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Abstract: MicroRNAs (miRNAs), as key negative regulators of gene expression, are closely related to
tumor occurrence and progression. miR-194-5p (miR-194-1) has been shown to play a regulatory role
in various cancers however, its biological function and mechanism of action in breast cancer have not
yet been well explored. In this study, we use the UALCAN and LinkedOmics databases to analyze
transcription expression in The Cancer Genome Atlas Breast Invasive Carcinoma (TCGA-BRCA). The
epithelial-mesenchymal transition status of breast cancer cells was evaluated by wound-healing assay,
trans-well assays, and gelatin zymography, while protein expression was assessed by Western blotting.
miR-194-5p expression was found to be up-regulated in breast cancer clinical specimens but down-
regulated in the triple-negative breast cancer (TNBC) cell line MDA-MB-231 and breast cancer clinical
specimens in The Cancer Genome Atlas (TCGA). miR-194-5p significantly inhibited the expression of
the epithelial marker ZO-1 and increased the expression of mesenchymal markers, including ZEB-1
and vimentin, in MDA-MB-231 cells. miR-194-5p significantly reduced the gelatin-degrading activity
of matrix metalloproteinase-2 (MMP-2) and MMP-9 in zymography assays. In MDA-MB-231 cells
and TCGA patient samples, ZEB-1 expression was significantly inversely correlated with miR-194-5p
expression. High levels of miR-194-5p were associated with good overall survival. miR-194-5p
regulates epithelial–mesenchymal transition (EMT) in TNBC. Our findings suggest that miR-194-5p
functions as a tumor biomarker in breast cancer, providing new insights for the study of breast cancer
development and metastasis.

Keywords: miR-194-5p; triple-negative breast cancer (TNBC); The Cancer Genome Atlas (TCGA);
epithelial–mesenchymal transition (EMT); ZEB-1

1. Introduction

Breast cancer is a leading cause of death and the most commonly diagnosed cancer
in women worldwide. Each year, more than 250,000 women are diagnosed with breast
cancer, accounting for 30% of all female cancers [1]. In breast cancer, the cells are classified
as primary or metastatic. Primary breast cancer cells expressing estrogen receptors (ER)
or progesterone receptors (PR) can be treated with hormone therapy. Over 90% of cancer-
related deaths are caused by metastases [2]. Metastases contribute to multiple complex
processes, including epithelial–mesenchymal transition (EMT), anoikis resistance, and
angiogenesis [3,4]. Triple-negative breast cancer (TNBC) is characterized by an absence of
the estrogen receptor (ER), the progesterone receptor (PR), and HER-2 (human epidermal
growth factor receptor 2). The recurrence and mortality rates associated with TNBC are
high [5]. Due to the lack of these three receptors, endocrine therapy and targeted therapy
are not effective against TNBC [6]. There is often a poor prognosis and drug resistance
with chemotherapy [7]. Therefore, at present, it is urgent to design new drugs and develop
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effective therapeutic approaches for the treatment of TNBC [8]. By developing potential
prognostic markers, we can better understand the molecular mechanisms that minimize
tumor development [9].

The roles of miRNAs have been increasingly associated with breast cancer metastasis.
miRNAs are short (about 21–25 nucleotides in length) non-coding RNA molecules that
negatively control protein synthesis by specifically binding to the 3′-UTRs (3′-untranslated
regions) of their target mRNAs [10]. miR-206, miR-221/222, and miR-34 have been shown
to have inhibitory effects on breast cancer tumorigenesis and proliferation [11]. MiR-194-5p
inhibits cell proliferation and migration in non-small cell lung cancer [12], deregulates acute
myeloid leukemia [13], and inhibits tumor growth in colorectal cancer [14]. In addition,
over-expression of miR-194-5p has been related to the recurrence of breast cancer [15]
however, the exact cellular functions and molecular mechanisms of miR-194-5p remain to
be investigated in breast cancer.

The metastasis and spread of cancer cells are the main reasons for the recurrence and
death of cancer patients, as well as increased difficulty of treatment. The metastasis and
spread of cancer cells are often accompanied by many physiological changes in cancer cells,
which cause aggressive properties. The main phenomenon relating to metastasis is called
EMT [16]. ZEB1 is an EMT transcription factor that facilitates metastasis in breast and
pancreatic carcinomas [17,18]. Transforming growth factor-β (TGF-β) induces ZEB1 and
promotes bone-specific metastasis of breast carcinomas [19,20]. ZEB1 expression exhibits a
repressive role and contributes to anti-cancer drug resistance [21,22].

In the current study, the expression level of miR-194-5p is examined in breast cancer
cell lines and clinical tissues. The potential miR-194-5p-directed target genes are identi-
fied and characterized, and the action mechanism of miR-194-5p in breast cell migration
is investigated.

2. Results
2.1. miR-194-5p Expression in TCGA-BRCA

To examine the expression levels of miR-194-5p in different types of cancer, we used the
TCGA and Genotype-Tissue Expression (GTEx) miRNA databases to perform systematic
pan-cancer analysis. The results revealed that miR-194-5p is over-expressed in many cancer
types, including READ, COAD, STAD, PAAD, BRCA, BLCA, PRAD, and HNSC (Figure 1A).
A forest plot displaying the number of tumor and normal samples, the area under the ROC
curve (AUC), and 95% confidence interval (CI) of the AUC for each cancer type in TCGA
was used to visualize the results of the pan-cancer ROC analysis by CancerMIRNome
bioinformatic analysis (Figure 1B) [23].

2.2. Low Expression of miR-194-5p in the Basal-like Group in Breast Cancer

The TCGA breast cancer cohort and corresponding clinical data (survival time, TMN
stages, tumor site, and different clinicopathological characteristics) were downloaded from
the publicly available TCGA database. CancerMIRNome (http://bioinfo.jialab-ucr.org/
CancerMIRNome/, accessed on 15 August 2021) was used to examine the expression
profile between miR-194-5p expression levels and different cancer stages. Our findings
revealed that miR-194-5p expression was lower in TNBC than in the luminal groups of
breast cancers (p = 0.036; Figure 2A).

http://bioinfo.jialab-ucr.org/CancerMIRNome/
http://bioinfo.jialab-ucr.org/CancerMIRNome/
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Figure 1. miR-194-5p expression in The Cancer Genome Atlas (TCGA) pan-cancer: (A) Pan-cancer 
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Figure 1. miR-194-5p expression in The Cancer Genome Atlas (TCGA) pan-cancer: (A) Pan-cancer
expression of miR-194-5p in TCGA. Data are presented as “− delta CT” using box and whisker
plots. **, p < 0.005; ***, p < 0.0005; n.s., not significant. (B) Forest plot visualizing pan-cancer survival
analysis across all TCGA projects.

2.3. Survival Analysis

To predict and discriminate the miRNA-based signature profiles, we constructed
the Kaplan–Meier curve (K–M curve) to compare overall survival (OS) in different risk
groups. The miR-194-5p levels showed a significant difference in the ROC curve (AUC
ROC) of 0.7 (95% CI: 0.66–0.75) between breast cancer and adjacent normal tissues. The
K–M curve suggested that breast cancer patients with high miR-194-5p expression levels
had significantly higher overall survival (Figure 2B). Once aberrantly expressed miRNAs
were identified, we wanted to further verify miRNA-194-5p for the development of breast
cancer metastases in a mouse model [24]. Thus, miRNA RNA sequence analysis was
performed, followed by analysis of the number of miRNAs whose expression was altered,
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in comparison with the corresponding time point control. Down-regulation of miR-194-5p
was observed in the study at Days 3 and 10, post-injection of 4T1 cells (Figure 2C).
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Figure 2. Association of miR-194-5p expression with clinicopathologic characteristics: (A) miRNA
expression was analyzed in PAM50-defined breast tumor sub-types from TCGA. Gene expression
differences were plotted across the triple-negative breast cancer (TNBC), HER2-positive (Her2),
luminal A (LumA), and luminal B (LumB) sub-groups; (B) ROC curve analysis of miR-194-5p
expression, sorted by area under the curve (AUC) in TCGA-BRCA; and (C) miRNA-194-5p down-
regulation in the overall metastasis progression analysis by RNA sequencing.

2.4. Functional Enrichment Analysis of miR-194-5p in Breast Cancer Patients

To further clarify the biological meaning behind miR-194-5p and its associated genes,
we performed functional enrichment analysis using the LinkedOmics database. Differen-
tially expressed genes correlated with miR-194-5p in breast cancer are presented as volcano
plots in Figure 3A. The top 50 genes significantly positively correlated with miR-194-5p,
chosen from LinkedOmics, are shown in Figure S1, and the top 48 genes significantly
negatively correlated with miR-194-5p chosen from LinkedOmics are shown in Figure S2.
We further performed GSEA to enrich and identify signaling pathway structures in which
target genes correlated with miR-194-5p are involved. As shown in Figure 3B, major
signaling pathway structures were focal adhesion, extracellular matrix (ECM)–receptor
interaction, proteoglycans in cancer, EGFR tyrosine kinase inhibitor resistance, PI3K-Akt
signaling pathway, and regulation of actin cytoskeleton. GSEA revealed negative enrich-
ment of miR-194-5p-altered genes in two top gene sets: Focal adhesion and ECM–receptor
interaction (Figure 3C).
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Figure 3. miR-194-5p is associated with disease aggressiveness in breast cancer. Key genes targeted
by miR-194-5p were analyzed GSEA and GO enrichment assay in breast cancer: (A) The X-axis
represents the log2(fold change), and the volcano plot shows the log2(fold change) vs. −log10(p-value);
(B) negatively-regulated genes by miR-194-5p were categorized. Top 10 pathways selected from
KEGG; (C) top two enrichment plots from the GSEA results, including focal adhesion and ECM-
receptor interaction. GSEA revealed negative enrichment of miR-194-5p-altered genes in focal
adhesion and ECM–receptor interactions.

2.5. miR-194-5p Inhibits Metastasis of Breast Cancer

RT-qPCR was used to examine the expression of miR-194-5p in breast cancer cell lines
MCF-7 and MDA-MB-231, with low and high metastatic potential, respectively. The results
in Figure 4A demonstrate that the low expression of miR-194-5p in MDA-MB-231 cells was
0.2-fold higher than that in MCF-7 cells (Figure 4A). Cell migration ability is an indicator
of the metastatic potential of cancer cells. To evaluate the effect of miR-194-5p on cell
migration, we examined the migration ability of MDA-MB-231 by wound-healing assay
and Trans-well assay after treatment with miR-194-5p mimics or control miRNA (miR-
ZIP). In the wound-healing assay, confluent transfected cells were scratched and observed
for 24 h (Figure 4B). Treatment with miR-194-5p mimics led to a significant decrease in
wound healing, compared to treatment with miR-ZIP in MDA-MB-231 cells. Similarly, the
migration of transfected miR-194-5p mimic MDA-MB-231 cells was blocked in the Trans-
well assay (Figure 4C). EMT is characterized by loss of polarity and epithelial markers.
E-cadherin and ZO-1 are epithelial markers, whereas vimentin, α-SMA, and N-cadherin are
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mesenchymal markers, which define the epithelial or mesenchymal phenotype, respectively.
However, we and other labs have found E-cadherin to be undetectable in MDA-MB-231
cells [25]. To further examine whether miR-194-5p inhibits EMT, breast cancer cell line
MDA-MB-231 was used to observe the variations in ZO-1, ZEB1, and vimentin. ZO-1 was
significantly down-regulated by miR-194-5p, while ZEB-1 and vimentin were significantly
up-regulated (Figure 4D).
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Figure 4. miRNA-194-5p inhibits the migration of breast cancer cells: (A) The expression levels of
miR-194-5p were assessed by RT-qPCR in metastatic MDA-MB-231 cells and MCF7 cells. The relative
miR-194-5p expression was normalized to U6 expression. (B) Wound-healing assay was used to
evaluate whether miR-194-5p inhibited cell migration ability. MDA-MB-231 cells were observed
at the indicated time points. Images of the wound gap were photographed at 0 and 24 h (at 50×
magnification). Red dotted lines represented the baseline. (C) Cell migration abilities were evaluated
by Trans-well migration assays in MDA-MB-231 cells (at 200× magnification). *, p < 0.05; and
(D) the epithelial marker ZO-1 and the mesenchymal markers ZEB1 and vimentin were detected by
Western blotting in transfected cells. ZO-1 protein levels were increased, while ZEB1 and vimentin
protein levels were decreased in miR-194-5p transfected cells, compared with the empty vector
group. miR-194-5p modulated the expression of EMT markers in MDA-MB-231 cells. The results are
expressed as the mean ± SD (n = 3).
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2.6. miRNA-194-5p Suppresses MMP2 and MMP9 Enzyme Activities

To determine whether miR-194-5p affected the gelatinolytic activities of MMP-2 and
MMP-9, MDA-MB-231 cells were transfected with miR-194-5p mimics. Subsequently, the
cell medium was collected and analyzed by gelatin zymography. MMP2 and MMP-9
enzyme activities in miR-194-5p-transfected MDA-MB-231 cells were lower than those in
control miR-ZIP-transfected cells. The band at 72 kDa, representing MMP2 (Figure 5A), and
the band at 95 kDa, representing MMP9 (Figure 5B), were reduced. These results indicate
that miR-194-5p negatively regulated MMP2 and MMP9 enzyme activities.
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Figure 5. Effect of miR-194-5p on the enzyme activities of MMP-2 and MMP-9 in MDA-MB-231 cells:
MDA-MB-231 cells were transfected with miR-194-5p precursors and control microRNA for 48 h, and
the enzyme activities of MMP-2 (A) and MMP-9 (B) in conditioned media were analyzed by gelatin
zymography. *, p < 0.05.

2.7. miR-194-5p Directly Targeted FOXA1, BMI1, and ZEB1

miRNAs bind to the 3′-UTRs of their target genes and block protein synthesis. To
identify the potential targets of miR-194-5p in breast cancer, the publicly available miRBase
and TargetScan were used to screen potential targets. The 3′-UTRs of human FOXA1, Bmi1,
and ZEB1 contained putative miR-194-5p-complementary sites, which bind to the seed
region of miR-194-5p (Figure 6A). To validate whether FOXA1, Bmi1, and ZEB1 are potential
targets of miR-194-5p, 3′-UTR fragments of human FOXA1, Bmi1, and ZEB1 containing
wild-type miR-194-5p-complementary sequences were sub-cloned into the 3′-UTR of the
firefly luciferase reporter gene vector (pMIR-REPORT). When miR-194-5p mimics were
co-transfected with pMIR-REPORT containing wild-type FOXA1, Bmi1, and ZEB1 3′-UTRs,
the firefly luciferase activities were obviously suppressed. This result indicated that miR-
194-5p may down-regulate the expression of the FOXA1, Bmi1, and ZEB1 genes through
binding miR-194-5p-complementary sequences at their 3′-UTRs (Figure 6B). The protein
levels of FOXA1, Bmi1, and ZEB1 were assessed by Western blotting, in order to detect
the inhibitory effect of miR-194-5p in MDA-MB-231 cells. There were significant negative
correlations between miR-194-5p and the expression of FOXA1, Bmi1, and ZEB1 proteins
in MDA-MB-231 cells (Figure 6C).

2.8. Expression of ZEB1, VIM, and MMP-2 Is Significantly Inversely Correlated with miR-194-5p
Levels in TCGA-BRCA

We characterized the mRNA levels of ZEB1, VIM, BMI1, and MMP-2 in TCGA-BRCA.
The data showed reverse correlations between miR-194-5p expression and ZEB1, VIM,
BMI1, and MMP-2 expression in TCGA-BRCA (Figure 6D). These data further suggest that
the up-regulation of ZEB1, VIM, BMI1, and MMP-2 in TCGA-BRCA may partly be due to
the down-regulation of miR-194-5p. To identify major protein–protein interactions (PPIs)
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during EMT induced by ZEB1, we selected proteins that participate in EMT induced by
ZEB1 and used STRING to acquire a PPI network (Figure 6E).
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Figure 6. Negative correlation of miR-194-5p and EMT-associated genes in breast cancer cells. The
target relationships between miR-194-5p and FOXA1, Bmi1, and ZEB1. (A) The target genes were
predicted by the TargetScan database. The seed sequence of miR-194-5p and target binding sites were
shown in the red box. (B) Luciferase activity was significantly decreased following co-transfection
with pMIR-REPORT-3′UTR- FOXA1, Bmi1, ZEB1, and miR-194-5p in MDA-MB-231 cells. (C) Over-
expression of miR-194-5p may down-regulate the protein expression levels of FOXA1, Bmi1, and
ZEB1 in MDA-MB-231 cells. (D) Graphs showing the levels of miR-194-5p versus ZEB1, VIM, and
MMP2 in 322 tumors from the TCGA breast cancer cohort. p-values were calculated using Pearson
correlation tests. RPKM: Reads per kilobase per million mapped reads. (E) STRING-DB analysis
shows that differentially expressed proteins participate in metastasis. ZEB1 and BMI1 are two major
hubs in the network; colored nodes indicate query proteins; lines connected with colored nodes
represent an interaction between two query proteins; different colored lines indicate information
from different resources; blue lines denote data analyses from curated databases; pink lines denote
data analyses from determined experiments; yellow lines denote data analyses from text mining; and
black lines represent pairs of co-expressed proteins.

Figure 7 shows how miR-194-5p regulates cell migration by down-regulating the
epithelial marker ZO-1 and up-regulating the mesenchymal markers ZEB1 and vimentin in
MDA-MB-231 cells.
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3. Discussion
3.1. The Biological Functions of miR-194-5p in Breast Cancer Carcinogenesis

Although there are several suitable treatments for different types of breast cancer,
breast cancer patients may develop recurrence. Most breast cancer patients die from the
transfer of breast cancer cells to other tissues or organs, causing other complications and
death. Most of these deaths are due to cancer metastasis, and the factors that trigger
cancer metastasis remain unclear. MicroRNA research not only may reveal the mechanisms
underlying metastasis, but can also suggest important implications for cancer diagnosis,
prognosis, and treatment. miRNAs have been proposed as an alternative therapeutic
approach for treating cancer in a clinical context [26]. In recent years, studies have shown
that microRNAs regulate EMT-related proteins by up- or down-regulating their target
genes [27]. The most commonly studied microRNA related to EMT is the miR-200 family,
which plays an important role in EMT suppression, mainly by targeting ZEB [28].

Studies have revealed that miR-194-5p inhibits inflammation [29], and is involved in
cartilage formation [30] and neuronal differentiation [31]. miR-194-5p is highly expressed in
the intestine and liver [32,33]. During intestinal epithelial cell differentiation, miR-194-5p is
induced by the hepatocyte nuclear factor [34]. The invasiveness and metastasis of interstitial
liver cancer cells have been shown to be inhibited by miR-194-5p [35]. An association exists
between a low expression of miR-194-5p and advanced gastric cancer [36]. miR-194-5p
inhibits epithelial and mesenchymal metastasis of gastric cancer by targeting FOXM1 [22].
However, Cai et al. have shown that miR-194-5p promotes EMT in human colorectal
cancer [37], while Yang et al. showed that a knockdown of miR-194-5p suppressed EMT in
breast cell lines in an animal model [38]. Collectively, miR-194-5p acts as either an oncogene
or a tumor suppressor gene in different cancers.

In the present study, we investigated the biological functions of miR-194-5p in breast
cancer carcinogenesis. miR-194-5p is highly expressed in breast, intestinal, and liver cancers
(Figure 1). Our findings suggest that the elevated expression of miR-194-5p is related to
high overall survival (Figure 2C). Intriguingly, the relative expression of miR-194-5p was
lower in the metastatic triple-negative breast cancer cell line (MDA-MB-231) than in the
non-metastatic breast cancer cell line (MCF7) (see Figure 4A).

3.2. miR-194-5p Inhibits Invasion and Metastasis

We performed GSEA, and the results revealed that miR-194-5p is involved in ECM-
receptor interactions (Figure 3B). These findings are consistent with those of previous
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studies. In endometrial cancer cells, miR-194-5p inhibits epithelial–mesenchymal transition
by targeting Bmi-1 [39]. miR-194-5p inhibits the invasion and metastasis of interstitial
hepatocellular carcinoma cells [35].

The results of wound-healing and Trans-well assays revealed that the migration of
MDA-MB-231 cells was inhibited by miR-194-5p (Figure 4B,C). miR-194-5p increased the
expression of an epithelial marker (ZO-1) and decreased that of a mesenchymal marker
(vimentin) by Western blot analysis (Figure 4D). According to the zymography data,
miR-194-5p inhibited the gelatin-degrading activities of MMP-2 (Figure 5A) and MMP-9
(Figure 5B). The TargetScan program was used to search for and verify miR-194-5p target
genes, including AKT2, Bmi-1, FOXA1, and SOX5 (Figure 6A,B). The protein expression
levels of miR-194-5p target genes were decreased after transfecting the miR-194-5p precur-
sor into breast cancer cells (Figure 6C). Our results prove that miR-194-5p can inhibit EMT
in breast cancer. In metastatic TNBC, miR-194-5p could serve as a useful biomarker. Using
miR-194-5p to regulate TNBC migration is a novel strategy for preventing the migration of
the disease.

4. Materials and Methods
4.1. Bioinformatic Analysis

The TCGA database contains high-throughput sequencing data and prognostic data.
LinkedOmics was used to analyze omics data in cancer. We measured the receiver op-
erating characteristic (ROC) curve for overall survival between risk patients, stratified
by CancerMIRNome (http://bioinfo.jialab-ucr.org/CancerMIRNome/, accessed on 15
August 2021).

4.2. MiRactDB

We analyzed the miRNA–gene expression profiles between normal and cancer tissues
using miRactDB (https://ccsm.uth.edu/miRactDB/, accessed on 15 August 2021) [40], a
database for characterizing miRNA–gene interactions.

4.3. UALCAN Analysis

UALCAN is an open and comprehensive web portal [41], which is used for in-depth
analyses of RNA-seq level 3 TCGA data. UALCAN was applied to study the relative
expression levels of genes across normal and tumor tissues, as well as to characterize
multiple cancer sub-types, such as TMN stages, tumor location, tumor grade, and different
clinicopathological characteristics. In this study, the UALCAN database was applied to
analyze the prognosis of miR-194-5p in breast cancer.

4.4. LinkedOmics Analysis

Thirty-two TCGA cancer-associated multi-dimensional data sets were selected and ana-
lyzed using the LinkedOmics database (visited at http://www.linkedomics.org/login.php/,
accessed on 15 August 2021) [42]. The differentially expressed genes related to miR-194-5p
were selected from the breast cancer cohort of the TGCA database through the LinkFinder
module. The Pearson correlation coefficient was used to evaluate the correlation of results.
The LinkInterpreter module assayed the pathways and networks across differentially ex-
pressed genes related to miR-194-5p. Gene set enrichment analysis (GSEA) and Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathway analysis are two approaches for
interpreting gene expression profiles based on the three classes of biological processes,
molecular functions, and cellular components. The pathway and network analyses were
ranked through GSEA and KEGG. A cut-off p-value was set at 0.05 as the rank standard.

4.5. Analyses of Interactive Network and Modules

STRING (accessed through http://string-db.org/, accessed on 15 August 2021) is a
known database used to seek protein–protein interactions. A protein–protein interactive

http://bioinfo.jialab-ucr.org/CancerMIRNome/
https://ccsm.uth.edu/miRactDB/
http://www.linkedomics.org/login.php/
http://string-db.org/
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network was established by screening out co-expressed genes with correlation scores above
0.4 [43].

4.6. Cell Cultures

MCF7 and MDA-MB-231 human breast adenocarcinoma cell lines were chosen for
a comparison of migration in this study. Two cell lines were originally obtained from
ATCC and maintained in DMEM/F-12 supplemented with 10% fetal bovine serum (FBS),
100 U/mL of penicillin, and 100 µg/mL of streptomycin under 5% CO2 in a 95% humidified
incubator at a temperature of 37 ◦C.

4.7. Isolation of RNA Samples and Quantification of MicroRNA Expression

TRIzol Reagent (Cat. No. 15596026, Invitrogen, Carlsbad, CA, USA) was used to
extract RNA samples from cells, according to the manufacturer’s instructions and as
described previously [44]. RT-qPCR (reverse transcription-quantitative polymerase chain
reaction) assays were performed for detecting miR-194-5p using TaqMan miRNA assays
(Cat. No. 4427975, Applied Biosystems, Foster City, CA, USA), where U6 was the reference
gene control. The RT settings and PCR cycling conditions were chosen according to the
manufacturer’s instructions. The threshold cycle (Ct) values were obtained from triplicate
RT-qPCR assays and analyzed using QuantStudio 3 software (Life Technologies, Carlsbad,
CA, USA).

4.8. Predicting miR-194-5p Target Genes and Constructs

The web-based miRNA target prediction software miRBase (http://mirbase.org/,
accessed on 15 August 2021) and TargetScan (www.targetscan.org/, accessed on 15 August
2021) were used to predict binding between the miR-194-5p seed sequence (about 6–8
nucleotides in length) and the 3′-untranslated region (3′-UTR) sequence of the target genes.
The miR-194-5p sequence and the 3′-UTR sequence (about 21–23 nucleotides in length)
of the potential target genes were cloned into a SpeI/HindIII-digested pMIR-REPORT
vector (Applied Biosystems, Foster City, CA, USA), as described previously [44]. The
following primer sequences were used for cloning miR-194-5p and miR-194-5p target genes:
miR-194-5p forward, 5′-CTAGTTCCACATGGAGTTGCTGTTACAGGATCCA-3′ and re-
verse, 5′-AGCTTGGATCCTGTAACAGCAACTCCATGTGGAA-3′; FOXA1 forward, 5′-
CTAGTCCCCAGTGCAAAAGACTGTTACTGGATCCA-3′ and reverse, 5′-AGCTTGGATC
CAGTAACAGTCTTTTGCACTGGGGA-3′; Bmi1 forward, 5′-CTAGTTTTACATATAT
TGCTGTTACTGGATCCA-3′ and reverse, 5′-AGCTTGGATCCAGTAACAGCAATATATGT
AAAA-3′; and ZEB1 forward, 5′-CTAGTCATTTTTAAGTTCCTTGTTACATGGATCCA-3′

and reverse, 5′- AGCTTGGATCCTGTAACAGCAACTCCATGTGGAA-3′.

4.9. Transfection of miR-194-5p into MDA-MB-231 Cells

MDA-MB-231 cells were inoculated in 6-well plates 18 to 24 h prior to transfection
and reached 70–80% confluency. The cells were transfected with 2 µg of the hsa-miR-
194-5p precursor plasmid (Cat# PMIRH1942AA-1) purchased from System Biosciences
(Palo Alto, CA, USA), or 2 µg of the plasmid vector (as a control) using OMNIfect™
transfection reagent (cat no. OTR1004, Transomic, Huntsville, AL, USA), according to the
manufacturer’s instructions.

4.10. Luciferase Reporter Gene Assays

Luciferase reporter gene enzyme activity was detected using a Dual-Luciferase®

Reporter Assay System (Cat. No. E1910, Promega, Madison, WI, USA). MDA-MB-231 cells
were co-transfected with 500 ng of the hsa-miR-194-5p precursor plasmid, 1.0 µg of a pMIR-
REPORT construct containing the 3′-UTR sequence of the potential target gene, and 500 ng
of pRL-CMV for 48 h. Relative luciferase activity was determined by calculating the ratio
of firefly-to-Renilla luciferase activity. Three independent experiments were performed.

http://mirbase.org/
www.targetscan.org/
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4.11. Wound-Healing Assay

MDA-MB-231 cells transfected with a miR-194-5p precursor plasmid or an empty
vector were seeded into ibidi culture inserts (Cat. No. 81176, ibidi GmbH, Gräfelfing,
Munich, Germany) for wound-healing assay, according to the manufacturer’s instructions.
The inserts were gently removed and the attached cells were maintained in 2-mL DMEM
with 1% FBS for 24 h. Images were captured at 0 and 24 h. The gap distance in three fields
was measured, in order to calculate the percentage of cell migration and were photographed
under an inverted microscope (Leica, Wetzlar, Hessen, Germany) at a magnification of
100×. The gap distance was quantitatively evaluated using ImageJ software version 1.41
(National Institutes of Health, Bethesda, MD, USA).

4.12. Trans-Well Migration Assays

To detect cell migration, chambers with an 8-µm pore size (Transwell, Cat. No. 3464,
Costar) were chosen and placed into 24-well culture plates, as described previously [45].
Briefly, miR-194-5p or an empty vector were transfected into MDA-MB-231 cells for 48 h
and trypsinized. Approximately 5 × 104 cells were inoculated in the upper chamber,
supplemented with a 400-µL DMEM/F12 medium containing 10% FBS, which was added in
the lower chamber for 24 h. Migrated cells were fixed with cold methanol and stained with
0.5% crystal violet for 1 h at room temperature. Purple migrated cells were photographed
under a Leica light microscope (Leica, Wetzlar, Hessen, Germany) at 100×magnification.
The number of migrated cells was counted.

4.13. Gelatin Zymography

MDA-MB-231 cells were transfected with miR-194-5p or empty vector for 24 h. Trans-
fected cells (8× 105 cells/well) were seeded into 24-well plates for another 24 h and cultured
in a serum-free DMEM/F-12 medium for 24 h at 37 ◦C. Media were collected and analyzed
by running gels to determine MMP-2 enzyme activity through gelatin zymography, as
previously described [45].

4.14. Western Blot Analysis

Protein expression levels were assessed using Western blot analysis, as previously
described [44]. Briefly, equal amounts of protein (100 µg) were loaded into wells and
separated using a 10% sodium dodecyl sulfate-polyacrylamide gel. Protein samples were
transferred onto polyvinylidene difluoride membranes (EMD Millipore, Billerica, MA,
USA). The membranes were blocked in PBS-T (PBS containing 0.1% Tween-20) with 5%
non-fat milk, then incubated with the indicated primary antibodies overnight at 4 ◦C.
Primary antibodies were probed against: ZO-1 (Cat. NO. GTX108613; 1:1000 dilution), ZEB1
(Cat. NO. GTX55847; 1:1000 dilution), Vimentin (Cat. NO. GTX112661; 1:1000 dilution),
FOXA1 (Cat. NO. sc-514695; 1:1000 dilution), Bmi1 (Cat. NO. GTX114008; 1:1000 dilution),
and GAPDH (Cat. NO. MAB374; 1:5000 dilution). Subsequently, horseradish peroxidase-
conjugated secondary antibody was added into the membranes and incubated for 1 h at
room temperature. Protein bands were visualized using an enhanced chemiluminescence
detection kit (GE Healthcare Bioscience, Piscataway, NJ, USA). The intensities of sample
bands were quantified using ImageJ software version 1.41 (NIH). Quantitative expression
levels of proteins were normalized to that of GAPDH.

4.15. Super-Enhancer (SE) Analysis

H3K27ac ChIP-seq data were downloaded from 15 human tissues, including 64 sam-
ples from ENCODE [46]. ROSE (Rank Ordering of Super-enhancers) is a tool for investigat-
ing SE profiles, and the H3K27ac signal surrounding a miR-194-5p site was analyzed [47].

4.16. Statistical Analysis

All experiments were performed independently at least three times. Statistical com-
parisons were performed using the GraphPad Prism 7 software. One-way ANOVA and
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Tukey’s honest significant difference test were used for multiple comparisons, while an
unpaired Student’s t-test was used to compare the mean of two independent groups.
p < 0.05 was considered to denote statistical significance.

5. Conclusions

Our results suggested that miR-194-5p is down-regulated in TNBC. miR-194-5p in-
hibited the migration ability of metastatic MDA-MB-231 cells. We demonstrated that the
protein expression of the EMT-associated transcription factor Zeb-1 and mesenchymal
marker vimentin was decreased, while that of the epithelial marker ZO-1 was increased
in miR-194-5p mimic-transfected MDA-MB-231 cells. In addition, the enzyme activities
of MMP-2 and MMP-9 were suppressed by miR-194-5p in miR-194-5p mimic-transfected
MDA-MB-231 cells. Therefore, miR-194-5p shows potential as a useful biomarker in
metastatic TNBC.

Supplementary Materials: The Supplementary Materials for this article are available online at
https://www.mdpi.com/article/10.3390/ijms23010325/s1.

Author Contributions: Conception or design of the work: All. Acquisition of data: Y.-T.Y., J.-C.Y.
and J.-B.C. Analysis and interpretation of data: All. Drafting and revising the article: Y.-T.Y., J.-C.Y.
and S.-C.T. All authors have read and agreed to the published version of the manuscript.

Funding: The present study was supported by project grants funded to Shih-Chang Tsai of China
Medical University (grant no. CMU103-S-16 and MOST 106-2314-B-039-046).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The original contributions presented in the study are included in the
article/supplementary materials. Further inquiries can be directed to the corresponding authors.

Acknowledgments: We thank the staff at the Office of Research & Development at China Medical
University, Taichung, Taiwan, R.O.C., for use of the Medical Research Core Facilities to perform
experiments and data analyses.

Conflicts of Interest: All the authors declare no conflict of interest in relation to this study.

References
1. Siegel, R.L.; Miller, K.D.; Jemal, A. Colorectal Cancer Statistics, 2017. CA Cancer J. Clin. 2017, 67, 7–30. [CrossRef]
2. Weigelt, B.; Peterse, J.L.; van’t Veer, L.J. Breast cancer metastasis: Markers and models. Nat. Rev. Cancer 2005, 5, 591–602.

[CrossRef]
3. De Craene, B.; Berx, G. Regulatory networks defining EMT during cancer initiation and progression. Nat. Rev. Cancer 2013, 13,

97–110. [CrossRef] [PubMed]
4. Feng, Q.; Zhang, C.; Lum, D.; Druso, J.E.; Blank, B.; Wilson, K.F.; Welm, A.; Antonyak, M.A.; Cerione, R.A. A class of extracellular

vesicles from breast cancer cells activates VEGF receptors and tumour angiogenesis. Nat. Commun. 2017, 8, 14450. [CrossRef]
[PubMed]

5. Foulkes, W.D.; Smith, I.E.; Reis-Filho, J.S. Triple-negative breast cancer. N. Engl. J. Med. 2010, 363, 1938–1948. [CrossRef]
6. Hudis, C.A.; Gianni, L. Triple-negative breast cancer: An unmet medical need. Oncologist 2011, 16 (Suppl. 1), 1–11. [CrossRef]

[PubMed]
7. Won, K.A.; Spruck, C. Triplenegative breast cancer therapy: Current and future perspectives (Review). Int. J. Oncol. 2020, 57,

1245–1261. [CrossRef] [PubMed]
8. Shen, H.; Yang, Y.; Zhao, L.; Yuan, J.; Niu, Y. Lin28A and androgen receptor expression in ER-/Her2+ breast cancer. Breast Cancer

Res. Treat 2016, 156, 135–147. [CrossRef] [PubMed]
9. Nassar, F.J.; Nasr, R.; Talhouk, R. MicroRNAs as biomarkers for early breast cancer diagnosis, prognosis and therapy prediction.

Pharmacol. Ther. 2017, 172, 34–49. [CrossRef] [PubMed]
10. Lages, E.; Ipas, H.; Guttin, A.; Nesr, H.; Berger, F.; Issartel, J.P. MicroRNAs: Molecular features and role in cancer. Front. Biosci.

2012, 17, 2508–2540. [CrossRef] [PubMed]
11. Greene, S.B.; Herschkowitz, J.I.; Rosen, J.M. Small players with big roles: microRNAs as targets to inhibit breast cancer progression.

Curr. Drug Targets 2010, 11, 1059–1073. [CrossRef]

https://www.mdpi.com/article/10.3390/ijms23010325/s1
http://doi.org/10.3322/caac.21387
http://doi.org/10.1038/nrc1670
http://doi.org/10.1038/nrc3447
http://www.ncbi.nlm.nih.gov/pubmed/23344542
http://doi.org/10.1038/ncomms14450
http://www.ncbi.nlm.nih.gov/pubmed/28205552
http://doi.org/10.1056/NEJMra1001389
http://doi.org/10.1634/theoncologist.2011-S1-01
http://www.ncbi.nlm.nih.gov/pubmed/21278435
http://doi.org/10.3892/ijo.2020.5135
http://www.ncbi.nlm.nih.gov/pubmed/33174058
http://doi.org/10.1007/s10549-016-3744-9
http://www.ncbi.nlm.nih.gov/pubmed/26944953
http://doi.org/10.1016/j.pharmthera.2016.11.012
http://www.ncbi.nlm.nih.gov/pubmed/27916656
http://doi.org/10.2741/4068
http://www.ncbi.nlm.nih.gov/pubmed/22652795
http://doi.org/10.2174/138945010792006762


Int. J. Mol. Sci. 2022, 23, 325 14 of 15

12. Zhu, X.; Li, D.; Yu, F.; Jia, C.; Xie, J.; Ma, Y.; Fan, S.; Cai, H.; Luo, Q.; Lv, Z.; et al. miR-194 inhibits the proliferation, invasion,
migration, and enhances the chemosensitivity of non-small cell lung cancer cells by targeting forkhead box A1 protein. Oncotarget
2016, 7, 13139–13152. [CrossRef]

13. Dell’Aversana, C.; Giorgio, C.; D’Amato, L.; Lania, G.; Matarese, F.; Saeed, S.; Di Costanzo, A.; Belsito Petrizzi, V.; Ingenito, C.;
Martens, J.H.A.; et al. miR-194-5p/BCLAF1 deregulation in AML tumorigenesis. Leukemia 2017, 31, 2315–2325. [CrossRef]

14. Wang, B.; Shen, Z.L.; Gao, Z.D.; Zhao, G.; Wang, C.Y.; Yang, Y.; Zhang, J.Z.; Yan, Y.C.; Shen, C.; Jiang, K.W.; et al. MiR-194,
commonly repressed in colorectal cancer, suppresses tumor growth by regulating the MAP4K4/c-Jun/MDM2 signaling pathway.
Cell Cycle 2015, 14, 1046–1058. [CrossRef] [PubMed]

15. Hironaka-Mitsuhashi, A.; Matsuzaki, J.; Takahashi, R.U.; Yoshida, M.; Nezu, Y.; Yamamoto, Y.; Shiino, S.; Kinoshita, T.; Ushijima, T.;
Hiraoka, N.; et al. A tissue microRNA signature that predicts the prognosis of breast cancer in young women. PLoS ONE 2017,
12, e0187638. [CrossRef] [PubMed]

16. Lamouille, S.; Xu, J.; Derynck, R. Molecular mechanisms of epithelial-mesenchymal transition. Nat. Rev. Mol. Cell Biol. 2014, 15,
178–196. [CrossRef]

17. Aigner, K.; Dampier, B.; Descovich, L.; Mikula, M.; Sultan, A.; Schreiber, M.; Mikulits, W.; Brabletz, T.; Strand, D.; Obrist, P.; et al.
The transcription factor ZEB1 (deltaEF1) promotes tumour cell dedifferentiation by repressing master regulators of epithelial
polarity. Oncogene 2007, 26, 6979–6988. [CrossRef] [PubMed]

18. Spaderna, S.; Schmalhofer, O.; Wahlbuhl, M.; Dimmler, A.; Bauer, K.; Sultan, A.; Hlubek, F.; Jung, A.; Strand, D.; Eger, A.; et al. The
transcriptional repressor ZEB1 promotes metastasis and loss of cell polarity in cancer. Cancer Res. 2008, 68, 537–544. [CrossRef]

19. Maturi, V.; Enroth, S.; Heldin, C.H.; Moustakas, A. Genome-wide binding of transcription factor ZEB1 in triple-negative breast
cancer cells. J. Cell Physiol. 2018, 233, 7113–7127. [CrossRef]

20. Mock, K.; Preca, B.T.; Brummer, T.; Brabletz, S.; Stemmler, M.P.; Brabletz, T. The EMT-activator ZEB1 induces bone metastasis
associated genes including BMP-inhibitors. Oncotarget 2015, 6, 14399–14412. [CrossRef]

21. Meidhof, S.; Brabletz, S.; Lehmann, W.; Preca, B.T.; Mock, K.; Ruh, M.; Schuler, J.; Berthold, M.; Weber, A.; Burk, U.; et al.
ZEB1-associated drug resistance in cancer cells is reversed by the class I HDAC inhibitor mocetinostat. EMBO Mol. Med. 2015, 7,
831–847. [CrossRef]

22. Li, Z.; Ying, X.; Chen, H.; Ye, P.; Shen, Y.; Pan, W.; Zhang, L. MicroRNA-194 inhibits the epithelial-mesenchymal transition in
gastric cancer cells by targeting FoxM1. Dig. Dis. Sci. 2014, 59, 2145–2152. [CrossRef]

23. Li, R.; Qu, H.; Wang, S.; Chater, J.M.; Wang, X.; Cui, Y.; Yu, L.; Zhou, R.; Jia, Q.; Traband, R.; et al. CancerMIRNome: An interactive
analysis and visualization database for miRNome profiles of human cancer. bioRxiv 2021. [CrossRef] [PubMed]

24. Sereno, M.; Hasko, J.; Molnar, K.; Medina, S.J.; Reisz, Z.; Malho, R.; Videira, M.; Tiszlavicz, L.; Booth, S.A.; Wilhelm, I.; et al. Downreg-
ulation of circulating miR 802-5p and miR 194-5p and upregulation of brain MEF2C along breast cancer brain metastasization.
Mol. Oncol. 2020, 14, 520–538. [CrossRef] [PubMed]

25. Eslami Amirabadi, H.; Tuerlings, M.; Hollestelle, A.; SahebAli, S.; Luttge, R.; van Donkelaar, C.C.; Martens, J.W.M.; den Toonder, J.M.J.
Characterizing the invasion of different breast cancer cell lines with distinct E-cadherin status in 3D using a microfluidic system.
Biomed. Microdevices 2019, 21, 101. [CrossRef] [PubMed]

26. Rupaimoole, R.; Slack, F.J. MicroRNA therapeutics: Towards a new era for the management of cancer and other diseases. Nat.
Rev. Drug Discov. 2017, 16, 203–222. [CrossRef] [PubMed]

27. Zhang, J.; Ma, L. MicroRNA control of epithelial-mesenchymal transition and metastasis. Cancer Metastasis Rev. 2012, 31, 653–662.
[CrossRef] [PubMed]

28. Zaravinos, A. The Regulatory Role of MicroRNAs in EMT and Cancer. J. Oncol. 2015, 2015, 865816. [CrossRef] [PubMed]
29. Tian, H.; Liu, C.; Zou, X.; Wu, W.; Zhang, C.; Yuan, D. MiRNA-194 Regulates Palmitic Acid-Induced Toll-Like Receptor 4

Inflammatory Responses in THP-1 Cells. Nutrients 2015, 7, 3483–3496. [CrossRef] [PubMed]
30. Xu, J.; Kang, Y.; Liao, W.M.; Yu, L. MiR-194 regulates chondrogenic differentiation of human adipose-derived stem cells by

targeting Sox5. PLoS ONE 2012, 7, e31861. [CrossRef]
31. Zhuang, H.; Zhang, R.; Zhang, S.; Shu, Q.; Zhang, D.; Xu, G. Altered expression of microRNAs in the neuronal differentiation of

human Wharton’s Jelly mesenchymal stem cells. Neurosci. Lett. 2015, 600, 69–74. [CrossRef] [PubMed]
32. Lu, J.; Getz, G.; Miska, E.A.; Alvarez-Saavedra, E.; Lamb, J.; Peck, D.; Sweet-Cordero, A.; Ebert, B.L.; Mak, R.H.; Ferrando, A.A.; et al.

MicroRNA expression profiles classify human cancers. Nature 2005, 435, 834–838. [CrossRef]
33. Barad, O.; Meiri, E.; Avniel, A.; Aharonov, R.; Barzilai, A.; Bentwich, I.; Einav, U.; Gilad, S.; Hurban, P.; Karov, Y.; et al. MicroRNA

expression detected by oligonucleotide microarrays: System establishment and expression profiling in human tissues. Genome
Res. 2004, 14, 2486–2494. [CrossRef] [PubMed]

34. Hino, K.; Fukao, T.; Watanabe, M. Regulatory interaction of HNF1-alpha to microRNA-194 gene during intestinal epithelial cell
differentiation. In Nucleic Acids Symposium Series; Oxford University Press: Oxford, UK, 2007; pp. 415–416.

35. Meng, Z.; Fu, X.; Chen, X.; Zeng, S.; Tian, Y.; Jove, R.; Xu, R.; Huang, W. miR-194 is a marker of hepatic epithelial cells and
suppresses metastasis of liver cancer cells in mice. Hepatology 2010, 52, 2148–2157. [CrossRef]

36. Song, Y.; Zhao, F.; Wang, Z.; Liu, Z.; Chiang, Y.; Xu, Y.; Gao, P.; Xu, H. Inverse association between miR-194 expression and tumor
invasion in gastric cancer. Ann. Surg. Oncol. 2012, 19 (Suppl. 3), S509–S517. [CrossRef]

37. Cai, H.K.; Chen, X.; Tang, Y.H.; Deng, Y.C. MicroRNA-194 modulates epithelial-mesenchymal transition in human colorectal
cancer metastasis. Oncol. Targets 2017, 10, 1269–1278. [CrossRef]

http://doi.org/10.18632/oncotarget.7545
http://doi.org/10.1038/leu.2017.64
http://doi.org/10.1080/15384101.2015.1007767
http://www.ncbi.nlm.nih.gov/pubmed/25602366
http://doi.org/10.1371/journal.pone.0187638
http://www.ncbi.nlm.nih.gov/pubmed/29141042
http://doi.org/10.1038/nrm3758
http://doi.org/10.1038/sj.onc.1210508
http://www.ncbi.nlm.nih.gov/pubmed/17486063
http://doi.org/10.1158/0008-5472.CAN-07-5682
http://doi.org/10.1002/jcp.26634
http://doi.org/10.18632/oncotarget.3882
http://doi.org/10.15252/emmm.201404396
http://doi.org/10.1007/s10620-014-3159-6
http://doi.org/10.1093/nar/gkab784
http://www.ncbi.nlm.nih.gov/pubmed/34500460
http://doi.org/10.1002/1878-0261.12632
http://www.ncbi.nlm.nih.gov/pubmed/31930767
http://doi.org/10.1007/s10544-019-0450-5
http://www.ncbi.nlm.nih.gov/pubmed/31760501
http://doi.org/10.1038/nrd.2016.246
http://www.ncbi.nlm.nih.gov/pubmed/28209991
http://doi.org/10.1007/s10555-012-9368-6
http://www.ncbi.nlm.nih.gov/pubmed/22684369
http://doi.org/10.1155/2015/865816
http://www.ncbi.nlm.nih.gov/pubmed/25883654
http://doi.org/10.3390/nu7053483
http://www.ncbi.nlm.nih.gov/pubmed/25984739
http://doi.org/10.1371/journal.pone.0031861
http://doi.org/10.1016/j.neulet.2015.05.061
http://www.ncbi.nlm.nih.gov/pubmed/26049006
http://doi.org/10.1038/nature03702
http://doi.org/10.1101/gr.2845604
http://www.ncbi.nlm.nih.gov/pubmed/15574827
http://doi.org/10.1002/hep.23915
http://doi.org/10.1245/s10434-011-1999-2
http://doi.org/10.2147/OTT.S125172


Int. J. Mol. Sci. 2022, 23, 325 15 of 15

38. Yang, F.; Xiao, Z.; Zhang, S. Knockdown of miR-194-5p inhibits cell proliferation, migration and invasion in breast cancer by
regulating the Wnt/beta-catenin signaling pathway. Int. J. Mol. Med. 2018, 42, 3355–3363.

39. Dong, P.; Kaneuchi, M.; Watari, H.; Hamada, J.; Sudo, S.; Ju, J.; Sakuragi, N. MicroRNA-194 inhibits epithelial to mesenchymal
transition of endometrial cancer cells by targeting oncogene BMI-1. Mol. Cancer 2011, 10, 99. [CrossRef]

40. Tan, H.; Kim, P.; Sun, P.; Zhou, X. miRactDB characterizes miRNA-gene relation switch between normal and cancer tissues across
pan-cancer. Brief. Bioinform. 2020, 22, bbaa089. [CrossRef]

41. Chandrashekar, D.S.; Bashel, B.; Balasubramanya, S.A.H.; Creighton, C.J.; Ponce-Rodriguez, I.; Chakravarthi, B.; Varambally, S.
UALCAN: A Portal for Facilitating Tumor Subgroup Gene Expression and Survival Analyses. Neoplasia 2017, 19, 649–658.
[CrossRef] [PubMed]

42. Vasaikar, S.V.; Straub, P.; Wang, J.; Zhang, B. LinkedOmics: Analyzing multi-omics data within and across 32 cancer types. Nucleic
Acids Res. 2018, 46, D956–D963. [CrossRef] [PubMed]

43. Szklarczyk, D.; Gable, A.L.; Lyon, D.; Junge, A.; Wyder, S.; Huerta-Cepas, J.; Simonovic, M.; Doncheva, N.T.; Morris, J.H.;
Bork, P.; et al. STRING v11: Protein-protein association networks with increased coverage, supporting functional discovery in
genome-wide experimental datasets. Nucleic Acids Res. 2019, 47, D607–D613. [CrossRef] [PubMed]

44. Tsai, S.C.; Huang, S.F.; Chiang, J.H.; Chen, Y.F.; Huang, C.C.; Tsai, M.H.; Tsai, F.J.; Kao, M.C.; Yang, J.S. The differential regulation
of microRNAs is associated with oral cancer. Oncol. Rep. 2017, 38, 1613–1620. [CrossRef] [PubMed]

45. Tsai, S.C.; Tsai, M.H.; Chiu, C.F.; Lu, C.C.; Kuo, S.C.; Chang, N.W.; Yang, J.S. AMPK-dependent signaling modulates the
suppression of invasion and migration by fenofibrate in CAL 27 oral cancer cells through NF-kappaB pathway. Environ. Toxicol.
2016, 31, 866–876. [CrossRef]

46. Consortium, E.P. An integrated encyclopedia of DNA elements in the human genome. Nature 2012, 489, 57–74. [CrossRef]
[PubMed]

47. Whyte, W.A.; Orlando, D.A.; Hnisz, D.; Abraham, B.J.; Lin, C.Y.; Kagey, M.H.; Rahl, P.B.; Lee, T.I.; Young, R.A. Master transcription
factors and mediator establish super-enhancers at key cell identity genes. Cell 2013, 153, 307–319. [CrossRef]

http://doi.org/10.1186/1476-4598-10-99
http://doi.org/10.1093/bib/bbaa089
http://doi.org/10.1016/j.neo.2017.05.002
http://www.ncbi.nlm.nih.gov/pubmed/28732212
http://doi.org/10.1093/nar/gkx1090
http://www.ncbi.nlm.nih.gov/pubmed/29136207
http://doi.org/10.1093/nar/gky1131
http://www.ncbi.nlm.nih.gov/pubmed/30476243
http://doi.org/10.3892/or.2017.5811
http://www.ncbi.nlm.nih.gov/pubmed/28713923
http://doi.org/10.1002/tox.22097
http://doi.org/10.1038/nature11247
http://www.ncbi.nlm.nih.gov/pubmed/22955616
http://doi.org/10.1016/j.cell.2013.03.035

	Introduction 
	Results 
	miR-194-5p Expression in TCGA-BRCA 
	Low Expression of miR-194-5p in the Basal-like Group in Breast Cancer 
	Survival Analysis 
	Functional Enrichment Analysis of miR-194-5p in Breast Cancer Patients 
	miR-194-5p Inhibits Metastasis of Breast Cancer 
	miRNA-194-5p Suppresses MMP2 and MMP9 Enzyme Activities 
	miR-194-5p Directly Targeted FOXA1, BMI1, and ZEB1 
	Expression of ZEB1, VIM, and MMP-2 Is Significantly Inversely Correlated with miR-194-5p Levels in TCGA-BRCA 

	Discussion 
	The Biological Functions of miR-194-5p in Breast Cancer Carcinogenesis 
	miR-194-5p Inhibits Invasion and Metastasis 

	Materials and Methods 
	Bioinformatic Analysis 
	MiRactDB 
	UALCAN Analysis 
	LinkedOmics Analysis 
	Analyses of Interactive Network and Modules 
	Cell Cultures 
	Isolation of RNA Samples and Quantification of MicroRNA Expression 
	Predicting miR-194-5p Target Genes and Constructs 
	Transfection of miR-194-5p into MDA-MB-231 Cells 
	Luciferase Reporter Gene Assays 
	Wound-Healing Assay 
	Trans-Well Migration Assays 
	Gelatin Zymography 
	Western Blot Analysis 
	Super-Enhancer (SE) Analysis 
	Statistical Analysis 

	Conclusions 
	References

