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Integrative analysis reveals
clinically relevant molecular
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Pancreatic cancer is a highly aggressive cancer with an
exceedingly low rate of response to treatments, which calls
for comprehensive molecular characterization of pancreatic
cancer cell lines (PCCLs). We screened multi-layer molecular
data of 36 PCCLs, including gene mutation, gene expression,
microRNA (miRNA) expression, and protein profiles. Our
comparative analysis of genomic mutations found that
PCCLs recapitulated genomic alterations of the primary tu-
mor and suggested potential therapeutic strategies for clin-
ical interventions. The panel of 36 PCCLs was classified
into 2 subgroups based on transcriptomic mRNA expres-
sion, wherein the C1 subgroup was characterized with
differentiation, whereas C2 cell lines were featured with im-
munity, angiogenesis, epidermis, and proliferation. Tran-
scriptomic classification was further recapitulated by miRNA
and protein expression. Additionally, the differential pro-
teins between C1 and C2 subgroups were prominently
involved in epidermal growth factor receptor (EGFR)
signaling, phosphatidylinositol 3-kinase (PI3K) signaling,
and mitogen-activated protein kinase (MAPK) signaling
pathways. Tumor samples from different subgroups ex-
hibited distinct infiltration of CD4 naive cells and mono-
cytes. Remarkably, patients in subgroups C1 showed longer
survival, whereas those in C2 had worse clinical outcome.
Further integrative analysis revealed that temozolomide
and NVP-TAE684 showed higher sensitivity in the C1 sub-
group, whereas the C2 cell lines were more sensitive to
SR1001 and SRT-1720. Our results also showed that PCCLs
with mutations in CDKN2A, TP53, and SMAD4 were more
sensitive to certain anti-cancer drugs. Our integrative anal-
ysis identified molecular features of pancreatic cancer that
were associated with clinical significance and drug sensi-
Molecular Thera
This is an open access article under the CC BY-NC
tivity, providing potentially effective strategies for precision
treatments of patients with pancreatic cancer.

INTRODUCTION
Pancreatic cancer is a major cause of cancer-related mortality world-
wide, which is associated with extremely poor prognosis.1–4 Patients
with pancreatic cancer are typically diagnosed in advanced stages and
refractory to most clinical treatments of tumor.5 One of the major ob-
stacles impeding the improvement of diagnosis and therapy for
pancreatic cancer is that the whole scene of molecular alterations in
pancreatic cancer has been remaining obscure. Therefore, it’s urgent
to characterize the molecular landscape of pancreatic cancer to facil-
itate the discovery of biomarkers for early diagnosis and potential tar-
gets for clinical interventions.

Immortalized cell lines derived from human cancers have been widely
used in exploring tumor biology and discovery of anti-cancer drugs.6,7

Characterization of molecular alterations in human cancer cell lines
has shown relevant contributions to understanding the sophisticated
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mechanisms underlying tumor development.8,9 The project of Cancer
Cell Line Encyclopedia (CCLE) generated multi-layer, high-
throughput data of more than 1,000 cancer cell lines,6,10,11 including
genome (whole-exome sequencing [WES] for 326 cell lines; whole-
genome sequencing [WGS] for 329 cell lines), transcriptome (RNA
sequencing [RNA-seq] for 1,019 cell lines; NanoString microRNA
[miRNA] profiling for 954 cell lines), proteome (reverse-phase pro-
tein array [RPPA] for 213 cell lines), epigenome (reduced representa-
tion bisulfite sequencing [RRBS] for 843 cell lines; global profiling of
42 histone modifications for 897 cell lines), and metabolome (meta-
bolic profiling of 225 metabolites for 928 cell lines). Furthermore,
the Cancer Dependency Map Project12 (DepMap) provided a can-
cer-dependency profile generated from high-throughput screening
of loss-of-function experiments, such as CRISPR and RNAi. DepMap
also cataloged valuable resources for systematically identifying
biomarkers of cancer vulnerabilities and drug response, including
omics data from CCLE and drug sensitivities from the Genomics of
Drug Sensitivity in Cancer (GDSC)13 and the Cancer Therapeutics
Response Portal (CTRP).14 These collaborative international efforts
have offered the cancer research community a great opportunity of
exploring the molecular features, cancer vulnerability, and drug
response for human cancers. Furthermore, the examination of the
omics data of large panels of cancer cell lines derived from individual
cancer types would benefit the precision treatment for tumor patients.
For example, Caruso et al.9 presented a molecular landscape of liver
cancer by screening genetic, mRNA, miRNA, and protein profiles
in 34 liver cancer cell lines. They identified genetic alternations and
gene-expression patterns associated with the sensitivity of 31 anti-
cancer agents, which will benefit the precision treatments for patients
with liver cancer. However, an encyclopedic depiction of pancreatic
cancer cell lines (PCCLs) has been lacking.

In the present study, we performed integrative analysis of multi-
omics data derived from 36 PCCLs. Our analysis found that PCCLs
remained the major genomic alterations of the primary pancreatic tu-
mor. We classified the PCCLs into 2 subgroups based on mRNA
expression, which was further recapitulated by miRNA and protein
expression. The tumor samples were further classified into 3 sub-
groups according to their expression patterns associated with PCCL
subgroups. By integrating the drug sensitivity data, we identified
drugs that exhibited variant sensitivity in different subgroups. Our re-
sults will contribute to the understanding of molecular alterations in
pancreatic cancer and propel the clinical practice of treating pancre-
atic cancer patients by proposing promising candidates for targeted
therapy.

RESULTS
PCCLs share genomic mutations with primary tumor

To systematically examine whether PCCLs retain the major genomic
alterations that occurred in primary pancreatic tumors, we first
analyzed gene mutations across 36 PCCLs (Table S1). The mutation
frequency of cancer driver genes was compared between 36 PCCLs
and 769 primary pancreatic tumor samples fromThe Cancer Genome
Atlas (TCGA) pancreatic cancer cohort5 (Figure 1A; Table S2). More
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specifically, 53.3% of cancer driver genes showed no difference of mu-
tation frequency between PCCLs and the primary pancreatic tumor,
such as KRAS, SMAD4, and CDKN2A. However, some cancer driver
genes exhibited significant discrepancy in PCCLs, such as TP53,
ARID1A, and EP300. Additionally, the majority of these cancer driver
genes harbored a missense mutation (Figure 1B; Table S3). Many
causing genes in cancer show co-occurring or mutually exclusive mu-
tation patterns.15 We next examined all possible gene pairs to detect
the co-occurrence and mutual exclusivity of gene mutations in both
PCCLs and primary pancreatic cancer samples (see Materials and
methods). Consequently, 87 gene pairs of co-occurrence and 6 gene
pairs of mutual exclusivity were identified in TCGA pancreatic cancer
patient cohort (Figure 1C). In the pancreatic cancer patient cohort,
KRAS and BRAF were significantly mutually exclusive presented,
which may be explained by the senescence induced by co-expression
of mutant KRAS and BRAF.16 This observation proposed a potential
treatment that pharmacologically targeting KRAS in BRAF mutated
patients or targeting BRAF in patients with KRAS mutation might
be an effective clinical intervention. However, much fewer of such
events were observed in PCCLs, wherein 20 gene pairs of co-occur-
rence and 4 gene pairs of mutual exclusivity were detected (Fig-
ure 1D). This may be due to the relatively small amount of PCCLs,
which only covers a portion of pancreatic cancer subtypes. Our
analysis revealed that our curated panel of PCCLs recapitulated the
major genomic dysregulation in primary pancreatic cancer samples.
Furthermore, our analysis of co-occurrence and mutual exclusivity
shed lights on therapeutic strategies for pancreatic cancer patients.

PCCLs were classified into two subgroups by transcriptomic

mRNA

Samples derived from different cancer subtypes are often character-
ized with various molecular features. We first explored the transcrip-
tomic patterns of mRNA in PCCLs. The algorithm of unsupervised
consensus clustering was employed to classify 36 PCCLs (see Mate-
rials and methods). The clustering obtained the best performance at
K = 2, and PCCLs were classified into 2 subgroups, that is, the C1
and C2 subgroups (Figure 2A). Sample classification was further
confirmed by the principal component analysis (PCA) using
mRNA expression, where samples in one subgroup were closer to
each other than those in the other subgroup. To further examine
the biological discrepancies between these 2 subgroups, functional
enrichment analysis was performed on differentially expressed genes
between these 2 subgroups. Consequently, our analysis revealed mul-
tiple biological processes that these 2 subgroups are different,
including epidermis biology, such as “epidermis development,”
“epidermal cell differentiation,” and “positive regulation of epithelial
cell proliferation” (Figure 2B). Furthermore, the C1 subgroup is
mainly associated with “differentiation,” indicating that the C1 cell
lines are more differentiated with epithelial features, which is charac-
terized with high expression of differentiation-related marker genes,
such as FAM65B and RBM24 (Figure 2C). However, PCCLs of the
C2 subgroup exhibited other molecular features, such as “immunity,”
“metastasis/angiogenesis,” “metastasis/epidermis,” and “prolifera-
tion.”As expected, the C2 subgroup cell lines showed high abundance
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Figure 1. Gene mutation across pancreatic cancer cell lines (PCCLs)

(A) Mutation of cancer driver genes in pancreatic primary tumors from TCGA (right panel) and PCCLs (left panel). (B) The mutation frequency and mutation types of cancer

driver genes across 36 PCCLs. The mutation co-occurrence and exclusivity of cancer driver genes in pancreatic primary tumors (C) and PCCLs (D). *p < 0.05, **p < 0.01,

***p < 0.001.
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of relevant marker genes, such as immunity of interleukin (IL)-23A
and IL-1RL2, angiogenesis of ENPEP and EPHA1, epidermis of
SPRR3 and SPRR2D, and proliferation of NTF4 and KRT6A (Fig-
ure 2D). In summary, the PCCLs were classified into 2 subgroups
with remarkable biological discrepancies.
miRNA expression is highly associated with PCCL

transcriptomic subgroups

To further examine the PCCL transcriptomic subgroups, we analyzed
the expression profile of 734 miRNAs across 36 PCCLs. The top 200
miRNAs with the largest variance of expression levels were adopted to
Molecular Therapy: Nucleic Acids Vol. 26 December 2021 13
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Figure 2. mRNA transcriptomic analysis of 36 PCCLs

(A) Consensus clustering and principal component analysis (PCA) of mRNA profiles in PCCLs for the optimal number of clusters at K = 2. (B) Functional enrichment of

differentially expressed genes between Cluster1 and Cluster2. (C) Expression pattern of gene-related differentiation, immunity, angiogenesis, epidermis, and proliferation that

showed differential expression between 2 subgroups of pancreatic cancer. (D) Comparison of mean expression levels of genes in biological features between 2 subgroups of

PCCLs.
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perform the unsupervised consensus clustering (see Materials and
methods). In particular, the consensus clustering showed the optimal
performance at K = 2, where 36 PCCLs were classified into 2 sub-
groups (Figure 3A). PCCLs in miRNA subgroups were then assigned
to mRNA subgroups. Notably, the miRNA expression-based classifi-
cation was highly consistent with the mRNA transcriptomic sub-
groups, with minor exception of 4 cell lines (Figure 3B). The miRNA
expression levels were further compared between the 2 transcriptomic
subgroups, revealing 2 upregulated and 12 downregulated miRNAs in
14 Molecular Therapy: Nucleic Acids Vol. 26 December 2021
the C1 subgroup over the C2 subgroup (Figure 3C). Surprisingly, one
Epstein-Barr virus (EBV)-related miRNA, EBV-miR-BART15,
showed higher abundance in the C2 subgroup compared with those
in the C1 subgroup. These results showed the close association be-
tween miRNA and mRNA expression patterns in PCCLs.

Protein profiling recapitulates PCCL transcriptomic subgroups

The expression profile of 214 proteins across 36 PCCLs was further
analyzed to characterize the protein features. Of note, the PCCLs
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Figure 3. miRNA profile analysis in 36 PCCLs

(A) Consensusmatrix at the optimal number K = 2. (B) Consensus clustering of miRNA profiles in PCCLs at K = 2. (C) Differentially expressedmiRNAs between 2 subgroups of

PCCLs.
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were classified into 2 subgroups based on protein levels, where only 3
cell lines showed discrepancy with the transcriptomic classification
(Figure 4A). Differential analysis disclosed 16 proteins that exhibited
a remarkable difference (9 upregulation and 7 downregulation in the
C2 subgroup) between the C1 and C2 subgroups of PCCLs (Fig-
ure 4B). For example, Rab25, P-Cadherin_Caution, and alpha-Cate-
nin showed significantly higher levels in the C2 subgroup than those
in the C1 subgroup, whereas Rictor_pT1135, Tuberin, and
TSC1_Caution were downregulated in the C2 subgroup (Figure 4C).
Among these differential proteins, 9 proteins exhibited significant
correlations with their host mRNAs (Table S4). Moreover, the corre-
lation analysis was performed to examine the co-regulation of these
differential proteins across PCCLs. Intriguingly, the majority of dif-
ferential proteins exhibited remarkably positive or negative correla-
tions across 36 PCCLs (Figure 4D). More specifically, GATA3 and
E-Cadherin were highly co-expressed across various PCCLs, whereas
Tuberin and P-Cadherin_Caution showed remarkably exclusive
expression. The protein interaction network was further constructed
based on the co-regulation relations between protein pairs. Network
analysis revealed the discrepancy of biological properties among
different subgroups, which was reflected by relevant pathways, such
as epidermal growth factor receptor (EGFR) signaling, phosphatidy-
linositol 3-kinase (PI3K) signaling, and mitogen-activated protein ki-
nase (MAPK) signaling pathways (Figure 4E). Our analysis revealed
that different subgroups harbored distinct molecular features of
pancreatic cancer, which might benefit the clinical practice of classi-
fication management and precision treatments for patients with
pancreatic cancer.

PCCL subgroups showed clinical significance

To further explore the clinical significance of PCCL subgroups,
pancreatic cancer samples derived from TCGA pancreatic adenocar-
cinoma (PAAD) cohort were mapped to corresponding subgroups
(see Materials and methods). PAAD tumor samples were classified
into three subgroups according to their expression correlations with
PCCLs (Figure 5A). In particular, 12 tumor samples showed the
most similar expression profiles with PCCLs in subgroup C1, whereas
90 samples were highly correlated with those in subgroup C2.
Additionally, a portion of tumor samples (n = 75) exhibited mixed
expression patterns of subgroups C1 and C2, which were assigned
as subgroup C3. Tumor samples from subgroup C1 (such as
TCGA-2J-AABP) displayed top correlations with cell lines in the
C1 subgroup, whereas those in subgroup C2 (such as TCGA-FB-
A545) have higher similarity with C2 cell lines (Figure 5B). The C3
tumor samples (such as TCGA-IB-A5SQ) were highly correlated
with cell lines from both C1 and C2 subgroups. Histologically, most
Molecular Therapy: Nucleic Acids Vol. 26 December 2021 15
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Figure 4. Proteomics analysis in 36 PCCLs

(A) Hierarchical clustering of pancreatic cancer proteome profiles and association with mRNA subgroups. (B) Heatmap showed the differential proteins between 2 sub-

groups. (C) Associations among differential proteins. (D) Boxplots show 19 differential proteins between 2 subgroups. (E) Protein interaction network showed the significantly

positive (red solid lines) and negative (blue dashed lines) protein correlations across 36 PCCLs.
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samples in C2 and C3 subgroups were a ductal adenocarcinoma sub-
type, whereas the majority in C1 subgroups were the other adenocar-
cinoma subtype (Table S5). The abundance of infiltrated immune
cells in each tumor sample was estimated to investigate the immune
infiltration among different subgroups. Different subgroups showed
16 Molecular Therapy: Nucleic Acids Vol. 26 December 2021
extensive discrepancy in abundance of infiltrated immune cells (Table
S6). In particular, our analysis revealed that tumor samples from the
C1 subgroup had significantly higher infiltration of CD4 naive cells
than those from C2 and C3 subgroups (p = 1.5E�5 for C2, and p =
2.2E�5 for C3; Figure 5C). In addition, tumor samples in the C2
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Figure 5. PCCL subgroups showed clinical significance

(A) Heatmap showed the correlations between tumor samples and PCCLs in different subgroups. (B) The correlations between PCCLs and example samples from different

subgroups. (C) Comparisons of immune cell abundance among samples from different subgroups. (D) Kaplan-Meier curve showed the survival differences among patients

from different subgroups.
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subgroup were more infiltrated by monocytes than those in C1 and
C3 subgroups (p = 9.2E�5 for C1, and p = 3.4E�4 for C3). Ka-
plan-Meier analysis revealed that the survival time among different
subgroups showed significant difference (p = 1.2E�3; Figure 5D).
This result is consistent with our observation that the C1 subgroup
shows more differentiated features than the C2 subgroup (Figure 2D).
These observations suggested that our subgroup classification has
remarkable clinical significance and may promote more efficient clin-
ical management for patients with pancreatic cancer.

Integrated analysis identified drug sensitivity-associated

molecular features in PCCLs

To maximize the clinical utility of multi-omics data in PCCLs, we
further integrated the drug sensitivity data to explore the applications
of molecular features in precision treatments of pancreatic cancer. By
comparing the sensitivity to 497 anti-tumor agents between cell lines
in two subgroups, we identified 13 agents with distinct sensitivity in
different PCCL subgroups (Figure 6A). In total, 2 agents showed
higher sensitivity in the C2 subgroup, whereas C1 PCCLs were
more sensitive to 11 agents. Specifically, the small molecule activator
of the sirtuin subtype SIRT1, SRT-1720, exhibited significantly higher
sensitivity in C2 PCCLs (p = 3.0E�2; Figure 6B). Pancreatic cells in
C1 subgroups were more sensitive to another small molecule
anaplastic lymphoma kinase (ALK) inhibitor, NVP-TAE684 (p =
1.3E�2). Furthermore, we explored the associations between
genomic mutations and drug sensitivity, which were often used to
distinguish cells with different sensitivity to anti-tumor drugs.17,18

Among all 61,789 gene-drug comparison pairs, 3,028 were found
Molecular Therapy: Nucleic Acids Vol. 26 December 2021 17
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Figure 6. Drug response and associated molecular features of 36 PCCLs

(A) Volcano plot showed the differences of drug response among pancreatic cancer subgroups. (B) Boxplots represented 2 drugs in which their sensitivity showed significant

variance between 2 pancreatic cancer subgroups. (C) Boxplots represented 7 drugs in which their sensitivity showed significant variance between CDKN2A-mutated and

-non-mutated PCCLs. (D) Boxplots represented 3 drugs in which their sensitivity showed significant variance between TP53-mutated and -non-mutated pancreatic cell lines.

(E) Boxplots represented 2 drugs in which their sensitivity showed significant variance between SMAD4-mutated and -non-mutated PCCLs.
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significantly associated (p < 0.05; Table S7). In particular, pancreatic
cancer cells with a CDKN2Amutation showed muchmore sensitivity
of such drugs as doxorubicin, vincristine, imatinib, axitinib, sunitinib,
lenvatinib, and bosutinib (Figure 6C). TP53-mutated PCCLs were
more sensitive than those with wild-type TP53 to sirolimus, dexa-
methasone, and vandetanib (Figure 6D). Additionally, valdecoxib
and oxaliplatin were highly sensitive in SMAD4-mutated PCCLs
(Figure 6E). Our analysis identified molecular features associated
18 Molecular Therapy: Nucleic Acids Vol. 26 December 2021
with drug sensitivity, offering potential strategy for precision treat-
ments of pancreatic cancer.

DISCUSSION
In this study, we presented a comprehensive molecular characteriza-
tion of 36 PCCLs. Our analysis of gene mutation showed that
pancreatic cancer cells remained the major genomic alterations of
the primary pancreatic tumor. The PCCLs were classified into
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2 subgroups exhibiting different biological properties based on tran-
scriptomic mRNA profiling, which was also recapitulated by miRNA
expression and protein levels. Although the transcriptomic subgroups
showed no overall variance of drug sensitivity, the C1 cell lines were
more sensitive to such drugs as sildenafil and nelarabine. Addition-
ally, our analysis also found that PCCLs with genomic mutations of
CDKN2A, TP53, and SMAD4 exhibited remarkably more sensitive
to some drugs, such as doxorubicin, sirolimus, and valdecoxib,
respectively.

We included 36 PCCLs in the current study, which might not be suf-
ficient to reflect the whole heterogeneity of primary pancreatic cancer.
Covering more PCCLs will offer a relatively more comprehensive
characterization. Up to date, our study provided the broadest picture
of molecular alterations of pancreatic cancer from the aspect of cell
lines, which contributes much to the understanding of pancreatic
cancer. We classified the PCCLs by using mRNA, miRNA, and pro-
tein expression, respectively. The subgroups based on miRNA or pro-
tein expression exhibited high consistence with those based on
mRNA expression. The result indicated that mRNA expression is suf-
ficient to catch the major biological discrepancies among different
subgroups. Furthermore, mRNA expression has been used to classify
subtypes in many malignancies, such as breast cancer,19 lymphoma,20

colorectal cancer,21 and pancreatic cancer22 as well. Our classification
in PCCLs will facilitate the development of precision therapeutics.

In the analysis of miRNA profiling, we identified that an EBV-derived
miRNA, EBV-miR-BART15was highly expressed in the C2 subgroup.
EBV-miR-BART15 is an EBV-derived miRNA. Multiple studies have
shown that EBV-miR-BART15 is strongly associated with apoptosis
and epithelial-mesenchymal transition (EMT).23,24 EBV-miR-
BART15 has been proven to play regulatory roles in human cancer,
including gastric cancer.25 Although there has been no direct evidence
demonstrating that EBV-miR-BART15 plays a role in pancreatic can-
cer, our results implicate the potential relevance of EBV-miR-BART15
in pancreatic cancer cells. Further efforts are needed to validate the
role of EBV-miR-BART15 in pancreatic cancer.

Our subgroup classification, which is different from other studies, is
based on cellular activities. The classification in our study will be help-
ful for biological function and pre-clinical precision meditation
research. We further mapped pancreatic cancer samples to PCCLs
and divided tumor samples into 3 different subgroups. These patients
from different subgroups showed distinct immune infiltration and
clinical outcomes, which suggests potential strategies of more efficient
clinical management for patients in different subgroups. Larger
pancreatic cancer cohorts frommultiple medical centers were needed
to explore the latent clinical utility of our subgroup classification.

In addition, we performed integrated analysis to explore the variance
of drug sensitivity across different subgroups of PCCLs. We identified
cell lines that showed significantly different sensitivity to anti-cancer
drugs. These findings paved the way for exploring precision patient
management and treatments for pancreatic cancer.
In summary, our study recapitulated molecular features of pancreatic
cancer patients through PCCLs and will accelerate the development
of precision treatments for pancreatic cancer patients.

MATERIALS AND METHODS
Omics data of PCCLs

Multi-omics data across 36 PCCLs were retrieved from DepMap
(https://depmap.org/portal/), which aims to systematically catalog
and identify biomarkers of genetic vulnerabilities and drug sensitiv-
ities in hundreds of cancer models, further to aid the precision treat-
ments of cancer patients.26 Our study includes gene mutation, mRNA
expression, miRNA expression, and protein levels. All downloaded
data were preprocessed. Specifically, the genemutation was annotated
in MAF format, mRNA expression was normalized in fragments per
kilobase per million (FPKM) mapped reads, miRNA expression was
normalized in reads per million (RPM) mapped reads, and protein
levels derived from RPPA were normalized by following the pipeline
of the MD Anderson Cell Lines Project.27

Manual curation of cancer driver genes in pancreatic cancer

We manually curated cancer driver genes from public databases,
including Catalogue of Somatic Mutations in Cancer (COSMIC),28

Integrative Onco Genomics (IntOGen),29 DriverDB,30 and cBio Can-
cer Genomics Portal.31 Totally, 30 cancer driver genes were curated
for pancreatic cancer. Themutation frequencies of these cancer driver
genes were calculated in 36 PCCLs and 769 primary pancreatic cancer
samples, respectively.

Evaluation of co-occurrence and exclusivity of mutated genes

The somaticInteractions function in maftools, which is a powerful R
package for genomic analysis,32 was employed to identify mutual ex-
clusivity or a co-occurring set of genes. More specifically, pairwise
Fisher’s Exact test was performed between all potential pairs of genes
in PCCLs and primary pancreatic tumor, respectively.

Classification of PCCLs using an mRNA expression profile

The unsupervised consensus clustering was performed by using
the top 2,000 mRNAs with the highest variance across 36 PCCLs
by employing the ConsensusClusterPlus package.33 In particular,
the consensus partitions of 2,000 mRNA expression profiles were es-
tablished in K clusters (for K = 2, 3, ., 10). For each partition of K
clusters, 1,000 re-sampling interactions of hierarchical clustering
was performed with Ward’s linkage method and Euclidean distance
as the distance metric. The optimal number of clusters was deter-
mined as 2 by adopting the cumulative distribution functions
(CDFs) of the consensus matrices,34 where both the CDF area under
the curves (AUCs) and the shape of the functions were considered.

Differential expression analysis

The read counts of mRNAs were adopted to perform differential
expression analysis by using DESeq2.35 The differential analysis of
miRNAs and proteins was performed by using Student’s t test. All
of the differential analyses were performed among different clustering
Molecular Therapy: Nucleic Acids Vol. 26 December 2021 19
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groups. Genes, miRNAs, and proteins with a p value <0.05 were
considered as significantly differentially expressed.

Functional enrichment of gene sets

Gene set enrichment analysis was performed on the significantly dif-
ferential genes by utilizing the clusterProfiler package.36 The biolog-
ical processes annotated in the Gene Ontology (GO) database37

were adopted in the enrichment analysis. Biological processes with
a p value <0.05 were considered as significantly enriched by the dif-
ferential genes.

Construction of protein interaction network

We computed the correlations between each potential pair of proteins
by utilizing the method of Spearman’s correlation. The protein pairs
with a false discovery rate (FDR) < 0.05 were considered significantly
interacted protein pairs. The protein interaction network was further
constructed and visualized by Cytoscape software (version 3.7.2).38

Mapping tumor samples to PCCL subgroups

The gene expression matrix of pancreatic cancer samples in TCGA
PAAD cohort was retrieved from the Genomic Data Commons
(GDC) data portal (https://portal.gdc.cancer.gov/). Customized py-
thon scripts were utilized to process the data for download analysis.
The 2,000 genes used in consensus clustering were adapted to calcu-
late the correlations between individual PCCLs and tumor samples.
For each PAAD sample, PCCLs were ranked by Spearman coeffi-
cients, and the top 3 PCCLs were used to define subgroups. In partic-
ular, PAAD samples were defined as the C1 or C2 subgroup when top
3 PCCLs are all from the C1 or C2 subgroup. If the top 3 PCCLs
include both C1 and C2 subgroups, then PAAD samples were as-
signed as a mix subgroup, the C3 subgroup.

Estimation of immune cell abundance in tumor samples

The Immune Cell Abundance Identifier (ImmuCellAI) method
(http://bioinfo.life.hust.edu.cn/ImmuCellAI#!/)39 was employed to
estimate the immune cell abundance for each tumor sample from
gene expression profiles. Specifically, ImmuCellAI is a gene set signa-
ture-basedmethod to precisely calculate the abundance of various im-
mune cell types by comparing with the reference expression profiles.
In total, 24 different types of immune cells were included, covering 18
T cell subsets: “CD4+,” “CD8+,” “CD4+ naive,” “CD8+ naive,”
“central memory T,” “effector memory T,” “Tr1” (T regulatory
[Treg] type 1), “iTreg” (induced Treg), “nTreg” (natural Treg),
“Th1” (T helper [Th]1), “Th2,” “Th17,” “Tfh” (T follicular helper),
“Tc” (T cytotoxic), “MAIT” (mucosal-associated invariant T),
“Tex,” (exhausted T cells) “gamma delta T,” and “natural killer
(NK) T cells” and 6 other important immune cell types: “B cells,”
“macrophages,” “monocytes,” “neutrophils,” “DC” (dendritic cell),
and “NK cells.”

Drug response analysis in PCCLs

Drug response data used in this study were retrieved from the
CTRP (https://portals.broadinstitute.org/ctrp.v2.1/)14 and the GDSC
(https://www.cancerrxgene.org/),13 which cover 497 anti-cancer
20 Molecular Therapy: Nucleic Acids Vol. 26 December 2021
agents across 36 PCCLs. Specifically, the drug sensitivity wasmeasured
by the fitted dose responseAUCvalues. Additionally, the differences of
drug response among distinct subgroups of PCCLs were tested using
chi-square test for each anti-cancer agent. Drugs with a p value
<0.05 were considered to have significantly different sensitivity among
corresponding different subgroups.

Statistical analysis

In this study, statistical analysis and data visualization were all per-
formed in R software (The R Foundation, Vienna, Austria; https://
www.R-project.org). Unless specific statements, all tests were two
tailed, and p < 0.05 was considered to be statistically significant.
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