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Knowledge graphs can support many biomedical applications. These graphs represent biomedical con-
cepts and relationships in the form of nodes and edges. In this review, we discuss how these graphs
are constructed and applied with a particular focus on how machine learning approaches are changing
these processes. Biomedical knowledge graphs have often been constructed by integrating databases that
were populated by experts via manual curation, but we are now seeing a more robust use of automated
systems. A number of techniques are used to represent knowledge graphs, but often machine learning
methods are used to construct a low-dimensional representation that can support many different appli-
cations. This representation is designed to preserve a knowledge graph’s local and/or global structure.
Additional machine learning methods can be applied to this representation to make predictions within
genomic, pharmaceutical, and clinical domains. We frame our discussion first around knowledge graph
construction and then around unifying representational learning techniques and unifying applications.
Advances in machine learning for biomedicine are creating new opportunities across many domains,
and we note potential avenues for future work with knowledge graphs that appear particularly
promising.
� 2020 The Author(s). Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY license (http://creativecommons.

org/licenses/by/4.0/).
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1. Introduction

Graphs are practical resources for many real-world applica-
tions. They have been used in social network mining to classify
nodes [1] and create recommendation systems [2]. They have also
been used in natural language processing to interpret simple ques-
tions and use relational information to provide answers [3,4]. In a
biomedical setting, graphs have been used to prioritize genes rele-
vant to disease [5,6,7,8], perform drug repurposing [9] and identify
drug-target interactions [10].

Within a biomedical setting, some graphs can be considered
knowledge graphs; although, precisely defining a knowledge graph
is difficult because there are multiple conflicting definitions [11].
ig. 1. The metagraph (i.e., schema) of the knowledge graph used in the Rephetio project
etnet), and this network meets our definition of a knowledge graph. This resource depic
odes (circles) represent entities and edges (lines) represent relationships that are shar
nidirectional, but some relationships can be considered bidirectional.
For this review, we define a biomedical knowledge graph as the fol-
lowing: a resource that integrates one or more expert-derived
sources of information into a graph where nodes represent
biomedical entities and edges represent relationships between
two entities. This definition is consistent with other definitions
found in the literature [12,13,14,15,16,17,18]. Often relationships
are considered unidirectional (e.g., a compound treats a disease,
but a disease cannot treat a compound); however, there are cases
where relationships can be considered bidirectional (e.g., a com-
pound resembles another compound, or a gene interacts with
another gene). A subset of graphs that meet our definition of a
knowledge graph would be unsuitable for applications such as
symbolic reasoning [19]; however, we chose a more liberal defini-
[9]. The authors of this project refer to their resource as a heterogenous network (i.e.,
ts pharmacological and biomedical information in the form of nodes and edges. The
ed between two entities. The majority of edges in this metagraph are depicted as
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tion because it has been demonstrated that these broadly defined
graphs have numerous uses throughout the literature. For exam-
ple, Hetionet (Fig. 1) [9] would be considered a biomedical knowl-
edge graph by this definition, and it has been used to identify drug
repurposing opportunities [9]. We do not consider databases like
DISEASES [20] and DrugBank [21] to be knowledge graphs.
Although these resources contain essential information, they do
not represent their data in the form of a graph.

Biomedical knowledge graphs are often constructed from man-
ually curated databases [10,22,23,24,9]. These databases provide
previously established information that can be incorporated into
a graph. For example, a graph using DISEASES [20] as a resource
would have genes and diseases as nodes, while edges added
between nodes would represent an association between a gene
and a disease. This example shows a single type of relationship;
however, there are graphs that use databases with multiple rela-
tionships [25,9]. In addition to manual curation, other approaches
have used natural language processing techniques to construct
knowledge graphs [26,27]. One example used a text mining system
to extract sentences that illustrate a protein’s interaction with
another protein [28]. Once identified, these sentences can be incor-
porated as evidence to establish an edge in a knowledge graph.

In this review we describe various approaches for constructing
and applying knowledge graphs in a biomedical setting. We dis-
cuss the pros and cons of constructing a knowledge graph via man-
ually curated databases and via text mining systems. We also
compare assorted approaches for applying knowledge graphs to
solve biomedical problems. Lastly, we conclude on the practicality
of knowledge graphs and point out future applications that have
yet to be explored.
2. Building biomedical knowledge graphs

Knowledge graphs can be constructed in many ways using
resources such as pre-existing databases or text. Usually, knowl-
edge graphs are constructed using pre-existing databases. These
databases are constructed by domain experts using approaches
ranging from manual curation to automated techniques, such as
text mining. Manual curation is a time-consuming process that
requires domain experts to read papers and annotate sentences
that assert a relationship. Automated approaches rely on machine
Table 1
A table of databases that used a form of manual curation to populate entries. Reported nu

Database [Reference] Short Description Numb
Entrie

BioGrid [52] A database for major model organisms. It contains
genetic and proteomic information.

572,0

Comparative
Toxicogenomics
Database [53]

A database that contains manually curated
chemical-gene-disease interactions and
relationships.

2,429

Comprehensive
Antibiotic
Resistance
Database [54]

Manually curated database that contains
information about the molecular basis of
antimicrobial resistance.

174,4

COSMIC [30] A database that contains high resolution human
cancer genetic information.

35,94

Entrez-Gene [55] NCBI’s Gene annotation database that contains
information pertaining to genes, gene’s organism
source, phenotypes etc.

7,883

OMIM [56] A database that contains phenotype and genotype
information

25,15

PharmGKB [57] A database that contains genetic, phenotypic, and
clinical information related to pharmacogenomic
studies.

43,11

UniProt [58] A protein–protein interaction database that contains
proteomic information.

560,8
learning or natural language processing techniques to rapidly
detect sentences of interest. We categorize these automated
approaches into the following groups: rule-based extraction, unsu-
pervised machine learning, and supervised machine learning and
discuss examples of each type of approach while synthesizing their
strengths and weaknesses.
2.1. Constructing databases and manual curation

Database construction dates back all the way to 1956 when the
first database contained a protein sequence of the insulin molecule
[29]. The process of database construction involves gathering rele-
vant text such as journal articles, abstracts, or web-based text and
having curators read the gathered text to detect sentences that
implicate a relationship (i.e., relationship extraction). Notable
databases constructed by this process can be in found in Table 1.
An example database, COSMIC [30] was constructed by a group
of domain experts scanning the literature for key cancer related
genes. This database contained approximately 35 M entries in
2016 [30] and by 2018 had grown to 45 M entries [31]. Studies
have shown that databases constructed in this fashion contain rel-
atively precise data but the recall is low [32,33,34,35,36,37,38].
Low recall happens because the publication rate is too high for
curators to keep up [39]. This bottleneck highlights a critical need
for future approaches to scale fast enough to compete with the
increasing publication rate.

Semi-automatic methods are a way to accelerate the curation
process [36,40,41,42,43,44,45]. The first step of these methods is
to use an automated system to initially extract sentences from text.
This process removes irrelevant sentences, which dramatically
decreases the amount of text that curators must sift through. Fol-
lowing the pre-filtering step, curators then approve or reject the
remaining sentences. This approach saved curators an average of
2–2.8 h compared to manual efforts [40,46]. Despite automated
systems excelling in identifying sentences for commonly occurring
relationships, they tend to miss lesser-known relationships [40].
These systems also have a hard time parsing ambiguous sentences
that naturally occur in text, which makes correcting them a chal-
lenging task [40]. Given these caveats, future approaches should
look into using techniques that simplify sentences to solve the
ambiguity issue [47,48].
mber of entities and relationships are relative to the time of publication.

er of
s

Entity Types Relationship Types Method of
Population

84 Genes, Proteins Protein-Protein interactions Semi-automatic
methods

,689 Chemicals (Drugs),
Genes, Diseases

Drug-Genes, Drug-Disease,
Disease-Gene mappings

Manual curation
and Automated
systems

43 Drugs, Genes,
Variants

Drug-Gene, Drug-Variant
mappings

Manual curation

6,704 Genes, Variants,
Tumor Types

Gene-Variant Mappings Manual Curation

,114 Genes, Species and
Phenotypes

Gene-Phenotypes and
Genes-Species mappings

Semi-automated
curation

3 Genes, Phenotypes Gene-Phenotype mappings Manual Curation

2 Drugs, Genes,
Phenotypes,
Variants, Pathways

Gene-Phenotypes, Pathway-
Drugs, Gene-Variants, Gene-
Pathways

Manual Curation
and Automated
Methods

23 Proteins, Protein
sequences

Protein-Protein interactions Manual and
Automated
Curation



Fig. 2. A visualization of a constituency parse tree using the following sentence:
‘‘BRCA1 is associated with breast cancer” [73]. This type of tree has the root start at
the beginning of the sentence. Each word is grouped into subphrases depending on
its correlating part of speech tag. For example, the word ‘‘associated” is a past
participle verb (VBN) that belongs to the verb phrase (VP) subgroup.
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Despite the negatives of manual curation, it is still an essential
process for extracting relationships from text. This process can be
used to generate gold standard datasets that automated systems
use for validation [49,50] and can be used during the training pro-
cess of these systems (i.e., active learning) [51]. It is important to
remember that manual curation alone is precise but results in
low recall rates [38]. Future databases should consider initially
relying on automated methods to obtain sentences at an accept-
able recall level, then incorporate manual curation as a way to
fix or remove irrelevant results.

2.2. Text mining for relationship extraction

2.2.1. Rule-based relationship extraction
Rule-based extraction consists of identifying essential keywords

and grammatical patterns to detect relationships of interest. Key-
words are established via expert knowledge or through the use
of pre-existing ontologies, while grammatical patterns are con-
structed via experts curating parse trees. Parse trees are tree data
structures that depict a sentence’s grammatical structure and
come in two forms: a constituency parse tree (Fig. 2) and a depen-
dency parse tree (Fig. 3). Both trees use part of speech tags, labels
that dictate the grammatical role of a word such as noun, verb,
adjective, etc., for construction, but represent the information in
Fig. 3. A visualization of a dependency parse tree using the following sentence: ‘‘BRCA1
the main verb of the sentence. Each arrow represents the dependency shared between tw
which stands for passive nominal subject. This means that ‘‘BRCA1” is the subject of the
two different forms. Constituency parse trees break a sentence into
subphrases (Fig. 2) while dependency path trees analyze the gram-
matical structure of a sentence (Fig. 3). Many text mining
approaches [59,60,61] use such trees to generate features for
machine learning algorithms and these approaches are discussed
in later sections. In this section we focus on approaches that use
rule-based extraction as a primary strategy to detect sentences
that allude to a relationship.

Grammatical patterns can simplify sentences for easy extrac-
tion [48,62]. Jonnalagadda et al. used a set of grammar rules
inspired by constituency trees to reshape complex sentences with
simpler versions [48] and these simplified versions were manually
curated to determine the presence of a relationship. By simplifying
sentences, this approach achieved high recall, but had low preci-
sion [48]. Other approaches used simplification techniques to
make extraction easier [63,64,65,66]. Tudor et al. simplified sen-
tences to detect protein phosphorylation events [65]. Their sen-
tence simplifier broke complex sentences that contain multiple
protein events into smaller sentences that contain only one distinct
event. By breaking these sentences down the authors were able to
increase their recall; however, sentences that contained ambigu-
ous directionality or multiple phosphorylation events were too
complex for the simplifier. As a consequence, the simplifier missed
some relevant sentences [65]. These errors highlight a crucial need
for future algorithms to be generalizable enough to handle various
forms of complex sentences.

Pattern matching is a fundamental approach used to detect
relationship asserting sentences. These patterns can consist of
phrases from constituency trees, a set of keywords or some combi-
nation of both [36,67,68,69,70,71]. Xu et al. designed a pattern
matcher system to detect sentences in PubMed abstracts that indi-
cate drug-disease treatments [70]. This system matched drug-
disease pairs from ClinicalTrials.gov to drug-disease pairs men-
tioned in abstracts. This matching process aided the authors in
identifying sentences that can be used to create simple patterns,
such as ‘‘Drug in the treatment of Disease” [70], to match other
sentences in a wide variety of abstracts. The authors hand curated
two datasets for evaluation and achieved a high precision score of
0.904 and a low recall score of 0.131 [70]. This low recall score was
based on constructed patterns being too specific to detect infre-
quent drug pairs. Besides constituency trees, some approaches
used dependency trees to construct patterns [59,72]. Depending
upon the nature of the algorithm and text, dependency trees could
be more appropriate than constituency trees and vice versa. The
performance difference between the two trees remains as an open
question for future exploration.

Rule-based methods provide a basis for many relationship
extraction systems. Approaches in this category range from simpli-
fying sentences for easy extraction to identifying sentences based
is associated with breast cancer” [74]. For these types of trees, the root begins with
o words. For example, the dependency between BRCA1 and associated is nsubjpass,
sentence and it is being referred to by the word ‘‘associated”.
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on matched key phrases or grammatical patterns. Both require a
significant amount of manual effort and expert knowledge to per-
form well. A future direction is to develop ways to automate the
construction of these hand-crafted patterns, which would acceler-
ate the process of creating these rule-based systems.
2.2.2. Extracting relationships without labels
Unsupervised extractors draw inferences from textual data

without the use of annotated labels. These methods involve some
form of clustering or statistical calculations. In this section we
focus on methods that use unsupervised learning to extract rela-
tionships from text.

An unsupervised extractor can exploit the fact that two entities
may appear together in text. This event is referred to as co-
occurrence and studies that use this phenomenon can be found
in Table 2. Two databases DISEASES [20] and STRING [75] were
populated using a co-occurrence scoring method on PubMed
abstracts, which measured the frequency of co-mention pairs
within individual sentences as well as the abstracts themselves.
This technique assumes that each individual co-occurring pair is
independent from one another. Under this assumption mention
pairs that occur more than expected were presumed to implicate
the presence of an association or interaction. This approach identi-
fied 543,405 disease gene associations [20] and 792,730 high con-
fidence protein–protein interactions [75] but is limited to only
PubMed abstracts.

Full text articles are able to dramatically enhance relationship
detection [76,77]. Westergaard et al. used a co-occurrence
approach, similar to DISEASES [20] and STRING [75], to mine full
articles for protein–protein interactions and other protein related
information [76]. The authors discovered that full text provided
better prediction power than using abstracts alone, which suggests
that future text mining approaches should consider using full text
to increase detection power.

Unsupervised extractors often treat different biomedical rela-
tionships as multiple isolated problems. An alternative to this per-
spective is to capture all different types at once. Clustering is an
approach that performs simultaneous extraction. Percha et al. used
a biclustering algorithm on generated dependency parse trees to
group sentences within PubMed abstracts [78]. Each cluster was
manually curated to determine which relationship each group rep-
resented. This approach captured 4,451,661 dependency paths for
36 different groups [78]. Despite the success, this approach suf-
fered from technical issues such as dependency tree parsing errors.
These errors resulted in some sentences not being captured by the
clustering algorithm [78]. Future clustering approaches should
consider simplifying sentences to prevent this type of issue.

Overall unsupervised methods provide a means to rapidly
extract relationship asserting sentences without the need of anno-
tated text. Approaches in this category range from calculating co-
occurrence scores to clustering sentences and provide a generaliz-
Table 2
Table of approaches that mainly use a form of co-occurrence.

Study Relationship of Interest

CoCoScore [79] Protein-Protein Interactions, Disease-Gene and
Tissue-Gene Associations

Rastegar-Mojarad
et al. [80]

Drug Disease Treatments

CoPub Discovery
[81]

Drug, Gene and Disease interactions

Westergaard et al.
[76]

Protein-Protein Interactions

DISEASES [20] Disease-Gene associations
STRING [82] Protein-Protein Interactions
Singhal et al. [83] Genotype-Phenotype Relationships
able framework that can be used on large repositories of text. Full
text has already been shown to meaningfully improve the perfor-
mance of methods that aim to infer relationships using cooccur-
rences [76], and we should expect similar benefits for machine
learning approaches. Furthermore, we expect that simplifying sen-
tences would improve unsupervised methods and should be con-
sidered as an initial preprocessing step.
2.2.3. Supervised relationship extraction
Supervised extractors use labeled sentences to construct gener-

alized patterns that bisect positive examples (sentences that allude
to a relationship) from negative ones (sentences that do not allude
to a relationship). Most of these approaches have flourished due to
pre-labelled publicly available datasets (Table 3). These datasets
were constructed by curators for shared open tasks [84,85] or as
a means to provide the scientific community with a gold standard
[85,86,87]. Approaches that use these available datasets range
from using linear classifiers such as support vector machines
(SVMs) to non-linear classifiers such as deep learning techniques.
The rest of this section discusses approaches that use supervised
extractors to detect relationship asserting sentences.

Some supervised extractors involve the mapping of textual
input into a high dimensional space. SVMs are a type of classifier
that can accomplish this task with a mapping function called a ker-
nel [61,88]. These kernels take information such as a sentence’s
dependency tree [59,60], part of speech tags [61] or even word
counts [88] and map them onto a dense feature space. Within this
space, these methods construct a hyperplane that separates sen-
tences in the positive class (illustrates a relationship) from the neg-
ative class (does not illustrate a relationship). Kernels can be
manually constructed or selected to cater to the relationship of
interest [60,61,88,88]. Determining the correct kernel is a nontriv-
ial task that requires expert knowledge to be successful. In addition
to single kernel methods, a recent study used an ensemble of SVMs
to extract disease-gene associations [89]. This ensemble outper-
formed notable disease-gene association extractors [72,90] in
terms of precision, recall and F1 score. Overall, SVMs have been
shown to be beneficial in terms of relationship mining; however,
major focus has shifted to utilizing deep learning techniques which
can perform non-linear mappings of high dimensional data.

Deep learning is an increasingly popular class of techniques that
can construct their own features within a high dimensional space
[91,92]. These methods use different forms of neural networks,
such as recurrent or convolutional neural networks, to perform
classification.

Recurrent neural networks (RNN) are designed for sequential
analysis and use a repeatedly updating hidden state to make pre-
dictions. An example of a recurrent neural network is a long
short-term memory (LSTM) network [93]. Cocos et al. [94] used a
LSTM to extract drug side effects from de-identified twitter posts,
while Yadav et al. [95] used an LSTM to extract protein–protein
Table 3
A set of publicly available datasets for supervised text mining.

Dataset Type of Sentences

AIMed [50] Protein-Protein Interactions
BioInfer [123] Protein-Protein Interactions
LLL [124] Protein-Protein Interactions
IEPA [125] Protein-Protein Interactions
HPRD5 [86] Protein-Protein Interactions
EU-ADR [49] Disease-Gene Associations
BeFree [90] Disease-Gene Associations
CoMAGC [87] Disease-Gene Associations
CRAFT [126] Disease-Gene Associations
Biocreative V CDR [85] Compound induces Disease
Biocreative IV ChemProt [84] Compound-Gene Bindings
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interactions. Others have also embraced LSTMs to perform rela-
tionship extraction [94,96,97,98,99]. Despite the success of these
networks, training can be difficult as these networks are highly
susceptible to vanishing and exploding gradients [100,101]. One
proposed solution to this problem is to clip the gradients while
the neural network trains [102]. Besides the gradient problem,
these approaches only peak in performance when the datasets
reach at least tens of thousands of data points [103].

Convolutional neural networks (CNNs), which are widely
applied for image analysis, use multiple kernel filters to capture
small subsets of an overall image [92]. In the context of text mining
an image is replaced with words within a sentence mapped to
dense vectors (i.e., word embeddings) [104,105]. Peng et al. used
a CNN to extract sentences that mentioned protein–protein inter-
actions [106] and Zhou et al. used a CNN to extract chemical-
disease relations [107]. Others have used CNNs and variants of
CNNs to extract relationships from text [108,109,110]. Just like
RNNs, these networks perform well when millions of labeled
examples are present [103]; however, obtaining these large data-
sets is a non-trivial task. Future approaches that use CNNs or RNNs
should consider solutions to obtaining these large quantities of
data through means such as weak supervision [111], semi-
supervised learning [112] or using pre-trained networks via trans-
fer learning [113,114].

Semi-supervised learning [112] and weak supervision [111] are
techniques that can rapidly construct large datasets for machine
learning classifiers. Semi-supervised learning trains classifiers by
combining labeled data with unlabeled data. For example, one
study used a variational auto encoder with a LSTM network to
extract protein–protein interactions from PubMed abstracts and
full text [115]. This is an elegant solution for the small dataset
problem but requires labeled data to start. This dependency makes
finding under-studied relationships difficult as one would need to
find or construct examples of the missing relationships at the start.

Weak or distant supervision takes a different approach by using
noisy or even erroneous labels to train classifiers
[111,116,117,118]. Under this paradigm, sentences are labeled
based on their mention pair being present (positive) or absent
(negative) in a database and, once labeled, a machine learning clas-
sifier can be trained to extract relationships from text [111]. For
example, Thomas et al. [119] used distant supervision to train a
SVM to extract sentences mentioning protein–protein interactions
(PPI). Their SVM model achieved comparable performance against
a baseline model; however, the noise generated via distant super-
vision was difficult to eradicate [119]. A number of efforts have
focused on combining distant supervision with other types of
labeling strategies to mitigate the negative impacts of noisy knowl-
edge bases [120,121,122]. Nicholson et al. [110] found that, in
some circumstances, these strategies can be reused across different
types of biomedical relationships to learn a heterogeneous knowl-
edge graph in cases where those relationships describe similar
physical concepts. Combining distant supervision with other types
of labeling strategies remains an active area of investigation with
numerous associated challenges and opportunities. Overall, semi-
supervised learning and weak supervision provide promising
results in terms of relationship extraction and future approaches
should consider using these paradigms to train machine learning
classifiers.
3. Applying knowledge graphs to biomedical challenges

Knowledge graphs can help researchers tackle many biomedical
problems such as finding new treatments for existing drugs [9],
aiding efforts to diagnose patients [127] and identifying associa-
tions between diseases and biomolecules [128]. In many cases,
solutions rely on representing knowledge graphs in a low dimen-
sional space, which is a process called representational learning.
The goal of this process is to retain and encode the local and/or glo-
bal structure of a knowledge graph that is relevant to the problem
while transforming the graph into a representation that can be
readily used with machine learning methods to build predictors.
In the following sections we review methods that construct a
low dimensional space (Unifying Representational Learning Tech-
niques) and discuss applications that use this space to solve
biomedical problems (Unifying Applications).

3.1. Unifying representational learning techniques

Mapping high dimensional data into a low dimensional space
greatly improves modeling performance in fields such as natural
language processing [104,105] and image analysis [129]. The suc-
cess of these approaches served as rationale for a sharper focus
on representing knowledge graphs in a low dimensional space
[130]. Methods of this class are designed to capture the essence
of a knowledge graph in the form of dense vectors [131,132]. These
vectors are often assigned to nodes in a graph [133], but edges can
be assigned as well [134]. Techniques that construct a low dimen-
sional space often require information on how nodes are connected
with one another [135,136,137,138], while other approaches can
work directly with the edges themselves [139]. Once this space
has been constructed, machine learning techniques can utilize
the space for downstream analyses such as classification or cluster-
ing. We group techniques that construct this space into the follow-
ing three categories: matrix factorization, translational distance
models, and neural network models (Fig. 4).

3.1.1. Matrix factorization
Matrix factorization is a class of techniques that use linear alge-

bra to map high dimensional data into a low dimensional space.
This projection is accomplished by decomposing a matrix into a
set of small rectangular matrices (Fig. 4 (a)). Notable methods for
matrix decomposition include Isomap [140], Laplacian eigenmaps
[132] and Principal Component Analysis (PCA) [141]/Singular Vec-
tor Decomposition (SVD) [131]. These methods were designed to
be used on many different types of data; however, we discuss their
use in the context of representing knowledge graphs in a low
dimensional space and focus particularly on SVD and laplacian
eigenmaps.

SVD [131] is an algorithm that uses matrix factorization to por-
tray knowledge graphs in a low dimensional space. The input for
this algorithm is an adjacency matrix (A), which is a square matrix
where rows and columns represent nodes and each entry is a bin-
ary representation of the presence of an edge between two nodes.
A is constructed based on the knowledge graph’s structure itself
and collapses all edges between two nodes into one unique entity.
Following construction, A is decomposed into the following three
parts: a square matrix R and a set of two small rectangular matri-
ces U and VT . Values within R are called singular values, which are
akin to eigenvalues [131]. Each row in U and each column in VT

represents nodes within a low dimensional space [131,141]. In
practice, U is usually used to represent nodes in a knowledge graph
and can be used as input for machine learning classifiers to per-
form tasks such as link prediction or node classification [142];
however, VT has also been used [131,143]. Typically, matrix factor-
ization algorithms such as SVD are used for recommendation sys-
tems via collaborative filtering [144]; however, this technique can
also provide a standalone baseline for other relational learning
approaches [142].

Laplacian eigenmaps assume there is low dimensional structure
in a high dimensional space and preserves this structure when pro-



Fig. 4. Pipeline for representing knowledge graphs in a low dimensional space. Starting with a knowledge graph, this space can be generated using one of the following
options: Matrix Factorization (a), Translational Models (b) or Neural Network Models (c). The output of this pipeline is an embedding space that clusters similar node types
together.

1420 D.N. Nicholson, C.S. Greene / Computational and Structural Biotechnology Journal 18 (2020) 1414–1428
jecting data into a low dimensional space [132]. The first step of
this technique is to preserve the low dimensional structure by rep-
resenting data in the form of a graph where nodes are datapoints
and edges are the distance between two points. Knowledge graphs
already provide this representation, so no additional processing is
necessary at this stage. The second step of this technique is to
obtain both an adjacency matrix (A) and a degree matrix (D) from
the graph representation. A degree matrix is a diagonal matrix
where each entry represents the number of edges connected to a
node. The adjacency and degree matrices are converted into a
laplacian matrix (L), which is a matrix that shares the same prop-
erties as the adjacency matrix. The laplacian matrix is generated by
subtracting the adjacency matrix from the degree matrix
(L ¼ D� A) and, once constructed, the algorithm uses linear alge-
bra to calculate the laplacian’s eigenvalues and eigenvectors
(Lx ¼ kDx). The generated eigenvectors represent the knowledge
graph’s nodes represented in a low dimensional space [132]. Other
efforts have used variants of this algorithm to construct low
dimensional representations of knowledge graphs [135,136,145].
Typically, eigenmaps work well when knowledge graphs have a
sparse number of edges between nodes but struggle when pre-
sented with denser networks [142,145,146]. An open area of explo-
ration is to adapt these methods to accommodate knowledge
graphs that have a large number of edges.

Matrix factorization is a powerful technique that represents
high dimensional data in a low dimensional space. The representa-
tion of a knowledge graph in this reduced space does not meet our
definition of a knowledge graph; however, this representation sup-
ports many use cases including similarity-based (e.g., cosine simi-
larity [147]) and machine learning applications. Common matrix
factorization approaches involve using SVD, Laplacian eigenmaps
or variants of the two to decompose matrices into smaller rectan-
gular forms. Regarding knowledge graphs, the adjacency matrix (A)
is the typical matrix that gets decomposed, but the laplacian
matrix (L ¼ D� A) can be used as well. Despite reported success,
the dependence on matrices creates an issue of scalability as matri-
ces of large networks may reach memory limitations. Furthermore,
the approaches we discussed consider all edge types as equivalent.
These limitations could be mitigated by new approaches designed
to accommodate multiple node and edge types separately.
3.1.2. Translational distance models
Translational distance models treat edges in a knowledge graph

as linear transformations. For example, one such algorithm, TransE
[134], treats every node-edge pair as a triplet with head nodes rep-
resented as h, edges represented as r, and tail nodes represented as
t. These representations are combined into an equation that mim-
ics the iconic word vectors translations (king�manþwoman �
queen) from the word2vec model [105]. The described equation
is shown as follows: hþ r � t. Starting at the head node (h), one
adds the edge vector (r) and the result should be the tail node
(t). TransE optimizes vectors for h, r, t, while guaranteeing the glo-
bal equation (hþ r � t) is satisfied [134]. A caveat to the TransE
approach is that it forces relationships to have a one to one map-
ping, which may not be appropriate for all relationship types.

Wang et al. attempted to resolve the one to one mapping issue
by developing the TransH model [148]. TransH treats relations as
hyperplanes rather than a regular vector and projects the head
(h) and tail (t) nodes onto a hyperplane. Following this projection,
a distance vector (dr) is calculated between the projected head and
tail nodes. Finally, each vector is optimized while preserving the
global equation: hþ dr � t [148]. Other efforts have built off of
the TransE and TransH models [149,150]. In the future, it may be
beneficial for these models to incorporate other types of informa-
tion such as edge confidence scores, textual information, or edge
type information when optimizing these distance models.

3.1.3. Neural networks
Neural networks are a class of machine learning models

inspired by the concept of biological neural networks [151]. These
networks are reputable for making non-linear transformations of
high dimensional data to solve classification and regression prob-
lems [151]. In the context of knowledge graphs, the most com-
monly used structures are based on word2vec [104,105]. The
word2vec term applies to a set of conceptually related approaches
that are widely used in the natural language processing field. The
goal of word2vec is to project words onto a low dimensional space
that preserves their semantic meaning. Strategies for training
word2vec models use one of two neural network architectures:
skip-gram and continuous bag of words (CBOW). Both models
are feed-forward neural networks, but CBOW models are trained
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to predict a word given its context while skip-gram models are
trained to predict the context given a word [104,105]. Once train-
ing is completed, words will be associated with dense vectors that
downstream models, such as feed forward networks or recurrent
networks, can use for input.

Deepwalk is an early method that represents knowledge graphs
in a low dimensional space [152]. The first step of this method is to
perform a random walk along a knowledge graph. During the ran-
domwalk, every generated sequence of nodes is recorded and trea-
ted as a sentence in word2vec [104,105]. After every node has been
processed, a skip-gram model is trained to predict the context of
each node thereby constructing a low dimensional representation
of a knowledge graph [152]. A limitation for deepwalk is that the
random walk cannot be controlled, so every node has an equal
chance to be reached. Grover and Leskovec demonstrated that this
limitation can hurt performance when classifying edges between
nodes and developed node2vec as a result [133]. Node2vec oper-
ates in the same fashion as deepwalk; however, this algorithm
specifies a parameter that lets the random walk be biased when
traversing nodes [133]. A caveat to both deepwalk and node2vec
is that they ignore information such as edge type and node type.
Various approaches have evolved to fix this limitation by incorpo-
rating node, edge and even path types when representing knowl-
edge graphs in a low dimensional space [153,154,155,156]. An
emerging area of work is to develop approaches that capture both
the local and global structure of a graph when constructing this
low dimensional space.

Though word2vec is the most common framework used to rep-
resent graphs, neural networks are sometimes designed to use the
adjacency matrix as input [104,105]. These approaches use models
called autoencoders [157,158,159]. Autoencoders are designed to
map input into a low dimensional space and then back to a recon-
struction of the same input [160,161]. It is possible to layer on
additional objectives by modifying the loss function to take into
account criteria above and beyond reconstruction loss [162,163].
In the context of knowledge graphs, the generated space correlates
nodes with dense vectors that capture a graph’s connectivity struc-
ture [157,158,159]. Despite the high potential of autoencoders, this
method relies on an adjacency matrix for input which can run into
scalability issues as a knowledge graph asymptotically increases in
size [164]. Plus, Khosla et al. discovered that approaches akin to
Fig. 5. Overview of various biomedical applications that make use of knowledge graphs.
and (c) Clinical Applications.
node2vec outperformed algorithms using autoencoders when
undergoing link prediction and node classification [164].

Overall, the performance of neural network models largely
depends upon the structure of nodes and edges within a knowl-
edge graph [164]. Furthermore, when these approaches are used
only nodes are explicitly represented by these vectors. This means
a represented knowledge graph no longer meets our definition of a
knowledge graph; however, this representation can make it more
suitable for many biomedical applications. Future areas of explo-
ration should include hybrid models that use both node2vec and
autoencoders to construct complementary low dimensional repre-
sentations of knowledge graphs.
3.2. Unifying applications

Knowledge graphs have been applied to many biomedical chal-
lenges ranging from identifying proteins’ functions [165] to prior-
itizing cancer genes [166] to recommending safer drugs for
patients [167,168] (Fig. 5). In this section we review how knowl-
edge graphs are applied in biomedical settings and put particular
emphasis on an emerging set of techniques that represent knowl-
edge graphs in a low dimensional space.
3.2.1. Multi-omic applications
Multi-omic applications employ knowledge graphs to study the

genome, how genes are expressed in the transcriptome, and how
the products of those transcripts interact in the proteome. These
graphs are used to establish connections between -omic entities
as well as diseases. Tasks in this context include gene-symptom
prioritization [169], protein–protein interaction prediction
[170,171] and detecting miRNA-disease associations [128]. We
focus specifically on multi-omic applications that represent knowl-
edge graphs in a low dimensional space to make connections.

Recommendation systems make use of knowledge graphs to
establish links between RNA with disease and proteins with other
proteins. Shen et al. used an algorithm called collaborative filtering
to establish an association between miRNA and diseases [128]. The
authors constructed a miRNA-Disease network using the Human
MicroRNA Disease database (HMDD) [172] and generated an adja-
cency matrix with the rows representing miRNA and the columns
representing diseases. This matrix was decomposed into small
Categories consist of: (a) Multi-Omic applications, (b) Pharmaceutical Applications
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rectangular matrices using SVD, then these small matrices were
used to calculate similarity scores between miRNAs and diseases.
High scores implied a high likelihood that a given miRNA had an
association with a given disease [128]. Other approaches built off
of Shen et al.’s work by incorporating novel ways to performmatrix
factorization [173,174,175] or by integrating machine learning
models in conjunction with matrix factorization [176]. These
approaches achieved high area under the receiver operating curve
(AUROC), but new discoveries have been hard to validate as exper-
iments in this space are costly and time consuming at best [128].
Apart from miRNA, collaborative filtering has been used to predict
protein–protein interactions [170,171,177]. Although extensive
validation of newly generated candidates may be impractical, it
would be helpful to see future efforts in this space include a
blinded literature search for prioritized and randomly selected
candidates as part of the standard evaluation pipeline.

Applications of neural network models have mainly used the
node2vec model [133] or variants of it. Yang et al. used node2vec
to create a recommendation system to infer associations between
genes and disease symptoms [169]. The authors constructed a
gene-disease symptom knowledge graph by combining two bipar-
tite graphs: genes with diseases and diseases with disease symp-
toms. The generated graph was embedded via node2vec and
similarity scores were calculated for every gene-symptom pair in
the graph. High scores implied a high likelihood of an association
[169]. This approach outperformed methods that didn’t use a
knowledge graph; however, validation was difficult as it involved
manual curation of the literature [169]. Similar approaches used
variants of node2vec to predict gene-disease associations
[8,178,179] analyze RNA-seq data [180] and infer novel protein
information [165,181,182,183].

Knowledge graphs benefited the multi-omics field as a resource
for generating novel discoveries. Most approaches to date use
matrix factorization and node2vec to project knowledge graph into
a low dimensional space, while translational models (Fig. 4 (b))
may be an untapped resource that could aid future efforts. Another
area of exploration could be incorporating multiple sources of
information such as compounds, anatomic locations or genetic
pathways to improve the specificity of findings (i.e., to predict that
a protein–protein interaction happens in a specific cell type or
tissue).

3.2.2. Pharmaceutical applications
There are a multitude of examples where knowledge graphs

have been applied to identify new properties of drugs. Tasks in this
field involve predicting drugs interacting with other drugs [184],
identifying molecular targets a drug might interact with [185]
and identifying new disease treatments for previously established
drugs [186]. In this section we concentrate on applications that
apply these graphs to discover new properties of drugs and focus
on approaches that use these graphs in a low-dimensional space.

Similar to multi-omic applications, recommendation systems
have utilized knowledge graphs to infer novel links between drugs
and diseases. Dai et al. used collaborative filtering to infer drug-
disease associations [185]. The authors constructed a drug-
disease network by integrating two bipartite networks: a drug-
gene interaction network and a disease-gene interaction network.
They integrated both networks under the assumption that drugs
associated with a disease interact with the same gene of interest.
Following construction, the authors generated an adjacency matrix
where rows represent drugs and columns represent diseases. This
matrix was decomposed into two small rectangular matrices and
these matrices were used to calculate similarity scores between
all drugs and all diseases. High values implied a high chance of
an association [185]. Related approaches used this technique to
infer drug-target interactions [187,188,189] and drug-disease
treatments [190,191,192,193,194]. In spite of reported success,
these approaches are limited to the drugs and diseases contained
in the graph. Combining these approaches with representations
of chemical structures might make it possible to one day make pre-
dictions about novel compounds.

Applications that use neural network models have used node2-
vec [195,196] and autoencoders [197,198] approaches to represent
knowledge graphs in a low dimensional space. Zong et al. used a
node2vec-like model to predict drug-target associations [195].
The authors constructed a disease-target-disease network using
drug centered databases: Drugbank [199] and Diseasome [200].
Next, the authors applied a random walk to the graph and trained
a skip-grammodel to generate a low dimensional representation of
the graph. Lastly, the authors constructed a similarity metric that
used this space to rank how similar drugs are to their targets
[195]. A limitation to this approach is that their graph is missing
information such as pharmacological class or drug chemical struc-
ture that could improve prediction performance. Overall, neural
networks provide a robust set of techniques that have been shown
to outperform most linear approaches in this context [201,202].

Applications that discover new properties of drugs have bene-
fited from using knowledge graphs as a resource. Most methods
to date use matrix factorization and neural network models to pro-
duce a low-dimensional representation. Due to the success of neu-
ral networks [201,202] much of the field’s focus has shifted to
these techniques; however, a possible improvement is to use an
ensemble of neural network models and linear methods to
improve performance. Another potential avenue for future work
would be to incorporate entity-specific hierarchical information
or similarity information to improve detection power. For drugs,
this could include pharmaceutical classes or chemical structure
similarities.
3.2.3. Clinical applications. Clinical applications that use knowledge
graphs are in early stages of development, but the long-term goal is
to use analyses of these graphs to aid patient care. Typically, graphs
for these applications are constructed from electronic health
records (EHR): nodes represent patients, drugs and diseases while
edges represent relationships such as a patient being prescribed a
treatment or a patient being diagnosed with a disease
[203,204,205,26]. Tasks within this field range from improving
patient diagnoses [206,207] to recommending safer drugs for
patients [167,207]. We briefly discuss efforts that use knowledge
graphs to accomplish such tasks.

Early work in this field applied translational models (Fig. 4 (b))
to knowledge graphs with the goal of recommending safe drugs.
Wang et al. used a variant of the TransH [148] model to create such
a system for patients [167]. They constructed a disease-patient-
drug network by integrating a patient-disease bipartite network
with a patient-drug bipartite network. Every node in the newly
constructed graph was embedded while satisfying the following
equation: h� r � t. Following the embedding step, the authors for-
mulated their own similarity metric that selected drug combina-
tions with a low number of interactions [167]. Researchers in
[150] applied a similar variant of the TransH model to a medical
knowledge graph and evaluated their model for link prediction
rather than patient recommendation.

In contrast with most applications where node2vec and autoen-
coder models have become established, this field have focused on
using graph attention models [208]. These models mimic machine
translation models [209] and aim to simultaneously represent
knowledge graphs in a low dimensional space and perform the task
at hand. Choi et al. used a graph attention model to predict patient
diagnoses [127]. The authors constructed a directed graph using
medical concepts from patient EHR data. This directed graph was
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fed into a graph attention network and then used to predict a
patient’s likelihood of heart failure [127]. Other approaches have
used graph attention models to perform clinical tasks such as drug
safety recommendations [168] and patient diagnoses [210].

Knowledge graphs have shown promising results when used for
clinical applications; however, there is still room for improvement.
Most approaches have run into the common problem of missing
data within EHR [127,167,168]. Future directions for the field con-
sist of designing algorithms that can fill in this missing data gap or
construct models that can take missing data into account.

4. Conclusion

Knowledge graphs are becoming widely used in biomedicine,
and we expect their use to continue to grow. At the moment, most
are constructed from databases derived from manual curation or
from co-occurrences in text. We expect that machine learning
approaches will play a key role in quickly deriving new findings
from these graphs. Representing these knowledge graphs in a
low dimensional space that captures a graph’s local and global
structure can enable many downstream machine learning analy-
ses, and methods to capture this structure are an active area of
research.

As with any field, rigorous evaluation that can identify key fac-
tors that drive success is critical to moving the field forward. In
regard to knowledge graphs, evaluation remains difficult. Experi-
ments in this context require a significant amount of time and con-
sequently resources [128,169]. Moving from open ended and
uncontrolled evaluations that consist of describing findings that
are consistent with the literature to blinded evaluations of the lit-
erature that corroborate predictions and non-predictions would be
a valuable first step. There are also well-documented biases related
to node degree and degree distribution that must be considered for
accurate evaluation [211]. Furthermore, the diversity of applica-
tions hinders the development of a standardized set of expected
evaluations.

We anticipate that a fruitful avenue of research will be tech-
niques that can produce low dimensional representations of
knowledge graphs which distinguish between multiple node and
edge types. There are many different sources of bias that lead to
spurious edges or incompleteness, and modeling these biases
may support better representations of knowledge graphs. It is a
promising time for research into the construction and application
of knowledge graphs. The peer reviewed literature is growing at
an increasing rate and maintaining a complete understanding is
becoming increasingly challenging for scientists. One path that sci-
entists can take to maintain awareness is to become hyper-focused
on specific areas of knowledge graph literature. If advances in how
these graphs are constructed, represented and applied can enable
the linking of fields, we may be able to savor the benefits of this
detailed knowledge without losing the broader contextual links.
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