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Budget constrained machine 
learning for early prediction 
of adverse outcomes for COVID‑19 
patients
Sam Nguyen1, Ryan Chan1, Jose Cadena1, Braden Soper1, Paul Kiszka2, Lucas Womack2, 
Mark Work2, Joan M. Duggan3, Steven T. Haller3, Jennifer A. Hanrahan3, David J. Kennedy3, 
Deepa Mukundan4 & Priyadip Ray1*

The combination of machine learning (ML) and electronic health records (EHR) data may be able 
to improve outcomes of hospitalized COVID-19 patients through improved risk stratification and 
patient outcome prediction. However, in resource constrained environments the clinical utility of such 
data-driven predictive tools may be limited by the cost or unavailability of certain laboratory tests. 
We leveraged EHR data to develop an ML-based tool for predicting adverse outcomes that optimizes 
clinical utility under a given cost structure. We further gained insights into the decision-making 
process of the ML models through an explainable AI tool. This cohort study was performed using 
deidentified EHR data from COVID-19 patients from ProMedica Health System in northwest Ohio and 
southeastern Michigan. We tested the performance of various ML approaches for predicting either 
increasing ventilatory support or mortality. We performed post hoc analysis to obtain optimal feature 
sets under various budget constraints. We demonstrate that it is possible to achieve a significant 
reduction in cost at the expense of a small reduction in predictive performance. For example, when 
predicting ventilation, it is possible to achieve a 43% reduction in cost with only a 3% reduction in 
performance. Similarly, when predicting mortality, it is possible to achieve a 50% reduction in cost 
with only a 1% reduction in performance. This study presents a quick, accurate, and cost-effective 
method to evaluate risk of deterioration for patients with SARS-CoV-2 infection at the time of clinical 
evaluation.

Since the outbreak of coronavirus disease 2019 (COVID-19) in the United States in early 20201, many hospitals 
and clinics have experienced shortages of ventilators and bed spaces in Intensive Care Units (ICUs)2. At the first 
encounter with a COVID-19 patient, as evidenced by a positive nasopharyngeal PCR test for SARS-CoV-2, it is 
critical to determine using readily available clinical information whether hospitalization is required, or outpatient 
treatment can be utilized without risk of deterioration or increased morbidity and mortality. With the increasing 
availability of electronic health records (EHRs) of hospitalized COVID-19 patients, data-driven decision sup-
port systems, such as those based on Machine Learning (ML) methodologies, have been explored extensively in 
the recent literature as a means of triaging patients with COVID-19 at the point of contact with the health care 
system3–6. However, for wide-spread adoption of such ML systems, two fundamental challenges remain. First, to 
gain the confidence of health care providers, clinical interpretability of the ML algorithms is crucial. Second, the 
cost and availability of various laboratory tests can vary substantially across facilities and geographic locations. 
Hence, accounting for general test availability and costs in the ML decision tool is critical.

Interpretability of ML algorithms for clinical applications has recently received significant research 
attention7–10, as the lack of interpretability can potentially have adverse or even life-threatening consequences. 
In general, there exists a trade-off between an ML model’s predictive performance and interpretability: Linear 
models are highly interpretable, but they may not have enough capacity to capture the complexity of EHR data, 
whereas non-linear models typically provide better predictive performance, but they can be hard to interpret. In 
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Lundberg and Lee11, the authors introduce SHAP, a software package that leverages the game-theoretic concept 
of Shapley values to explain the output of any ML model. Shapley plots have recently been used in ML applica-
tions to risk assessment of COVID-19 patients12, 13.

While recent studies have considered the interpretability of ML algorithms that triage COVID-19 patients 
based on clinical features, the availability and cost of such clinical features have largely been ignored. However, 
this is an important consideration, since many hospitals reached near full capacity at the peak of the pandemic, 
bringing the economic sustainability and ethicality of resource allocation of the healthcare system into ques-
tion. Moreover, recent studies have found that patients are often over-diagnosed by unnecessary testing services, 
which may delay care for those patients who have more immediate need for medical attention. This suggests that 
taking the cost of diagnostic testing into account when building ML decision support tools can not only help 
satisfy budget constraints in resource-constrained environments, but it can also lead to better patient-centered 
outcomes.

Machine learning under budget constraints is also known as cost-sensitive or cost-constrained learning. This 
field is focused on developing good predictive models while also taking into consideration the cost of collecting 
data. Several works have considered the general problem of cost-sensitive feature selection in machine learning. 
These works have tended to provide approximate methods or heuristics for solving the cost-constrained opti-
mization problems associated with such tasks14–17. In healthcare applications, a number of previous works have 
introduced budget constraints, such as the financial costs of lab tests or clinical preferences, into their proposed 
machine learning models18, 19. However, to the best of our knowledge, our work is the first to consider cost-sensitive 
learning applied to COVID-19. In this paper, we propose an interpretable ML framework that includes the con-
sideration of the financial cost of clinical features. More specifically, we sought to (1) develop an ML approach 
for predicting adverse outcomes based on demographic information, co-morbidities, and biomarkers collected 
close to the date of a positive PCR test; (2) gain insight into the decision-making process of the ML algorithm 
based on interpretable ML tools, such as Shapley values; and (3) identify and account for unequal costs of clinical 
features in the ML decision support system by finding the optimal set of biomarkers that results in the highest 
utility under a given cost structure.

A retrospective study was performed using EHRs from patients in the largest health care system in north-
western Ohio and southeastern Michigan (ProMedica Health System). The data used in this study corresponds to 
patients who (1) had a positive nasopharyngeal PCR test for SARS-CoV-2 between March 20, 2020 and December 
29, 2020, and (2) were admitted to the hospital shortly before or after the positive result. Demographics (e.g., 
age, race, co-morbidities, insurance status), vitals, and a wide range of lab tests available within 3 days of a first 
positive PCR test were used to train machine learning models to predict a patient’s risk of adverse outcomes, 
namely, composite ventilation and mortality. Our studies indicate that, compared to a baseline linear logistic 
regression model, more advanced nonlinear or tree-based classifiers provide improved performance both in terms 
of average precision (AP) and the area under the receiver operating characteristic curve (AUC). The importance 
of individual features was captured via game-theoretic Shapley values, and the results largely matched clinical 
intuition. Finally, we performed a post hoc analysis of the cost of clinical features to obtain optimal feature sets 
for a given budget constraint. The results indicate that judicious and cost-sensitive selection of clinical features 
can provide substantial financial and logistical savings with very little reduction in predictive performance.

Methods
Data description.  The present study was performed using EHRs from patients of ProMedica, the largest 
health care system in northwestern Ohio and southeastern Michigan. The EHRs were collected from patients 
who (1) had a positive nasopharyngeal PCR test for SARS-CoV-2 between March 20, 2020 and December 29, 
2020, and (2) were admitted to the hospital within ± 3 days of the positive result. For those patients with multiple 
admissions in the database, only one admission that overlapped with or occurred right after the patient’s first 
PCR positive test was selected. Admissions where patients were put on ventilators before the first positive date 
were additionally filtered out. A total of 1,312 patients met these criteria. A flowchart of the study enrollment is 
provided in Fig. 1. The study protocol involving analysis of fully deidentified data was reviewed and approved by 
the respective Institutional Review Boards of ProMedica and Lawrence Livermore National Laboratory, and the 

Figure 1.   A flowchart of study enrollment. Composite ventilation related outcomes are represented by green 
boxes and Mortality related outcomes are represented by red boxes.
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study was performed in compliance with all regulations and guidelines (Expedited, Category #5 research) from 
the United State Department of Health and Human Services.

Data preprocessing.  Forty-nine clinical features were extracted within a ± 3  day window from the first 
PCR positive test date. Missing values were imputed using median imputation20. Continuous features were 
standardized using Z-score scaling (subtracting the mean and scaling to unit variance). If there were multiple 
observations for a feature inside the extraction window, only the observation closest to the positive test date was 
retained. Additionally, for the task of composite ventilation prediction, there were instances where the ± 3 day 
extraction window overlapped with a patient’s ventilation period. For those cases, feature values observed on or 
after the start of ventilation were removed.

We further noticed that clinical measurements related to oxygen levels (Oxygen Saturation, Inspired Oxygen 
Concentration, PO2, SPO2, PCO2) were highly correlated with our model’s predictions of the need for composite 
ventilation, even after ensuring that our extraction pipeline was sound. To make sure there could be no informa-
tion leakage, these five oxygen measurements were removed from the task of composite ventilation prediction. 
As a result, 44 features were used to train our models on the task of predicting composite ventilation, whereas 49 
features were used for predicting mortality. The list of features and their value ranges are presented in Tables 1 
and 2 for the task of composite ventilation and mortality, respectively.

Model development I: Predicting adverse outcomes without budget constraints.  The follow-
ing machine learning models were trained: Logistic regression, XGBoost21, and Gaussian process classifier (with 
radial basis function kernel)22. These models serve to establish a baseline on the predictive performance in the 
ideal scenario where budget is not a constraint. These models were specifically chosen because they cover a wide 
spectrum of ML approaches in healthcare and clinical applications. Logistic regression is the de facto technique 
in clinical applications because of ease of interpretation, general applicability to small datasets, and availability 
in statistical software packages23, 24. A limitation of logistic regression is the underlying assumption of linearity25, 
which is often too strong for many clinical tasks. Gaussian process classifiers remove the assumption of linearity 
while performing well on small datasets, but they are less interpretable than logistic regression. Among non-
linear classifiers, Gaussian process classifier is arguably the most powerful technique with sound statistical prop-
erties. Additionally, it is possible to train this model in the presence of sparse and missing data, which makes it an 
ideal choice for analyzing EHRs. The Gaussian process classifier has been applied to various detection and pre-
diction tasks, including early recognition of sepsis26, in-hospital mortality prediction for preterm infants27, and 
health monitoring with wearable sensors28. XGBoost is a relatively new ensemble machine learning model, and 
it represents the best-in-class among tree-based classifiers, combining strong predictive performance and the 
interpretability of decision trees. In recent literature, XGBoost has often been shown to provide improved pre-
dictive performance in a wide range of clinical applications. Sharma et al.29 use XGBoost for diagnosing depres-
sion in unbalanced datasets. Chang et al.30 apply XGBoost to the task of predicting hypertension outcomes, and 
they find that this model has better predictive performance than a random forest or a support vector machine.

Models were trained and evaluated following fivefold train/test splits to account for variances, resulting in 
80%/20% training and testing splits. For each train/test split, model hyperparameters were optimized by per-
forming fourfold cross validation on the training set, leading to 80%/20% splits into optimization and validation 
sets—that is, the optimization and validation sets contain 64% and 16% of the full dataset. The Optuna opti-
mization framework31 was used for hyperparameter tuning with the objective of maximizing AP. Additionally, 
a post-hoc feature importance analysis was performed by applying the SHAP framework11, a game-theoretic 
feature attribution framework that reveals how each feature per sample contributes to the decisions made by 
the model for the corresponding sample. All of our experiments were conducted using Python 3.8, and models 
were implemented in the Scikit-Learn framework32.

Model development II: Feature selection under budget constraints.  In this section, the financial 
costs of the clinical features were taken into consideration when training predictive models. For a pre-defined 
cost structure, the goal was to find the set of clinical features that provides the highest predictive performance in 
terms of AP. One could find the best subset of clinical features iteratively by trying all possible combinations of 
features obeying the budget constraint; however, this method would be computationally expensive, as it scales 
exponentially with the number of features. Therefore, we propose an alternative selection scheme. Intuitively, 
several clinical features are often recorded collectively and can be grouped together. For example, tempera-
ture, blood pressure, and pulse are often measured together when the patient is first admitted to the hospital. 
Guided by clinical experts, 11 groups of clinical features and their relative collection costs were defined (Table 3). 
By training machine learning models on each combination of groups, we only must explore 211 combinations 
rather than 244 combinations for predicting ventilation and 249 for predicting mortality. As XGBoost was the best 
performing model without budget constraints, it was also selected for the budget-constrained prediction task. 
XGBoost was trained for all 211 combinations of feature groups to obtain the combination with highest AP for a 
given budget constraint.

Informed consent.  The study protocol involving analysis of fully de-identified data was reviewed and 
approved with Full Waiver of informed consent granted (Expedited, Category #5 research) by the respective 
Institutional Review Board’s of ProMedica and Lawrence Livermore National Laboratory. The study was per-
formed in compliance with all regulations and guidelines from the United State Department of Health and 
Human Services.
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Ventilated (N = 224) Not ventilated (N = 1088) All (N = 1312) Missing data

Age 65.0 (57.0–74.0) 62.0 (49.0–74.0) 63.0 (50.0–74.0) 0 (0%)

Gendera

Male 131 (58.5%) 545 (50.1%) 676 (51.5%) 0 (0%)

Female 93 (41.5%) 543 (49.9%) 636 (48.5%) 0 (0%)

Racea

Caucasians 172 (76.8%) 785 (72.2%) 957 (72.9%) 0 (0%)

African Americans 45 (20.1%) 245 (22.5%) 290 (22.1%) 0 (0%)

Othersb 7 (3.1%) 58 (5.3%) 65 (5.0%) 0 (0%)

Social determinants of health (SDOH)a 190 (84.8%) 902 (75.5%) 1029 (78.4%) 0 (0%)

Pulse 92.0 (80.0–106.0) 88.0 (77.0–100.0) 88.0 (77.0–101.0) 151 (11.5%)

Respirations (breaths/min) 22.0 (20.0–26.0) 20.0 (18.0–24.0) 20.0 (18.0–24.0) 151 (11.5%)

Temperature (Celsius) 98.9 (98.1–100.35) 98.7 (98.1–99.8) 98.8 (98.1–99.9) 153 (11.7%)

Body Mass Index (BMI) 32.9 (28.2–38.8) 31.6 (26.6–37.1) 31.8 (26.8–37.3) 49 (3.7%)

Systolic blood pressure (mmHg) 127.5 (111.0–143.0) 127.0 (116.0–142.0) 127.0 (115.0–142.0) 151 (11.5%)

Diastolic blood pressure (mmHg) 71.5 (62.25–81.0) 75.0 (65.0–84.0) 74.0 (65.0–84.0) 151 (11.5%)

Pulse oximetry (%) 94.0 (92.0–96.0) 96.0 (94.0–98.0) 95.0 (93.0–98.0) 128 (9.8%)

Oxygen saturation (%) 92.0 (87.0–95.0) 93.0 (78.625–95.75) 92.6 (84.30–95.65) 1020 (77.7%)

Inspired oxygen concentration (%) 50.0 (36.0–100.0) 32.0 (21.0–40.0) 36.0 (21.0–50.0) 1083 (82.5%)

Hemoglobin (g/dL) 13.3 (12.2–14.6) 13.4 (12.0–14.6) 13.4 (12.0–14.6) 257 (19.6%)

Lymphocytes absolute (109/L) 0.7 (0.5–1.0) 0.9 (0.6–1.4) 0.9 (0.6–1.3) 196 (14.9%)

Mean corpuscular hemoglobin (MCH) (pg/
cell) 29.8 (28.6–31.2) 29.75 (28.3–31.2) 29.8 (28.4–31.2) 170 (13.0%)

Hematocrit (%) 39.4 (36.15–43.175) 39.6 (35.75–43.0) 39.5 (35.8–43.1) 167 (12.7%)

White blood cells (109/L) 7.45 (5.1–9.8) 6.4 (4.9–8.5) 6.5 (4.925–8.7) 170 (13.0%)

Platelets (109/L) 193.0 (146.0–251.0) 200.0 (157.0–261.5) 199.0 (155.0–261.0) 176 (13.4%)

Mean corpuscular hemoglobin concentra-
tion (MCHC) (g/dL) 33.7 (33.1–34.2) 33.7 (33.0–34.4) 33.7 (33.025–34.3) 170 (13.0%)

Mean Corpuscular Volume (MCV) (fL) 88.5 (85.0–92.0) 88.0 (85.0–92.0) 88.0 (85.0–92.0) 170 (13.0%)

Mean Platelet Volume (MPV) (fL) 8.7 (8.0–9.5) 8.5 (7.9–9.2) 8.5 (7.9–9.3) 177 (13.5%)

Anion gap (mmol/L) 12.0 (10.0–15.0) 11.0 (10.0–13.0) 12.0 (10.0–13.0) 187 (14.3%)

CO2 (mEq/l) 23.0 (21.0–25.0) 24.0 (22.0–26.0) 24.0 (22.0–26.0) 186 (14.2%)

PCO2 (mmHg) 34.4 (30.55–38.925) 34.0 (29.75–38.45) 34.1 (29.8–38.6) 1091 (83.2%)

PO2 (mmHg) 65.0 (58.0–80.0) 70.0 (62.0–84.0) 69.0 (59.0–83.0) 1095 (83.5%)

Sodium (mmol/L) 135.0 (132.0–138.0) 137.0 (134.0–139.0) 136.0 (134.0–139.0) 1095 (83.5%)

Chloride (mmol/L) 99.0 (96.0–102.0) 101.0 (98.0–104.0) 101.0 (97.0–104.0) 187 (14.3%)

Glucose (mg/dL) 135.0 (112.0–198.0) 119.0 (103.0–150.75) 121.0 (104.0–157.0) 187 (14.3%)

Blood Urea Nitrogen (BUN) (mg/dL) 22.0 (15.0–33.0) 17.0 (12.0–27.0) 18.0 (12.0–28.0) 186 (14.2%)

Creatinine (mg/dL) 1.12 (0.905–1.59) 0.98 (0.78–1.31) 1.0 (0.8–1.35) 184 (14.0%)

Calcium (mg/dL) 8.5 (8.2–8.8) 8.7 (8.4–9.0) 8.7 (8.4–9.0) 187 (14.3%)

Potassium Bld (mmol/L) 3.9 (3.6–4.3) 3.9 (3.6–4.2) 3.9 (3.6–4.2) 189 (14.4%)

GFR MDRD Af Amer (mL/min/1.73 m2) 60.0 (48.5–60.0) 60.0 (60.0–60.0) 60.0 (57.0–60.0) 207 (15.8%)

GFR MDRD Non Af Amer (mL/min/1.73 
m2) 57.0 (40.0–60.0) 60.0 (50.0–60.0) 60.0 (47.0–60.0) 207 (15.8%)

D-Dimer (ng/mL) 349.0 (211.5–578.5) 321.5 (199.25–556.5) 331.0 (201.0–563.0) 459 (35.0%)

B-type Natriuretic Peptide (BNP) (pg/mL) 118.0 (38.0–263.0) 67.0 (27.0–183.75) 72.0 (31.0–208.0) 963 (73.4%)

Troponin (ng/mL) 0.02 (0.01–0.04) 0.01 (0.01–0.03) 0.01 (0.01–0.03) 506 (38.6%)

Procalcitonin (ng/mL) 0.24 (0.11–0.51) 0.1 (0.05–0.2) 0.11 (0.06–0.26) 433 (33.0%)

Ferritin (ng/mL) 553.0 (243.5–1017.5) 317.0 (147.0–693.0) 349.0 (160.75–737.25) 564 (43.0%)

Lactic Acid Dehydrogenase (LDH) (U/L) 340.0 (259.0–462.0) 275.0 (215.25–345.0) 284.0 (219.0–365.0) 597 (45.5%)

Sed Rate (mm/h) 59.0 (38.0–83.5) 47.0 (28.75–69.25) 49.0 (29.0–72.0) 1149 (87.6%)

C-Reactive Protein (CRP) (mg/dL) 12.35 (8.025–18.175) 6.85 (2.5–11.975) 7.9 (3.3–13.425) 532 (40.5%)

Bedside glucose (mg/dL) 162.5 (126.5–259.75) 147.0 (107.0–224.25) 151.0 (109.0–230.0) 808 (61.6%)

Chronic Kidney Diseasea,c 34 (15.2%) 89 (8.2%) 123 (9.4%) 0 (0%)

Asthmaa,c 13 (5.8%) 61 (5.6%) 74 (5.6%) 0 (0%)

Hypertensiona,c 102 (45.5%) 391 (35.9%) 493 (37.6%) 0 (0%)

Diabetesa,c 67 (29.9%) 248 (22.8%) 315 (24.0%) 0 (0%)
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Results
We report results on five test sets (which together span the entire dataset), and provide the mean and standard 
deviation of AP and AUC scores. The proposed ML framework achieved the best mean (standard deviation) 
across validation sets with AUC of 0.723 (0.038) and AP of 0.379 (0.038) for composite ventilation and AUC of 
0.802 (0.029) and AP of 0.354 (0.065) for mortality. Note, for comparison, a classifier that completely disregards 
the data can achieve an AUC of 0.5 and AP of 0.090 (for composite ventilation) and 0.171 (for mortality). A 
distinction between our work and others is that we chose the hyperparameters of our models by optimizing 
AP rather than AUC. Our motivation is that AP is a more meaningful measure of performance in the presence 
of significant class imbalance. This is predominantly true in our case, where the number of deceased patients 
(N = 224) as well as the number of patients who required composite ventilation (N = 118) is a small fraction of 
the total cohort (N = 1312).

The results of logistic regression, XGBoost, and Gaussian process classifier without budget constraints are 
provided in Table 4. We also provide the Receiver Operating Characteristic (ROC) curves and Precision–Recall 
curves for the three ML approaches (Figs. 2 and 3). Among the three classifiers, for both adverse outcomes (com-
posite ventilation and mortality), XGBoost provides the highest AP (as well as the highest AUC for composite 
ventilation and the second highest AUC for mortality). Feature importance for XGBoost—computed using the 
SHAP framework—for both outcomes are shown in Fig. 4. For predicting ventilation, the five most important 
features (when averaged over five test sets) were procalcitonin, lymphocyte count, pulse oximetry, C-Reactive 
Protein (CRP), and age. Similarly, for predicting mortality, the top five features were age, blood urea nitrogen 
(BUN), serum potassium, diastolic blood pressure, and D- Dimer levels.   

The optimal sets of features for predicting composite ventilation under different budget constraints are 
reported in Table 5. Since Demographics and Comorbidities (DCM) are readily available upon a patient’s admis-
sion, this information was considered to be free of cost and included in every feature set. Under different budget 
constraints, the model with highest mean AP across cross-validated test sets was selected. As the available budget 
increased from 0 to 15, the AP increased from a mean (standard deviation) of 0.289 (0.016) to 0.382 (0.047). 
The performance peaked at a budget level of 15, the optimal set of features being DCM, BMP, D-dimer, LDH, 
Sedrate, CRP, BNP, and Procalcitonin. Increasing the budget (i.e., adding more features) beyond this point did 
not yield a better performance.

The optimal set of features for predicting mortality under different budget constraints are reported in Table 6. 
Under different budget constraints, the model with highest mean AP across cross-validated test sets was selected. 
As the available budget increased from 0 to 17, the AP increased from 0.285 (0.048) to 0.355 (0.075). The perfor-
mance peaked at a budget constraint of 17, the optimal set of features being DCM, BMP, CBC, D-dimer, LDH, 
CRP, BNP, Procalcitonin and Ferritin. Increasing the budget beyond this point did not yield a better performance.

Discussion
Several recent publications have also proposed using XGBoost or very similar models to predict mortality or 
ventilation using EHR3, 5–7. For mortality prediction, Yan et al.3 identified LDH, Lymphocytes, and CRP as the 
most significant features. Using a cohort in New York City, NY, USA, Yadaw et al.4 compared different models 
including logistic regression, support vector machine (SVM), random forest (RF), and XGBoost for mortality 
prediction and identified the most informative features as Age, Oxygen Saturation, and the type of visit (tele-
health or inpatient/outpatient). Bertsimas et al.12 analyzed cohorts in Spain, Greece, and USA. The authors used 
the SHAP framework in their study, and they reported that BUN, CRP, and Oxygen Saturation were the most 
informative features for mortality.

After training and testing a model using all available clinical features, we found the top contributing factors 
for predicting adverse outcomes. To do so, we applied the SHAP framework11 to the best performing model 
(XGBoost), selected the top performing fold, and plotted the relationship between feature values and feature 
significance (Figs. 5, 6). Note that higher Shapley values are indicative of the adverse outcome (composite ven-
tilation or death) and vice versa. In general, the Shapley plots uncovered relationships between clinical features 
and outcomes which are well supported by existing clinical literature. For example, lower values of Procalcitonin 
reduce the likelihood of being labelled as requiring ventilation. Aligned with other studies33–35, our analysis 
suggests that Procalcitonin can be a robust lab test for predicting ventilation. In addition to Procalcitonin, Pulse 
Oximetry and Absolute Lymphocyte Count exhibit a clear relationship to ventilation, where lower levels of Pulse 
Oximetry and Absolute Lymphocytes reduce the chances of being labelled as requiring ventilation. Our findings 
demonstrate that, used in combination, these markers are highly predictive of composite ventilation.

From a clinical point of view, our study suggests that the most relevant set of variables that predicted ventila-
tion as an outcome were elevated Procalcitonin levels, elevated Lymphocyte Count, lower Pulse Oximeter read-
ings, elevated CRP, and older age (based on averaged SHAP values across all test splits, Fig. 4 (a)). The study also 
suggests that the variables that best predicted mortality as the outcome were older age, elevated BUN, elevated 
serum potassium, elevated diastolic blood pressure, and elevated D-dimer levels (Fig 4 (b)). This study was not 

Table 1.   Data summary of study cohort for composite ventilation. Data summary of patients used for 
predicting Composite Ventilation. For numeric variables the median is given along with the 0.25 and 0.75 
quantiles. For categorical variables the count is given along with the percentage of the population. The fourth 
column represents the number of missing data and their proportion to the dataset.
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Deceased (N = 118) Discharged (N = 1194) All (N = 1312) Missing data

Age 78.0(69.0–85.75) 61.0(49.0–72.0) 63.0 (50.0–74.0) 0 (0%)

Gendera

Male 59 (50.0%) 617 (51.7%) 676 (51.5%) 0 (0%)

Female 59 (50.0%) 577 (48.3%) 636 (48.5%) 0 (0%)

Racea

Caucasians 98 (83.1%) 859 (71.9%) 957 (72.9%) 0 (0%)

African Americans 19 (16.1%) 271 (22.7%) 290 (22.1%)) 0 (0%)

Othersb 1 (0.0%) 64 (0.1%) 65 (5.0%) 0 (0%)

Social determinants of health (SDOH)a 116 (98.3%) 976 (81.7%) 1092 (83.2%) 0 (0%)

Pulse 88.0(77.0–101.0) 88.5 (77.0–101.0) 88.0 (77.0–101.0) 140 (10.6%)

Respirations (breaths/min) 21.0(19.0–25.25) 20.0 (18.0–24.0) 20.0 (18.0–24.0) 141 (10.7%)

Temperature (Celsius) 98.6(98.1–99.35) 98.8 (98.175–99.9) 98.8 (98.1–99.9) 140 (10.6%)

Body Mass Index (BMI) 28.70 (24.475–33.925) 32.0 (27.1–37.35) 31.8 (26.8–37.3) 49 (3.7%)

Systolic blood pressure (mmHg) 131.5(113.5–144.25) 127.0 (115.0–142.0) 127.0 (115.0–142.0) 141 (10.7%)

Diastolic blood pressure (mmHg) 68.5(59.0–78.0) 75.0 (66.0–84.0) 74.0 (65.0–84.0) 141 (10.7%)

Pulse oximetry (%) 95.0(92.0–97.0) 96.0 (93.0–98.0) 88.0 (77.0–101.0) 117 (8.9%)

Oxygen saturation (%) 93.0(86.25–95.975) 93.0 (84.1–96.0) 93.0 (85.7–96.0) 972 (74.1%)

Inspired oxygen concentration (%) 70.0(40.0–100.0) 36.0 (21.0–70.0) 40.0 (28.0–90.0) 1028 (78.4%)

SPO2 (%) 94.0(91.0–96.0) 96.0 (92.0–98.0) 95.0 (92.0–97.5) 1129 (86.1%)

Hemoglobin (g/dL) 12.8(11.1–14.1) 13.4 (12.1–14.6) 13.4 (12.0–14.6) 239 (18.2%)

Lymphocytes absolute (109/L) 0.8(0.5–1.3) 0.9 (0.6–1.3) 0.9 (0.6–1.3) 179 (13.6%)

Mean corpuscular hemoglobin (MCH) (pg/
cell) 30.3(28.7–31.5) 29.7 (28.4–31.2) 29.8 (28.4–31.2) 154 (11.7%)

Hematocrit (%) 38.5(33.6–42.2) 39.70 (14.3–60.3) 39.6 (35.8–43.1) 151 (11.5%)

White blood cells (109/L) 7.4(5.5–10.1) 6.4 (4.9–8.6) 6.5 (5.0–8.7) 154 (11.7%)

Platelets (109/L) 188.5(144.0–242.0) 200.0 (156.0–261.25) 199.0 (155.0–261.0) 160 (12.2%)

Mean corpuscular hemoglobin concentration 
(MCHC) (g/dL) 33.4(32.6–34.2) 33.8 (33.1–34.4) 33.7 (33.0–34.3) 154 (11.7%)

Mean Corpuscular Volume (MCV) (fL) 90.0(87.0–94.0) 88.0 (85.0–92.0) 88.0 (85.0–92.0) 154 (11.7%)

Mean Platelet Volume (MPV) (fL) 8.645 (7.9–9.4) 8.5 (7.9–9.2) 8.5 (7.9–9.3) 161 (12.3%)

Anion gap (mmol/L) 13.0(10.0–14.25) 12.0(10.0–13.0) 12.0 (10.0–14.0) 171 (13.0%)

CO2 (mEq/l) 32.8(29.2–38.0) 24.00 (5.0–54.0) 24.0 (22.0–26.0) 170 (13.0%)

PCO2 (mmHg) 32.8(29.2–38.0) 24.0(22.0–26.0) 34.75 (30.0–40.1) 1038 (79.1%)

PO2 (mmHg) 68.0(56.0–91.0) 70.0(60.0–87.0) 70.0 (60.0–88.0) 1042 (79.4%)

Sodium (mmol/L) 137.0(133.75–140.0) 136.0(134.0–139.0) 136.0 (134.0–139.0) 171 (13.0%)

Chloride (mmol/L) 101.0(98.0–104.0) 101.0(97.0–104.0) 101.0 (97.0–104.0) 171 (13.03%)

Glucose (mg/dL) 132.0(108.0–178.25) 121.0(104.0–155.0) 122.0 (104.0–157.0) 171 (13.03%)

Blood Urea Nitrogen (BUN) (mg/dL) 29.0(20.0–39.5) 17.00 (3.0–228.0) 18.0 (12.0–28.0) 170 (13.0%)

Creatinine (mg/dL) 1.25(0.9175–1.7025) 17.0(12.0–27.0) 1.0 (0.8–1.37) 168 (12.8%)

Calcium (mg/dL) 8.6(8.2–8.9) 8.7(8.4–9.0) 8.7 (8.4–9.0) 171 (13.0%)

Potassium Bld (mmol/L) 4.1(3.8–4.45) 3.9(3.6–4.2) 3.9 (3.6–4.2) 173 (13.2%)

GFR MDRD Af Amer (mL/min/1.73 m2) 59.0(40.5–60.0) 60.0(59.0–60.0) 60.0 (56.0–60.0) 191 (14.6%)

GFR MDRD Non Af Amer (mL/min/1.73 m2) 49.0(33.5–60.0) 60.0(49.0–60.0) 60.0 (46.0–60.0) 191 (14.6%)

D-Dimer (ng/mL) 457.0(329.0–1104.5) 317.0(196.5–538.75) 337.0 (202.0–571.0) 435 (33.2%)

B-type Natriuretic Peptide (BNP) (pg/mL) 206.5(67.5–347.75) 68.5(28.25–169.5) 78.5 (32.0–214.0) 942 (71.8%)

Troponin (ng/mL) 0.03(0.0125–0.07) 0.01(0.01–0.03) 0.01 (0.01–0.03) 486 (37.0%)

Procalcitonin (ng/mL) 0.26(0.0975–0.5125) 0.11(0.06–0.24) 0.11 (0.06–0.26) 411 (31.3%)

Ferritin (ng/mL) 472.5(205.5–1025.25) 341.0(160.75–729.25) 354.0 (164.75–735.25) 548 (41.8%)

Lactic Acid Dehydrogenase (LDH) (U/L) 372.0(259.25–501.0) 282.0(218.0–359.0) 286.0 (220.0–370.0) 581 (44.3%)

Sed Rate (mm/h) 50.5(34.5–82.0) 49.0(29.0–71.0) 49.0 (29.0–72.0) 1143 (87.1%)

C-Reactive Protein (CRP) (mg/dL) 11.9(7.0–19.1) 7.6(3.15–13.1) 8.0 (3.3–13.725) 516 (39.3%)

Bedside glucose (mg/dL) 154.0(113.0–218.0) 151.0(109.0–233.25) 152.0 (109.0–229.0) 763 (58.2%)

Chronic Kidney Diseasea,c 22 (18.6%) 101 (8.5%) 123 (9.4%) 0 (0%)

Asthmaa,c 4 (3.4%) 70 (5.8%) 74 (5.6%) 0 (0%)

Continued
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Deceased (N = 118) Discharged (N = 1194) All (N = 1312) Missing data

Hypertensiona,c 63 (53.4%) 430 (36.0%) 493 (37.6%) 0 (0%)

Diabetesa,c 43 (36.4%) 272 (22.8%) 315 (24.05) 0 (0%)

Table 2.   Data summary of study cohort for Mortality. Data summary of patients used for predicting Mortality. 
For numeric variables the median is given along with the 0.25 and 0.75 quantiles. For categorical variables 
the count is given along with the percentage of the population. The fourth column represents the number of 
missing data and their proportion to the dataset.

Table 3.   Cost structure of clinical features. Pre-defined cost structure for each group of features (may be 
modified based on the healthcare facility) based on a relative cost score where 0 indicates clinical features that 
are least expensive and 3 indicates clinical features that are most expensive.

Group Cost

DCM (Demographic and comorbidities: Age, Sex, Gender, Race, Respiratory Rate, BMI, Temperature, Systolic/Diastolic Blood Pres-
sure, Pulse Oximetry, FIO2, O2 Sat, SPO2, Asthma, Chronic Kidney Disease, Diabetes, Hypertension) 0

BMP (Basic Metabolic Profile: Sodium, Chloride, Glucose, GFR MDRD Non Af Amer, Creatinine, BUN, Calcium, Potassium, Bld) 1

CBC (Complete Blood Count: Hemoglobin, Lymphocyte, MCH, Hematocrit, White Blood Cells, Platelets, MCHC, MCV, MPV) 1

D-dimer 2

LDH 2

Sed rate 2

CRP 2

BNP 3

Troponin 3

Procalcitonin 3

Ferritin 3

Table 4.   Prediction performance using all clinical features. Adverse outcome prediction performance at the 
point of entry for the various ML models in terms of average precision (AP) and area under receiver operating 
curve (AUC).

Model Outcome AP mean (std) AUC mean (std)

XGBoost Composite ventilation 0.379 (0.038) 0.723 (0.038)

Gaussian process Composite ventilation 0.357 (0.037) 0.713 (0.023)

Logistic regression Composite ventilation 0.361 (0.035) 0.717 (0.013)

XGBoost Mortality 0.354 (0.065) 0.802 (0.029)

Gaussian process Mortality 0.338 (0.055) 0.819 (0.012)

Logistic regression Mortality 0.328 (0.067) 0.805 (0.029)

Figure 2.   Precision-Recall (PR) curves on the ventilation and mortality tasks. The lines are the mean PR curves 
over 5 different train/test splits and the shaded areas represent ± 1 standard deviations from the means. In both 
tasks, the XGBoost model has the best PR curve overall, which is reflected in its average precision (AP) score in 
Table 4.
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Figure 3.   Receiver operating characteristic (ROC) curves on the ventilation and mortality tasks. The 
lines are the mean ROC curves over 5 different train/test splits and the shaded areas represent ± 1 standard 
deviations from the means. The performance of the three models is comparable, with XGBoost having the best 
performance in the ventilation task and the Gaussian process classifier having slightly better performance in the 
mortality task. The area under the curve (AUC) scores for all the models are reported in Table 4.

Figure 4.   Feature importance of a trained XGBoost model. The higher the absolute SHAP value, the greater the 
contribution of the feature to the predicted outcome. The SHAP values are averaged over 5 folds of test splits that 
span the whole dataset. (A) The top three most important features for predicting ventilation are Procalcitonin, 
Lymphocytes Absolute and Pulse Oximetry. (B) The top three most important features for predicting mortality 
are Age, BUN and Potassium.
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designed to evaluate causality for the clinical data but suggests that these clinical data serve as appropriate surro-
gate markers for the underlying biological causes of respiratory failure and death in infection with SARS-CoV-2.

Regarding composite ventilation, from a pathophysiologic perspective, the patients that have an elevated 
procalcitonin level and elevated lymphocytic count are more likely to have bacterial and/or viral superinfection, 
which would be associated with increased risk of requiring ventilation. The lower pulse oximeter readings and 

Table 5.   Optimal set of features at different budget levels for predicting composite ventilation. Total cost is the 
sum of the cost of each feature group in the selected set.

Budget Total cost Optimal set of features AP mean (std)

1 1 DCM, BMP 0.289 (0.016)

2 2 DCM, CRP 0.314 (0.071)

3 3 DCM, BMP, LDH 0.331 (0.034)

4 4 DCM, BMP, CBC, CRP 0.353 (0.045)

5 4 DCM, BMP, CBC, CRP 0.353 (0.045)

6 4 DCM, BMP, CBC, CRP 0.353 (0.045)

7 7 DCM, BMP, CBC, D-dimer, Procalcitonin 0.363 (0.051)

8 7 DCM, BMP, CBC, D-dimer, Procalcitonin 0.363 (0.051)

9 7 DCM, BMP, CBC, D-dimer, Procalcitonin 0.363 (0.051)

10 10 DCM, BMP, CBC, CRP, BNP, Troponin 0.371 (0.03)

11 10 DCM, BMP, CBC, CRP, BNP, Troponin 0.371 (0.03)

12 10 DCM, BMP, CBC, CRP, BNP, Troponin 0.371 (0.03)

13 10 DCM, BMP, CBC, CRP, BNP, Troponin 0.371 (0.03)

14 10 DCM, BMP, CBC, CRP, BNP, Troponin 0.371 (0.03)

15 15 DCM, BMP, D-dimer, LDH, Sedrate, CRP, BNP, Procalcitonin 0.382 (0.047)

16 15 DCM, BMP, D-dimer, LDH, Sedrate, CRP, BNP, Procalcitonin 0.382 (0.047)

17 15 DCM, BMP, D-dimer, LDH, Sedrate, CRP, BNP, Procalcitonin 0.382 (0.047)

18 15 DCM, BMP, D-dimer, LDH, Sedrate, CRP, BNP, Procalcitonin 0.382 (0.047)

19 15 DCM, BMP, D-dimer, LDH, Sedrate, CRP, BNP, Procalcitonin 0.382 (0.047)

20 15 DCM, BMP, D-dimer, LDH, Sedrate, CRP, BNP, Procalcitonin 0.382 (0.047)

21 15 DCM, BMP, D-dimer, LDH, Sedrate, CRP, BNP, Procalcitonin 0.382 (0.047)

22 15 DCM, BMP, D-dimer, LDH, Sedrate, CRP, BNP, Procalcitonin 0.382 (0.047)

Table 6.   Optimal set of features at different budget levels for predicting mortality. Total cost is the sum of the 
cost of each feature group in the selected set.

Budget Total cost Optimal set of features AP mean (std)

1 1 DCM, BMP 0.285 (0.048)

2 2 DCM, LDH 0.311 (0.06)

3 3 DCM, BMP, LDH 0.317 (0.05)

4 4 DCM, LDH, CRP 0.34 (0.07)

5 4 DCM, LDH, CRP 0.34 (0.07)

6 4 DCM, LDH, CRP 0.34 (0.07)

7 4 DCM, LDH, CRP 0.34 (0.07)

8 8 DCM, BMP, LDH, CRP, Troponin 0.343 (0.079)

9 8 DCM, BMP, LDH, CRP, Troponin 0.343 (0.079)

10 10 DCM, BMP, LDH, Sedrate, CRP, Procalcitonin 0.351 (0.08)

11 10 DCM, BMP, LDH, Sedrate, CRP, Procalcitonin 0.351 (0.08)

12 10 DCM, BMP, LDH, Sedrate, CRP, Procalcitonin 0.351 (0.08)

13 10 DCM, BMP, LDH, Sedrate, CRP, Procalcitonin 0.351 (0.08)

14 10 DCM, BMP, LDH, Sedrate, CRP, Procalcitonin 0.351 (0.08)

15 10 DCM, BMP, LDH, Sedrate, CRP, Procalcitonin 0.351 (0.08)

16 10 DCM, BMP, LDH, Sedrate, CRP, Procalcitonin 0.351 (0.08)

17 17 DCM, BMP, CBC, D-dimer, LDH, CRP, BNP, Procalcitonin, Ferritin 0.355 (0.075)

18 17 DCM, BMP, CBC, D-dimer, LDH, CRP, BNP, Procalcitonin, Ferritin 0.355 (0.075)

19 17 DCM, BMP, CBC, D-dimer, LDH, CRP, BNP, Procalcitonin, Ferritin 0.355 (0.075)
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elevated levels of inflammation seen with the elevated CRP reflect an increased severity of pulmonary damage 
that would be seen in patients progressing to ventilation. Extremes of age are well-recognized risk factors for 
adverse outcomes in the majority of severe medical conditions, and COVID-19 is no exception36, 37.

Regarding mortality, elevated BUN and serum potassium are reflections of impaired renal function, and acute 
kidney injury is associated with increased hospital mortality in all studies of sepsis37–40. The mechanism by which 
COVID-19 impacts renal function remains unclear: direct cytotoxic effects, cytokine storm related hypotension, 
renal hypoxia secondary to systemic hypoxia, and micro-coagulation in the renal vasculature (which may also be 
reflected in an elevated D-dimer level) have all been proposed as potential mechanisms41–43. Regarding elevated 
diastolic blood pressure as a marker for increased risk of mortality, this may be a surrogate marker for cardiac 
disease instead of an independent pathophysiologic mechanism.

Though not among the top predictors for mortality, mean corpuscular volume (MCV) is an interesting marker 
that has been correlated with worse outcomes both at lower values44 and higher values45. In our study population, 
non-alcoholic fatty liver disease is common and may be unrecognized given that mean BMI was high and fatty 
liver disease is often seen in obesity, whereas other studies demonstrating a low MCV being predictive of worse 
outcomes have been done in areas of the world where ß-thalassemia is more common. This indicates that MCV 
needs to be considered in the context of other population factors.

However, contrary to most recent publications46, Fig. 5b shows that higher BMI decreased the likelihood 
of being labelled as deceased. Higher BMI being associated with better outcomes has also been reported in 
veterans47. This may be attributed to collider bias, as the number of obese people outnumber the non-obese people 
in our cohort and obese people are also more likely to be hospitalized for COVID-19.

The major focus of this work is the post-hoc analysis of models by incorporating budget constraints into the 
problem formulation. A notable trend in both mortality and ventilation prediction is that the best predictive 
performance is achieved for a significantly smaller set of optimal features. In general, predictive performance 
increases with allowable budget, but there is a clear point of inflexion for both composite ventilation and mortal-
ity (Fig. 7). For composite ventilation, the predictive performance is at 92% of the maximum AP at 18% of the 
maximum budget. Similarly, for mortality, the predictive performance is at 96% of the maximum AP at 18% of 
the maximum budget. This implies that when it comes to making healthcare affordable, clinicians can choose a 

Figure 5.   Scatter plots of SHAP values versus unnormalized values for selected features. (A–C) The top three 
most significant features for predicting composite ventilation for the best performing fold. (D–F) The top three 
most significant features for predicting mortality for the best performing fold.
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smaller set of features that not only fits within their budget but also achieves close-to-optimal performance. For 
example, when predicting ventilation (Table 5 and Fig. 7a) we can achieve a 43% reduction in cost with only a 3% 
reduction in performance by using the feature set DCM, BMP, CBC, and CRP rather than the optimal feature set 
DCM, BMP, CBC, CRP, D-dimer, and Procalcitonin. Similarly, when predicting mortality (Table 6 and Fig. 7b) 
we can achieve a 50% reduction in cost with only a 1% reduction in performance by using the feature set DCM, 
LDH, and CRP rather than the optimal feature set DCM, BMP, LDH, CRP, and Troponin. This substantial drop 
in cost may be attributed to the fact that Troponin and Procalcitonin are expensive lab tests. Overall, we provide 
a tool to perform cost–benefit analysis for selecting the most efficient and cost-effective lab tests for prediction 
of adverse outcomes.

A B C

D E F

Figure 6.   SHAP scatter plot for prediction using all features for the best performing fold. Positive SHAP 
values imply the corresponding feature was indicative of ventilation/death. Negative SHAP values imply the 
corresponding feature was indicative of no ventilation/discharged. A zero SHAP value implies the feature has no 
impact on the predicted outcome. The normalized range of value of features are color-coded.

Figure 7.   Visualization of Total cost versus Utility. Although an increase in budget allows more clinical feature 
groups in our selection, this does not guarantee an increase in performance. The performance maximizes when 
the total costs of features is 15 for composite ventilation and 17 for mortality, and any additional feature does not 
increase utility.
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Limitations
As with most retrospective cohort outcomes studies, an inherent limitation is the associative nature of the study 
analysis and the fact that disease prediction markers used in the modeling may be correlated. Thus, a better 
approach to selecting clinical features and prediction markers may be network analysis-based node selection, 
which considers the clinical and biological connections between markers and reduces the redundancy48, 49. 
Additionally, future studies may incorporate clinical markers that are reported to be associated with outcomes 
of COVID-19 in meta-analysis with large-scale cohorts50, 51 into the training of the prediction model. Indeed, a 
limitation of our present study is the lack of validation on another independent dataset of hospitalized COVID-
19 patients, due to limited dataset availability. Furthermore, the potential causal effects of clinical variables on 
the adverse outcomes for COVID-19 patients could be further interrogated through causal inference analysis 
methods, such as mendelian randomization analysis52–54, which may help understanding clinical and biological 
mechanisms of our prediction models.

Conclusion
The current study provides a point-of-care model that allows improved resource allocation and evidence-based 
management that can be applied to improve patient care in the setting of COVID-19. We present a machine 
learning framework to evaluate risk of clinical deterioration for patients with SARS-CoV-2 infection at the time of 
medical evaluation and to determine appropriate medical management for newly admitted patients. The proposed 
approach also identifies the top clinical factors predictive of an adverse outcome and integrates budget considera-
tions in the prediction framework. More specifically, based on post-hoc optimization, the approach identifies the 
optimal set of clinical variables for a pre-defined budget constraint. The proposed framework has the potential 
for real-life impact by helping clinicians make fast and reliable decisions regarding patient risk stratification in 
a cost-effective manner. Incorporating financial considerations into data-driven prediction models can be ben-
eficial to cost-constrained healthcare systems where costly laboratory tests may not be always readily available.
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