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Varactor‑tuned wideband 
band‑pass filter for 5G NR 
frequency bands n77, n79 and 5G 
Wi‑Fi
Alireza Golestanifar1, Gholamreza Karimi1* & Ali Lalbakhsh2,3

A wide‑band band‑pass filter (BPF) using coupled lines, rectangular stubs and Stepped‑Impedance 
Resonators (SIRs) is presented in this paper. The proposed BPF operates over a large pass‑band from 
3.15 to 6.05 GHz covering 5G New Radio (NR) frequency Bands n77, n79 and 5G Wi‑Fi, which includes 
the G band of US (3.3 to 4.2 GHz), 5G band of Japan (4.4 to 5 GHz) and 5G Wi‑Fi (5.15 to 5.85 GHz). 
The presented filter has a maximum pass‑band Insertion‑Loss (IL) of 2 dB, a sharp roll‑off rate and 
suppresses all the unwanted harmonics from 4.2 GHz up to 12 GHz with a 15 dB attenuation level. The 
performance of each section can be analyzed based on lumped‑element circuit models. The electrical 
size of the BPF is 0.258 λg × 0.255 λg, where λg is the guided wavelength at the central frequency. The 
design accuracy is verified through implementing and testing the final BPF. The pass‑band band‑width 
can be controlled by adding the varactor diodes. A good relationship between the band‑width and the 
varactor diodes are extracted by the curve fitting technique.

The fifth generation of cellular networks (5G) new radio (NR) is a new Radio Access Technology (RAT) devel-
oped by 3rd Generation Partnership Project (3GPP) for the 5G mobile network. It was designed to be the global 
standard for the air interface of 5G networks. Bands n77, n79 and 5G Wi-Fi, which include the 5G band of US 
(3.3 to 4.2 GHz), 5G band of Japan (4.4 to 5 GHz) and 5G Wi-Fi (5.15 to 5.85 GHz). 5G technology needs high-
tech methods to transfer waves with high data  density1–4. To transmit or receive signals, for example at 1.5 GHz 
and 2 GHz, two major approaches can be used. In the first approach, multiple narrow-band communication 
devices are used to operate in each band. In the second method, wide-band communication devices are used 
along with microstrip filters to filter the frequency range of interest and attenuate other frequencies. A diplexer 
is a good choice to filter and choose bands but the delivered power will be decreased. For example, a two-channel 
diplexer will deliver only half of the total power injected to the diplexer, at the best situation. Alternatively, 
varactor-tuned microstrip filters can be used, especially for low power signals, for example in low noise ampli-
fiers. This paper proposes a Varactor-tuned Wide-band Band-Pass Filter which can be used in 802.11.n/ac/ac/ax/
be or 5G Wi-Fi. Some of the applications of these bands are transferring data from a base to a far Remote Radio 
Unit (RRU) and then transferring these data via n77, n79 to 5G mobile phones. Channel n77 and n79 can both 
have signal band-widths of 10 MHz to 100 MHz and signal is transferred via Time-division duplexing (TDD). 
Varactor tuned filters have many applications like cognitive radio and reconfigurable  antennas5–7. These filters 
can be applied to suppress unwanted channels and frequency bands. Cognitive radio can detect which signal and 
channel are used and which one is not and can move on to a vacant channel or band-width. 5G communication 
systems need different frequency frames and band-widths. This is making microwave tunable filters an integral 
component in such modern systems.  In8, a tunable dual-band BPF using a polygonal resonator was presented, 
where one of its transmission poles is independently tunable using a varactor diode. The substrate integrated 
waveguide (SIW) method is applied to reach a tunable microstrip  BPF9. Resonance cavities in vertical and 
horizontal topology are applied. A coupling matrix was utilized to analyze the resonators.  In10, SIRs are utilized 
to obtain a dual-band BPF. The SIR’s gap alteration improved both in and out-of-band responses of the filter. 
In other words, Transmission zeros get closer and vice versa.  In11, three different, second-order BPF topologies 
with coupled microstrip structures were presented with no, one and three transmissions zeros. The structures 
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were accompanied by stubs to suppress parasitic harmonics.  In12, a tunable microstrip BPF with a fixed centre 
frequency was presented, where Positive Intrinsic Negative (PIN) diodes were utilized as switches (ON or OFF) 
to reach three different states with different band-widths. A ring resonator and folded short stubs were used to 
achieve a tuning range of 0.9 GHz to 2.2 GHz for a central frequency of 1.3 GHz. Microstrip band-stop reso-
nance filters were utilized as suppressing cells to obtain wide-band  BPF13. Adding mores suppressing cells will 
result in more IL in stop-band.  In14, two wide-band BPFs are designed and combined via a coupling microstrip 
structure.  In15, a microstrip BPF using stepped-impedance stubs were used to suppress parasitic harmonics. The 
filter has a Fractional-Band-Width (FBW) of 62% at the centre frequency of 5 GHz.  In16, inter-digital microstrip 
resonators and inverters as high-pass and low-pass structures were combined to obtain a band-pass filter. The 
equivalent LC circuit and quasi-lumped-elements were used  in17 to understand the transmission zeros behavior. 
Also, open and short subs were utilized to improve the upper stop-band up to the third harmonic of a microstrip 
BPF. A tunable dual-band microstrip BPF using stub loaded ring resonators was presented  in18, where the key 
factor of the filter was independent tunable bands.  In19–21, efficient coupling structures were applied to reach a 
wide pass-band, where even and odd analyses were utilized. The structure presents multiple transmission poles 
and zeros, which resulted in a sharp skirt factor and wide stop-band. Cross-shaped coupled microstrip resona-
tor was applied  in22 to reach two adjacent pass-bands as a dual-band BPF. Recently artificial intelligence-based 
approaches have been extensively used in microwave filters. Various types of nature-based algorithms, such as 
artificial intelligence  algorithm23–27, particle swarm  optimization28–30, Grey wolf  optimization31–33, ant  colony34 
can be incorporated in the design procedures.

In this paper, a tunable wide-band microstrip BPF is presented. This filter only uses three varactor diodes 
installed at the end of the stubs. Two control parameters for the diodes to achieve the desired band-width with 
acceptable IL. Folded symmetric coupling structures were applied to create Radio Frequency (RF) chock and 
wide pass-band as the Fundamental Resonator (FR). To reach primary desired band-width specifications, such 
as central frequency and FBW of the filter, an equivalent LC circuit is used to extract transmission zeros and 
poles of the FR.

Design process
FR. One of the mainstream BPF design techniques is the use of coupled lines as the primary structure of the 
filter to provide the initial pass-band, which can be tailored later by various  techniques2,35–38. In this work, two 
open-circuited stubs and a bended line are coupled, forming FR shown in Fig. 1a. The LC model of the FR is 
presented in Fig. 1b, justifying FR’s filtering mechanism. In this model,  L1,  L2,  C1 and  C2 describe the inductances 
and capacitances of the bended line, respectively.  C3 is the coupling capacitance between the open-circuited 
stubs and the bended line. Also, each open-circuited stub has a circuit model including  L3,  C4 and  C5 as induct-
ance and capacitances, respectively. The initial values of inductors and capacitors were calculated using the 
formulas explained  in2 and then optimized by Advanced Design System (ADS) software as follows:  L1 = 1.521 
nH,  L2 = 1.177 nH,  L3 = 2.256 nH,  C1 = 2 pF,  C2 = 0.295 pF,  C3 = 0.492 pF,  C4 = 0.9 pF and  C5 = 2.8 pF. The Elec-
tro Magnetics (EM) and LC simulations are illustrated in Fig. 1c. It should be mentioned that all components 
designed in this work were implemented using microstrip technology. It is shown that LC and EM model are 
in good agreement. Microstrip lines have different behavior at different frequencies and even more complex LC 
models cannot match exactly.

As observed, the FR produces two transmission poles  (TP1 and  TP2) at lower (3.08 GHz) and upper (6.86 GHz) 
edges of the pass-band that control the pass-band range, demonstrating a wide pass-band. The modal analysis 
is applied to calculate  TP1 and  TP2, parametrically. Even and odd modes of the LC model are demonstrated in 
Fig. 2a and b. The modal input impedances  Zine and  Zino (corresponding to (1) and (2), respectively) are obtained 
from Fig. 2. The input impedances of FR, including  Zine,  Zino, and  Zin are plotted by MATLAB in Fig. 3. It can be 
seen that at the resonant frequencies, the input impedance of the FR is zero, and hence  TP1 and  TP2 are calculated 
by equating (3) and (4) to zero.

Figure 1.  FR: (a) Layout,  A1 = 10.7,  A2 = 11.85,  A3 = 12,  A4 = 0.3,  A5 = 0.1,  A6 = 0.3,  A7 = 0.2,  A8 = 1.55 and 
 A9 = 1.17 (unit: mm), (b) LC model, (c) EM and LC simulations.
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where

The pass-band range can be varied by relocating  TP1 and  TP2. From Fig. 4, the locations of  TP1 and  TP2 can 
be easily shifted by changing  L1 and  L2 elements, respectively. Since the BPF is to operate in 5G band,  TP1 and 
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Figure 2.  LC model of FR: (a) Even mode, (b) Odd mode.

Figure 3.  Input impedance of LC model of FR.
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 TP2 are fixed at 3.08 GHz and 6.86 GHz. While FR demonstrates good band-width flexibility, the in and out of 
band performance does not meet the harsh 5G requirements.

Proposed BPF. In order to significantly improve the quality of the FR response, more resonators need to be 
added to the circuit. This can be done by introducing a pair of SIR, as shown in Fig. 5a. The EM simulation of 
the structure is depicted in Fig. 5b showing a pass-band of 2.5–6 GHz, with an undesired IL (more than 5 dB) 
around 6 GHz. To improve the pass-band and reduce its ripples a rectangular stub is introduced. The layout and 
the EM simulation of the rectangular stub are depicted in Fig. 6a and b respectively. The EM simulation shows 
a good pass-band around 6 GHz. The final BPF is formed by connecting the FR, rectangular stub and SIRs to 
attain high performance and to suppress unwanted harmonics. The layout, fabricated prototype and the EM 
simulation results are shown in Fig. 7a–d. Figure 7a and b, respectively. The physical dimensions of the final 
structure are:  A10 = 3.2,  A11 = 8.15,  A12 = 3.7,  A13 = 3.7,  A14 = 2.7,  A15 = 2.1,  A16 = 0.3,  A17 = 1.7,  A18 = 3.1,  A19 = 2.05, 
 A20 = 4.1,  A21 = 0.2,  A22 = 0.5,  Ag = 0.1 (unit: mm). Figure 7c and d are illustrating wide and Pass-band range EM 
simulation results. These simulation results show that the proposed BPF has a wide stop-band from 6.5 GHz to 
13 GHz with the IL of 20 dB and the pass-band is explained with more details. It is shown, a wide pass-band 
from 3.15 to 6.02 GHz is achieved.

The primary structure (FR) is analyzed via even/odd mode analysis. This modal analysis shows the tunability 
of the FR and its relationship with parameters of the circuit. Then the two resonators are added to the FR to 
improve its pass-band IL. These two structures are then used for matching, tuning purposes and connecting the 
varactor diodes. The variations of the IL versus physical lengths of the proposed BPF are demonstrated in Fig. 8. 
From Fig. 8a, altering the gap (Ag) has a direct impact on the value of the IL, which means increasing Ag would 
increase IL up to 5 dB. Also, decreasing A15, A17 and A19 lengths can enhance the IL value in the pass-band, 
as seen in Fig. 8b. Reducing A14 and A18 would increase IL as depicted in Fig. 8c and d.

The current density distribution is provided to get a better insight into the frequency behavior of the pro-
posed filter. The current distributions were analyzed following the instructions  in39,40 for two critical frequencies 

Figure 4.  FR: (a) Variations of TP1 versus L1, (b) Variations of TP2 versus L2.

Figure 5.  FR combining with SIRs: (a) Layout, (b) EM simulation.
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of 3.2 GHz (cut-off frequency) and 10.13 GHz (transmission zero). As shown in Fig. 9a, at 3.2 GHz the two 
introduce resonators contribute to the current flow on the top transmission line. On the contrary, both stepped-
impedance and the rectangular resonators prevent the current at the transmission zero at10. 13 GHz, transmis-
sion zero, according to Fig. 9b. It can be observed that the strongest current flow occurs at modal peaks. Also, 
there is a poor density at TZ due to suppression of TZ to − 50 dB.

Varactor diodes. To change the band-width of the filter designed in the previous section, three varactor 
diodes are used at the end of the stepped-impedance and the middle stub. Figure 10 shows the schematic of the 
proposed structures by adding the ideal diodes. Here for easy design process only capacitors are presented as the 
ideal diodes model.

Figure 6.  FR combining with rectangular stub: (a) Layout, (b) EM simulation.

Figure 7.  Proposed BPF: (a) Layout (b) prototype, (c) EM simulation result (d) Pass-band range EM 
simulation.
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Two side capacitors (Cs) can lower the upper cut-off frequency but the pass-band distort. Figure 11 illustrates 
the frequency simulation response of the filter for various values of Cs and a constant value of Cm = 0.5 pF.

It is seen that varying the values of Cs changes the upper pass-band of the filter; however, it results in a large 
IL. Also, there is a trade-off between IL and band-width as Cs values changes. It is seen that the IL is large for 
the case of Cm = 0.5 pF and Cs = 0.36. As shown in Fig. 5b, the stepped-impedance structures results in a large 
IL towards the upper edge of the pass-band. Hence, a rectangular structure was added to reduce the IL in the 

Figure 8.  Proposed BPF: (a) Variations of IL versus  Ag, (b) Variations of IL versus  A15,  A17 and  A19, (c) 
Variations of IL versus  A14, (d) Variations of IL versus  A18.

Figure 9.  Current density distribution of proposed BPF: (a) 3.2 GHz, (b) 10.13 GHz.
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filter’s pass-band. In other words, poles of the open stub resonator should be changed synchronously with SIR. 
The middle capacitor changes the resonance frequency of the open stub resonator. Here, Cs changes between a 
range of 0.16 pF to 0.36 pF. Accordingly, Cm values are tuned to achieve low IL and high return loss. Figure 12 
shows the frequency response of the proposed filter with multiple values of the Cs and Cm that are optimized 
and tuned to create a flat pass-band with low IL.

Table 1 shows the values of Cs and its corresponding Cm and band-width or BW. According to the table, when 
the value of the Cs is low the band-width is high and vice versa. Also Cm and Cs have nonlinear relationship.

Figure 10.  The proposed filter structure with PIN diodes.

Figure 11.  Frequency simulation response of the filter for various values of Cs.

Figure 12.  Frequency response simulation of the proposed filter for multiple optimized values of Cs and Cm.
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To quantify the relationship between Cs (pF) and Cm (pF), the curve fitting technique is applied, resulting 
in a linear relationship as illustrated in (5)

There is also a linear relationship between the filter BW (GHz) and Cs (pF) as shown in (6).

Levenberg–Marquardt optimization algorithm was used to extract coefficients of the polynomials in (5) and 
(6).

Results
One prototype of the filter was fabricated and tested on a substrate of Rogers 4003 with a thickness of 31 mil. The 
substrate is low-cost and proper to lower fabrication cost. The circuit layout was implemented on the substrate top 
layer using wet photolithography process. In this process, photoresist material coats the top layer and via a mask 
the layout will be imposed on it. Depending on the type of the photoresist, it will remain soft or get hard when 
ultraviolet light meets the material. The varactor diodes used in the prototype are SMV2205-040LF. The most 
important challenge of fabrication process is the minimum feature. A pass-band with low IL needs a coupling 
with minimum gap. Here fabrication minimum feature is 0.1 mm. The disturbing frequencies are suppressed 
from 4.2 GHz up to 12 GHz under − 15 dB levels. The BPF illustrates the sharp roll-off rate. The electrical size of 
the BPF is only 0.258 λg × 0.255 λg, where λg is the guided wavelength at the central frequency. Figure 13a and b 
show the prototype filter and its tunable response, respectively. As measurement result shows, there is a difference 
between simulation and measurement result. The main reason for such a divergence is that we used only an easy 
model for varactor diodes, only capacitors as shown in Fig. 10, however parasitic elements for lumped diodes are 
not ignorable, although discrete circuits has lower quality than monolithic microstrip circuits.

Table 2 draws a comparison between the proposed filter performance and some of the recently published 
works.

It is shown that the proposed filter has a wide tunable range between 3.15 and 6.15 GHz with compact size 
of 0.066 λg

2. To control the band-width of the filter with proper IL and flat pass-band, a relationship between 
two control parameters which are imposed on the diodes are derived by curve fitting technique. This method is 
straightforward and practical.  In41, there is review for reconfigurable filters for 4/5G systems. According to the 
paper, there are BPFs with IL of 4 dB or even 6 dB of IL According to simulation results and considering ideal 
PIN diodes as simple capacitors, the proposed filter has an IL of up to 2 dB in 5G bands respectively, which is 
practical for 5G applications.

(5)Cm = 2000 ∗ Cs
4
− 1880 ∗ Cs

3
+ 650Cs

2
− 96 ∗ Cs + 2.3

(6)Cs = −0.2254 ∗ BW+ 0.526

Table 1.  Values of Cs and its corresponding Cm and band-width.

Cs (pF) Cm BW (MHz)

0.16 0.5 1600

0.26 0.7 1200

0.36 1.3 600

Figure 13.  (a) Fabricated prototype tunable BPF and (b) Simulation results and measurement results.
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Conclusion
A microstrip varactor tuned BPF with a straightforward design procedure is presented in this work. The main 
contribution of the paper compared to the others is its IL compensating feature feasible via Compensator diode 
or Cm that create a better pass-band. Also, two parameters of control are easily applied and their relationships 
are derived by curve fitting technique. The meandered coupled lines, the open stub and the stepped-impedance 
structures are easily incorporated in the meandered lines. The proposed structure is suitable for low power 
applications. The FR band-width or  TP1 and  TP2 locations can be easily tuned using the equations extracted 
from the equivalent circuits and cover a large band-width extending from 3.15 to 6.05 GHz suitable for 3GPP 
standard channels, including n77, n79 and 5G Wi-Fi. The simulation results verify the filter performance. The 
filter can suppress all harmonic bands from 4.2 up to 12 GHz. The filter is compact and its size is 0.258 λg × 0.255 
λg, where λg is the guided wavelength at the central frequency.

Data availability
Data generated during the current study will be made available from the corresponding author on reasonable 
request.
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