNPs explains 14.9% of variance in the cross-validation.

In the case of LPS data set, the original study identi-
fied 4 significant SNPs. The rs14110239 was never
included into any feature set for LPS; however, it was
included in all 297 feature sets for LTA in the initial
feature selection procedure. The rs16102750 was
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included in all 297 feature sets for LPS, as well as KLH
and LTA, in the initial feature selection procedure and
was included to the final feature set in LPS and LTA
models. The rs15946185 and rs15731101 were not
included in any feature sets for LPS, LTA, and KLH in
the initial feature selection procedure. The linear model
built on these 4 variables explains 0.3% of variance in the
LPS response function. For comparison, a linear model
built using 15 SNPs identified by the present study ex-
plains 1.0% of variance in LPS, whereas the RF model
built on the same feature set explains 4.5% of variance.

Finally, the rs14110519 identified in the original study
as significant for LTA was not included in any feature
sets for LPS, LTA, and KLH in the initial feature selec-
tion procedure. The linear model using this variable ex-
plains 0.5% of variance in the LTA response function. In
comparison, the best model in the present study using 9
SNPs explains 7.8% of variance, and linear model built
on the same feature set explains 2.5% of variance.
CONCLUSION

We have applied the sensitivity analysis based on the
machine learningalgorithmtoexaminetheassociationsbe-
tween genetic markers and immune response in chickens.

The genes identified by this methodology generally
agree with the genes identified by a statistical approach
in the original study. The agreement was best for adap-
tive response to KLH antibody and worst for innate
response to LPS. This correlates well with the strength
of the signal discovered in the data. The models obtained
using RF algorithm for nonparametric and nonlinear
regression were significantly better than linear models
using the same variables. What is more, they are much
better than linear models using SNPs that were identi-
fied as relevant by a standard statistical approach in
the original study. The results obtained for innate
response to the KLH antigen show that the methodology
implemented in the study is relatively resistant to
overfitting. Owing to careful application of the cross-
validation procedure, the predictive models can be
constructed only for systems where there is true link be-
tween descriptive variables and response. This is demon-
strated by the negative result obtained for innate
response to KLH. On the other hand, the improved per-
formance of models of adaptive immune response to
KLH, upon removal of information about some genes,
shows that overfitting was nevertheless present and pre-
vented good generalization of the models. This overfit-
ting could be removed by treating strongly correlated
variables as a single unit. We have shown that sensitivity
analysis based on the machine learning approach can be
much more sensitive for identification of relevant vari-
ables in the system where complex nonlinear and nonad-
ditive interactions between variables may be present.
What is more, the machine learning regression models
have much better predictive power than their linear
counterparts. These results may be explained by a com-
bination of 2 effects. First, possible interactions between
genetic variables in the system can be used by ML
models but are inaccessible to standard linear additive
models. Alternatively, the ML approach may be better
for dealing with incomplete and indirect data.
The best model was built for the adaptive response to

KLH antibody and the worst for the innate response to
LPS. These differences are consistent with the design
of the experiment and are very well rooted in our knowl-
edge of immune response. The parental generation of the
experimental population was selected for a primary anti-
body response toward KLH antigen. As already
mentioned, KLH triggers the Th2 type of adaptive im-
mune response, which is also connected to LTA. In
particular, LTA is a ligand for TLR2 (Toll-like receptor
2) which, being a part of innate response, acts as a
trigger of the adaptive response of the type Th2, which
in turn is responsible for the adaptive response to
nonpathogenic KLH antigen. On the other hand, LPS
initiates the Th1 type of immune response via interac-
tions with different proteins from the TLR family,
namely TLR4.
All final predictive models constructed in the present

study use SNPs from 2 genes, namely MAPK8IP3 and
CRLF3. What is more, these 2 genes were the 2 most
important genes in the model for KLH adaptive
response. The KLH model contains also 2 genes that
are already well known to be involved in regulation of
adaptive response, namely ILR9 and PRCKB, as well
as one gene involved in regulation of innate response,
namely UNC13D. This result strongly suggests that
both MAPK8IP3 and CRLF3 play a significant role in
the adaptive immune response. The MAPK8IP3 is
described in the literature and it is known that it is con-
nected with JNK signaling pathway. We hypothesise
that CRLF3 has a similar role and interacts with another
signalling pathway, possibly the JAK STAT pathway.
Owing to these interactions, both genes have broad ac-
tion by triggering cascade of gene activations on the
signaling pathways.
The procedure used in the present article is computa-

tionally demanding and can be difficult to reproduce
directly for larger data sets, with thousands of animals
described with 60K or even 600K SNPs. The main
limiting factor is the initial feature selection step, which
is performed with the Boruta algorithm. While the algo-
rithm has been used for high-throughput omics data
and, in recent review (Degenhardt et al., 2019), has
been recommended as the most powerful approach,
nevertheless, it was also noted as very computationally
demanding. For a system with one order of magnitude
larger number of objects and 2 orders of magnitude
larger number of variables, the computational effort
would be at least 3 orders of magnitude larger. For
such systems, one may need to apply another feature se-
lection algorithm. However, it is crucial that this algo-
rithm should be able to identify interacting variables.
One could use the Monte Carlo Feature Selection
(Drami�nski et al., 2008) or the MultiDimensional
Feature Selection (Piliszek et al., 2019; Mnich and
Rudnicki, 2020) algorithms for this purpose. The
remaining part of the protocol is applied to a system
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with a much smaller number of informative variables
and would be feasible even for much larger systems.
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