DIABETES TECHNOLOGY & THERAPEUTICS
Volume 21, Number 5, 2019

Mary Ann Liebert, Inc.

DOI: 10.1089/dia.2019.0017

ORIGINAL ARTICLE

Performance of Omnipod Personalized Model Predictive
Control Algorithm with Moderate Intensity Exercise
in Adults with Type 1 Diabetes

Gregory P. Forlenza, MD,' Bruce A. Buckingham, MD,> Mark P. Christiansen, MD,?

R. Paul Wadwa, MD, Thomas A. Peyser, PhD,* Joon Bok Lee, PhD,” Jason O’Connor, BS,
Eyal Dassau, PhD? Lauren M. Huyett, PhD,” Jennifer E. Layne, PhD,?

and Trang T. Ly, MBBS, FRACP, PhD?

Abstract

Background: The objective of this study was to assess the safety and performance of the Omnipod® person-
alized model predictive control (MPC) algorithm with variable glucose setpoints and moderate intensity ex-
ercise using an investigational device in adults with type 1 diabetes (T1D).

Materials and Methods: A supervised 54-h hybrid closed-loop (HCL) study was conducted in a hotel setting
after a 7-day outpatient standard treatment phase. Adults aged 18—-65 years with T1D and HbAlc between 6.0%
and 10.0% were eligible. Subjects completed two moderate intensity exercise sessions of >30 min duration on
consecutive days: the first with the glucose set point increased from 130 to 150 mg/dL and the second with a
temporary basal rate of 50%, both started 90 min pre-exercise. Primary endpoints were percentage time in
hypoglycemia <70 mg/dL and hyperglycemia =250 mg/dL.

Results: Twelve subjects participated in the study, with (mean=standard deviation) age 36.5+14.4 years,
diabetes duration 21.7115.7 years, HbAlc 7.6% *1.1%, and total daily dose 0.60+0.22 U/kg. Outcomes for
the 54-h HCL period were mean glucose: 136+ 14 mg/dL, percentage time <70mg/dL: 1.4% +1.3%, 70—
180 mg/dL: 85.1%+9.3%, and 2250 mg/dL: 1.8% £2.4%. In the 12-h period after exercise start, percentage
time <70 mg/dL was 1.4% *+2.7% with the raised glucose set point and 1.6% *=3.0% with reduced basal rate.
The percentage time <70 mg/dL overnight was 0% = 0% on both study nights.

Conclusions: The Omnipod personalized MPC algorithm performed well and was safe during day and night use
in response to variable glucose set points and with temporarily raised glucose set point or reduced basal rate
90 min in advance of moderate intensity exercise in adults with T1D.

Keywords: Artificial pancreas, Automated insulin delivery, Exercise, Closed-loop, Omnipod, Tubeless insulin
pump.
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Introduction

MAINTAINING SAFE GLYCEMIC control during and after
exercise is a challenge in managing type 1 diabetes
(T1D). Exercise can provide many health benefits; however,
fear of hypoglycemia and the loss of glycemic control may
make participation in exercise difficult or daunting for people
with T1D.!* Although there are extensive guidelines on the
management of T1D during exercise, including recommended
adjustments to insulin dosage and carbohydrate (CHO) con-
sumption before, during, and after exercise,l these guidelines
can be challenging to implement in everyday life, and may not
be adequate to prevent hypoglycemia during or after exercise.

Automated insulin delivery in response to continuous glu-
cose monitor (CGM) signal has the potential to lower the
barrier to exercise for people with T1D by improving glycemic
outcomes and reducing the burden of management. Several
studies have examined the performance of a single-hormone
artificial pancreas (AP) system in response to exercise. The
majority of these studies included exercise as part of the pro-
tocol without any announcement or adjustment to the algo-
rithm.>™'* A few studies have included a user-initiated
announcement of exercise’>'® or pre-exercise snacks,'9
whereas others have included automatic detection of exercise
through accelerometers or heart rate monitors.”>** These
studies have varied widely in the type of AP system, duration
of use, duration and intensity of exercise, announcement
strategy, amount and frequency of snacks, and outcomes re-
ported, making it difficult to compare results directly or draw
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conclusions about which approach was most successful.
However, in general, these studies have demonstrated that AP
systems are able to maintain good glycemic control while re-
ducing the occurrence of hypoglycemia, but supplemental
CHO consumption is sometimes still necessary before, during,
or after exercise to prevent or treat hypoglycemia.

The Omnipod Horizon™ Automated Glucose Control
System is a single-hormone hybrid closed-loop (HCL) sys-
tem using a personalized model predictive control (MPC)
algorithm under development for commercial applica-
tion.”**> The objective of this study was to evaluate the
safety and performance of the Omnipod personalized MPC
algorithm in adults with T1D performing moderate intensity
exercise in a supervised outpatient hotel setting. Although
exercise safety was assessed using both glucose set point
increase and basal rate reduction, the intent of this study was
not to determine which method was superior but rather to test
that both methods were safe and performed well.

Materials and Methods
Study design

This single-arm multicenter study assessed the Omnipod
personalized MPC algorithm performance for 54h with
variable glucose set points in a supervised hotel setting, with
the HCL period commencing before breakfast on day 1 and
ending ~5h after breakfast on day 3 (Fig. 1). Participants
engaged in a session of moderate intensity exercise lasting
>30min on each subsequent study afternoon at ~ 1600h,
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FIG. 1.

Representation of the algorithm input settings of glucose set point (mg/dL) and basal rate (% of usual rate) on

each study day with exercise. On study day 1, the glucose set point was raised to 150 mg/dL 90 min before exercise start
(approximate timing indicated by gray bar labeled Exercise), whereas the basal rate was maintained at 100% of the usual
rate (top panel). On study day 2, the basal rate was decreased to 50% of the usual rate 90 min before exercise, whereas the
glucose set point was maintained at 130 mg/dL (bottom panel). On both days, the glucose set point was set to 110 mg/dL in
the early morning (05:00h), increased to 130 mg/dL in the late morning (11:00h), and lowered to 120 mg/dL in the late
evening (21:00h). The approximate meal times are indicated by gray bars labeled with meal type. On Study day 3, the
glucose set point was set to 110 mg/dL in the early morning (05:00h), and HCL ended ~ 5h after breakfast (not shown).

HCL, hybrid closed loop.
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with example activities including soccer, basketball, and
treadmill use. Exercise activities were similar on each day.

The algorithm was evaluated under two experimental
conditions before exercise in a nonrandomized order: a
temporary increase in the glucose set point or reduction of the
preprogrammed subject-specific basal rate (Fig. 1). Ninety
minutes before the first exercise session, the glucose set point
was raised from 130 to 150 mg/dL, with the basal rate un-
changed at 100% of the baseline rate. Ninety minutes before
the second exercise session, a temporary basal rate reduction
of 50% was implemented, with the glucose set point un-
changed at 130 mg/dL. In both cases, the glucose set point
and basal rate settings were returned to their original values at
the end of exercise and dinner was consumed ~ 2 h later. As a
safety requirement, capillary blood glucose (BG) was re-
quired to be 2120 mg/dL before commencing exercise. If
capillary BG was <120 mg/dL, supplemental CHO was
consumed without bolus until capillary BG was =120 mg/dL.

Throughout each study day, the glucose set point was
changed according to the following schedule (in addition to
the previously described changes made before exercise): start
at 110 mg/dL in the early morning (05:00h), increase to
130 mg/dL. in the late morning (11:00h), and lower to
120 mg/dL in the late evening (21:00h) (Fig. 1). Subjects
selected all meals from a variety of options containing 30—
90 g CHO on the first day, with identical meals repeated on
the second day for consistency between the 2 days with ex-
ercise sessions. Meal boluses were calculated by the system
based on the amount of CHO estimated by the subject. This
amount could be adjusted based on investigator judgment as
needed. A correction or reverse bolus based on a recent
capillary BG measurement could be given with the meal
bolus at the discretion of the investigator or subject.

The HCL study was preceded by a 7-day outpatient stan-
dard treatment phase, during which subjects managed their
diabetes at home per their usual routine using their personal
insulin pump and a Dexcom G4 505 Share® CGM (Dexcom,
San Diego, CA). Pump settings were adjusted as needed by
the investigator, based upon their clinical judgment.

Study participants

The following were inclusion criteria for the study: age
18-65 years, T1D for 21 year, HbAlc >6% and <10% at
screening, use of any insulin pump for 26 months, and total
daily dose of insulin 20.3 U/kg. Subjects with =1 episode of
severe hypoglycemia or diabetic ketoacidosis requiring an
emergency room visit or hospitalization within the past 6
months, with hypoglycemic unawareness assessed by the
Clarke Questionnaire,® or who were pregnant or lactating
were excluded. Each study site received Institutional Review
Board approval and subjects provided written informed
consent (Clinicaltrials.gov registration NCT03064906).

Safety and monitoring

Study staff monitored subjects’ status throughout the HCL
study period, with hypoglycemia (capillary BG <70 mg/dL
or symptomatic) or severe hyperglycemia (capillary BG
>300 mg/dL) treated per standard practice.”” HCL stopping
criteria included BG =300 mg/dL and ketones =3.0 mmol/L,
subjects unable to take oral CHO, loss of consciousness,
seizure, or subject request.
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Investigational device

The investigational HCL system used in this study has
been described previousg.%25 The system uses a modified
version of the Omnipod™ Insulin Management System (In-
sulet Corp., Acton, MA) tubeless insulin pump (Pod) for
insulin delivery, a modified personal diabetes manager
(PDM), the Dexcom G4 505 Share AP System, and the
Omnipod personalized MPC algorithm running on a Win-
dows 10 tablet configured with the portable AP System.”®
Operationally, the Dexcom CGM receiver communicated
with the portable AP system (tablet) through a wired USB
connection. The portable AP system transmitted insulin-
dosing commands to the PDM through Bluetooth low energy
relay. The PDM subsequently controlled insulin delivery by
the Pod through a radiofrequency signal. The tablet was used
to start each Pod, initiate HCL, display CGM and insulin
delivery data, and for meal bolus delivery.***

Inputs to the investigational Omnipod personalized MPC
algorithm included the subject-specific basal rate profile,
total daily insulin dose, and the glucose set point. Correction
factor and insulin-to-carbohydrate ratio are also entered into
the system to be used for calculation of meal boluses and
correction boluses. The Omnipod personalized MPC algo-
rithm insulin-dosing decisions are made every 5 min based on
CGM values to minimize the deviation between predicted
BG for a 60-min horizon and the target glucose set point,
while also minimizing deviations from the preprogrammed
subject-specific basal rate.*** Temporary changes could be
made to the subject-specific basal rate profile and glucose set
point using the system interface. These parameters were ad-
justed during the study as described in Study Design (Fig. 1).

Outcomes

The primary endpoints of this study were safety parameters
of percentage of time the sensor glucose was in a hypogly-
cemic range, defined as <70mg/dL, and hyperglycemic
range, defined as 2250 mg/dL, during the 54-h HCL study
period with variable glucose set points. Secondary endpoints
for the 54-h HCL study period included mean sensor glucose,
percentage time with sensor glucose <54, <60, 70-140, 70—
180, >180, and 2300 mg/dL, and standard deviation (SD) and
coefficient of variation (CV) of sensor glucose values.?
Additional endpoints were the immediate (2h) and delayed
(up to 24 h) sensor glucose response to moderate intensity
exercise with a temporary raised glucose set point or reduced
basal rate 90 min before exercise.

Statistical analysis

As the primary endpoint for the study was safety, sample
size was not determined by power calculation. Prespecified
descriptive statistical analyses were performed for all sub-
jects who entered the study (n=12). Results were summa-
rized for the 54-h HCL study period (overall) and the
overnight period defined as 23:00h to 07:00 h. Results were
also summarized for the exercise sessions. Outcomes were
calculated per subject and summarized as meantSD or
median (interquartile range), unless otherwise indicated.
Statistical analyses were performed using SAS® 9.3 or later
(SAS Institute, Cary, NC).
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TABLE 1. CHARACTERISTICS OF THE STUDY POPULATION

Characteristic Subjects (n=12)

Age, years (range) 36.5+14.4 (22.5-64.6)

Female, % 50

Diabetes duration, years (range) 21.7+£15.7 (4.2-51.7)

Insulin pump use duration, 11.4£6.8 (3.3-28.2)
years (range)

Insulin dose pre-HCL, U/(kg-d)*  0.60%+0.22

Insulin dose 24-h HCL, U/(kg-d)b 0.48+0.11

HbAlc, % 7.6+1.1°

Results are mean+ SD unless otherwise indicated.

“Insulin dose averaged for the 7-day standard therapy run-in
phase.

®Insulin dose during entire HCL study period.

“One subject with an HbAlc of 5.6% was allowed to enroll based
on investigator discretion.

HCL, hybrid closed loop; SD, standard deviation.

Results

The characteristics of the 12 subjects are reported in
Table 1. A summary of the glycemic measures and pump
setting adjustments for the 7-day standard treatment run-in
phase is included in the Supplementary Data (Supplementary
Fig. S1 and Supplementary Table S1).

Glycemic outcomes

The glycemic outcomes for the 54-h HCL study period with
variable glucose set points overall, during daytime (07:00—
23:00h), and overnight (23:00-07:00h) are given in Table 2.
The percentage of time with sensor glucose in the hypoglycemic
range of <70 mg/dL was mean  SD: 1.4% * 1.3% during the 54-
h HCL period overall and 0.0% £0.0% overnight. The per-
centage of time with sensor glucose in the hyperglycemic range
of 2250 mg/dL was 1.8% +2.4% for the overall HCL period and
0.1%%0.3% overnight. The percentage of time with sensor
glucose in the target range of 70 to 180 mg/dL was 85.1% +9.3%
overall and 93.4% *14.2% overnight. The mean glucose was
136+ 14 mg/dL overall and 129 + 23 mg/dL overnight.

FORLENZA ET AL.

Exercise challenge

Exercise duration was 39+ 8 min and 38+ 6 min in the
raised glucose set point and reduced basal rate conditions,
respectively. The 24-h glycemic response to the moderate
intensity exercise on each study day is shown in Figure 2.
Glycemic outcomes for the 2 and 12 h periods from exercise
start are given in Tables 3 and 4. Glycemic outcomes were
similar with the raised glucose set point and reduced basal
rate pre-exercise. Hypoglycemia treatments and supplemen-
tal CHO ingestion in the time periods before exercise through
the subsequent overnight period are summarized in Table 5.
There were no supplemental CHO or hypoglycemic episodes
(capillary BG <70 mg/dL) overnight in either group.

Safety outcomes

There were no serious adverse events, and the full HCL
period was completed for all subjects with no instances of the
stopping criteria being met. In the 648 patient-hours of HCL
use, there were 0 hyperglycemic events involving capillary
BG values 2300 mg/dL. There were 13 hypoglycemic events
in 8 subjects involving capillary BG values <70 mg/dL, re-
sulting in 15 oral CHO treatments given (8-21 g CHO). This
is equivalent to 0.48 events per subject per day overall.

Percentage time in HCL

The mean percentage of the total HCL study period spent
with the system running in closed loop was 98.8% *1.8%
(range: 93.7%-100.0%). There were no suspected infusion
site failures during the HCL period. The causes for interrup-
tion of closed loop included Pod replacement, temporary loss
of CGM communication, or loss of system battery charge.

Discussion

This multicenter feasibility study demonstrated that the
Omnipod personalized MPC algorithm performed well and
was safe during day and night use for 54 h in adults with T1D
performing moderate intensity exercise with a temporary
glucose set point increase or basal rate reduction 90 min be-
fore exercise. With each pre-exercise announcement strategy,

TABLE 2. GLYCEMIC OUTCOMES DURING THE 54-H HYBRID CLOSED-LoOOP PERIOD

Parameter Overall (54 h) Day (07:00-23:00 h) Night (23:00-7:00 h)
Mean sensor glucose, mg/dL. 13614 139+13 129423
Standard deviation, mg/dL 38.5+8.6 42.6+10.9 19.616.3
Coefficient of variation, % 282+54 30.4+6.8 15.5+£5.2
Percentage time in glucose range, %
<54 mg/dL 0.2+0.3 0.2+0.5 0.0£0.0
0.0 (0.0-0.1) 0.0 (0.0-0.1) 0.0 (0.0-0.0)
<60 mg/dL 0.510.6 0.7+£0.9 0.0£0.0
0.1 (0.0-0.8) 0.1 (0.0-1.2) 0.0 (0.0-0.0)
<70 mg/dL 14+13 2.1+1.9 0.0£0.0
1.7 (0.0-2.4) 2.4 (0.0-3.5) 0.0 (0.0-0.0)
70-140 mg/dL 60.3+16.5 56.1+£13.2 69.4+32.7
70-180 mg/dL. 85.1+£9.3 81.3+8.7 93.41t14.2
>180 mg/dL 13.5+£9.5 16.6+8.6 6.6+14.2
>250 mg/dL. 1.8+24 25%+33 0.1+£0.3
2300 mg/dL 0.5%1.0 0.8+1.5 0.0+£0.0

Results are sensor glucose values, mean £ SD or median (IQR); SI conversion factor to convert glucose to mmol/L, multiply by 0.0555.

IQR, interquartile range.
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FIG. 2. Comparison of the glycemic response for the 12 participants for the 24 h period beginning 90 min before exercise
start with glucose set point increase or reduction in basal rate. Median sensor glucose response is plotted for the 12
participants for 24 h after algorithm glucose set point increase (dashed blue line) or basal rate decrease (solid red line). The
shaded area represents the IQR. Exercise start times ranged from 15:43h to 16:48 h. The approximate ranges of time for
dinner, the overnight period, breakfast, and lunch are labeled on the graph. The study ended ~20 h after the start of exercise
on day 2 and, therefore, the basal rate adjustment data series is limited to 20h on the graph. The target range of 70—
180 mg/dL is indicated by black dashed lines. IQR, interquartile range.

the algorithm was able to attenuate insulin delivery to reduce
the risk of immediate and delayed exercise-related hypo-
glycemia, with no instances of overnight hypoglycemia.
Elimination of nocturnal hypoglycemia during this study
period suggests that the combination of pre-exercise an-
nouncement with the Omnipod personalized MPC algorithm
may be protective against overnight hypoglycemia after ex-
ercise. Importantly, there was no rebound hyperglycemia
overnight after exercise. In addition, the system was safe
when used with variable glucose set points throughout the
day. To our knowledge, this was the first study to evaluate

TABLE 3. GLYCEMIC OUTCOMES PRE-EXERCISE
AND FOR THE SHORT-TERM (2 H) RESPONSE TO EXERCISE

Raised  Reduced

Mean glucose, mg/dL set point  basal

Pre-exercise 14059 136x26
90 min period before exercise start

During exercise 140+£32 132+26
Period from exercise start to end

Postexercise 10019 122+£35
60 min period after exercise end

During and postexercise 113+17 128£26

2 h period from exercise start

Results are sensor glucose values, meantSD; SI conversion
factor to convert glucose to mmol/L, multiply by 0.0555.

both the immediate and overnight responses to exercise
during HCL when using an announcement strategy to reduce
insulin delivery 90 min pre-exercise. Similar to approaches
used to manage insulin delivery with exercise when using an
insulin pump with standard therapy, these announcement
strategies will require user engagement and may not be re-
alistic for all situations; however, we have evaluated and
found to be safe two simple approaches intended to reduce or
prevent both immediate and delayed hypoglycemia after
exercise during HCL.

TABLE 4. GLYCEMIC OUTCOMES FOR THE EXTENDED
(12 H) RESPONSE TO EXERCISE

Raised set point  Reduced basal
Mean glucose, mg/dL 127+24 131+18
Percentage time in glucose range, %
<54 mg/dL 0.7x1.5 0%0
0.0 (0.0-0.3) 0.0 (0.0-0.0)
<70 mg/dL 1.4£2.7 1.6+3.0
0.0 (0.0-1.7) 0.0 (0.0-2.1)
70-180 mg/dL 88.9+17.6 89.1£11.3
>180 mg/dL 9.7£18.1 9.2+11.8
2250 mg/dL 09+3.2 04%1.0

Results are sensor glucose values, mean+SD, or median (IQR);
12 h period measured from the start of exercise; SI conversion factor
to convert glucose to mmol/L, multiply by 0.0555.
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TABLE 5. SUPPLEMENTAL CARBOHYDRATES AND HYPOGLYCEMIA AROUND EXERCISE

Raised set point

Reduced basal

Subjects with CHO per Subjects with ~ Subjects

supplemental  Subjects with subject  supplemental  with BG CHO per
Time period CHO, n* BG <70mg/dL, n (range, g CHO, n* <70mg/dL, n subject (range, g)
Before exercise (90 min) 5 1 25-40 5 0 16-27
During exercise (~40min) 1 0 12 0 0 —
Exercise end to dinner 4 2 12-20 3 1 14-17
Dinner to overnight 2 1 32-38 1 0 17
Overnight (23:00-07:00 h) 0 0 — 0 0 —

“Supplemental CHOs are defined as CHO ingested without a corresponding insulin bolus. Includes participants consuming supplemental
CHOs as treatment for capillary BG <70 mg/dL, as well as for other reasons such as participant request or to qualify for exercise with
capillary BG >120mg/dL. For supplemental CHO consumption not associated with a capillary BG <70 mg/dL, subjects were counted if
they consumed at least 12 g of CHO within a period of 15 min or less.

BG, blood glucose; CHOs, carbohydrates.

The primary concern after exercise in patients with T1D is
the risk of immediate or delayed hypoglycemia, especially
overnight.'**>* Clinical evidence shows that reducing or
suspending insulin at the start of exercise may not be ade-
quate to prevent hypoglycemia,*”*® and that reducing insulin
delivery 90 min before the start of exercise may be the best
approach to attenuate hypoglycemia with exercise.***’ In
this study, we evaluated two options for an exercise an-
nouncement strategy to reduce insulin delivery 90 min before
the start of exercise during HCL: raising the algorithm glu-
cose set point or reducing the basal rate. The rationale behind
each of these announcement strategies was to reduce the
amount of insulin on board and bring the BG to a suitable
level for the start of exercise, while allowing the algorithm to
respond to the variation in insulin requirements that occurs
post-exercise.

There was no hypoglycemia observed during the overnight
periods after exercise. The absence of overnight hypoglyce-
mia is promising compared with several recent studies of
exercise using single-hormone HCL systems, whether the
exercise was unannounced, announced at onset, or automat-
ically detected, which have reported between 0.17% and 3%
average time <70 mg/dL overnight.®'*'"?* A study of a dual-
hormone system with automatic exercise detection also
showed 0.6% of time overnight <70 mg/dL.**

Although there was no hypoglycemia overnight, a small
number of subjects experienced hypoglycemia in the short-
term period after exercise. Three subjects required treatment
with supplemental CHO for capillary BG <70 mg/dL after
exercise with the glucose set point increase, and one subject
with the basal rate reduction, all occurring within 3 h of ex-
ercise end. This result is consistent with previous studies,
where use of a single- or dual-hormone HCL system with an
announcement strategy in advance of exercise start was not
able to grevent hypoglycemia during or shortly after exer-
cise.!>'® For example, Jayawardene et al.'> evaluated a
single-hormone HCL system in adults with T1D performing
45 min of moderate intensity exercise, with the glucose set
point raised from 120 mg/dL to 150 or 160 mg/dL 2h pre-
exercise. Despite the early glucose set point change, one
subject experienced hypoglycemia immediately after exer-
cise. In Taleb et al.,'® adults with T1D completed 60 min of
aerobic exercise while using a single- or dual-hormone
HCL system, with the glucose set point raised from 95 to

150 mg/dL 20 min before exercise start. Nine and three sub-
jects experienced hypoglycemic events with BG <70 mg/dL
after exercise with the single- and dual-hormone systems,
respectively. The set point adjustment made 20min pre-
exercise may not have allowed a sufficient decrease in insulin
on board, as compared with the recommended 90 min of re-
duced insulin delivery before exercise.'

A potential concern when reducing insulin delivery before
exercise is the increased risk of delayed hyperglycemia;
however, the exercise announcement strategies used in this
study were not associated with increased hyperglycemia
post-exercise. The percentages of time with CGM >180 and
2250 mg/dL in the 12 h after exercise and overnight remained
low and were consistent with overnight results previously
reported for the Omnipod personalized MPC algorithm in
adults not performing exercise® (no data are available for
direct comparison for 12 h post-exercise).

A review of the literature®® indicates that HCL systems may
be expected to achieve at least 70% of sensor glucose values
between 70 and 180 mg/dL, <4% of values <70 mg/dL, a CV
<36%,*® and a mean glucose of <155 mg/dL, equivalent to an
estimated HbAlc of 7.0%.*>*' This study exceeded each of
these overall glycemic control performance metrics, with
85.1% of sensor glucose values in the target range of 70—
180 mg/dL overall and an average CV of 28.2%. In addition,
the results compare favorably with other recent studies of
HCL in adults with T1D participating in exercise, which have
shown mean percentages of time in target range between 64%
and 88%.%'%172223 The glycemic control metrics were ex-
ceeded in this study even in the presence of daily moderate
intensity exercise sessions and with variable algorithm glu-
cose set points throughout each day. These results provide the
first demonstration of safe use of variable set points with the
Omnipod personalized MPC algorithm.

The limitations of this study include the absence of a
standard care control arm; however, previous studies have
shown superior hypoglycemia results using HCL with exer-
cise as compared with standard care.”** In addition, exercise
sessions were not standardized on subsequent days for in-
tensity, duration, or pre-exercise supplemental CHO con-
sumption, so it is not possible to directly compare the two
announcement strategies. Only one type of exercise was
studied and, therefore, the results may not apply to other
types of exercise, such as high-intensity interval training or
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extended periods of intense aerobic exercise.! Lastly, the
study had a relatively short duration of HCL conducted in a
supervised hotel setting. Additional challenges to the algo-
rithm may be faced in an unsupervised environment or when
the system is used for longer periods of time.

Conclusions

This feasibility study demonstrated that the Omnipod per-
sonalized MPC algorithm performed well and was safe for
54 h of use by adults in the outpatient hotel setting. In addition,
the system was able to maintain good glycemic control within
target ranges in the presence of glucose set point changes and
moderate intensity exercise. The exercise announcement
strategies of either a temporarily raised glucose set point or
reduced basal rate 90 min before exercise were found to be
safe methods to prepare for exercise during HCL, with some
subjects consuming supplemental CHO before or after exer-
cise. No subject experienced hypoglycemia on either night
after exercise. Longer term outpatient studies will assess
safety and performance of the algorithm during extended use
under free-living conditions in patients of all ages with T1D.
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