
154 Korean J Radiol 16(1), Jan/Feb 2015 kjronline.org

Rapid Increase in Marrow Fat Content and Decrease in 
Marrow Perfusion in Lumbar Vertebra Following Bilateral 
Oophorectomy: An MR Imaging-Based Prospective 
Longitudinal Study
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Objective: Bilateral oophorectomy leads to reduced bone mineral density (BMD), and reduced BMD is associated with 
increased marrow fat and reduced marrow perfusion. Purpose of this study was to investigate how soon these changes occur 
following surgical oophorectomy.
Materials and Methods: Six patients who underwent hysterectomy and bilateral salpingo-oophorectomy were studied. At 
baseline, mean patient age was 49.5 years (range: 45–54 years). Third lumbar vertebral body BMD measurement using 
quantitative CT, marrow fat fraction (FF) using MR spectroscopy and marrow perfusion using dynamic contrast enhanced 
MRI were conducted immediately prior to surgery and at 3, 9, and 21 months after surgery.
Results: Reduced BMD, increased marrow FF, and reduced marrow perfusion occurred synchronously post-oophorectomy. 
There was a sharp decrease of 12.5 ± 7.2% in BMD (n = 6), a sharp increase of 92.2 ± 46.3% (n = 6) in FF, a sharp decrease 
of 23.6 ± 3.9% in maximum contrast enhancement (n = 5), and of 45.4 ± 7.7% for enhancement slope (n = 5) during the 
initial 3 months post surgery. BMD and marrow perfusion continued to decrease, and marrow FF continued to increase at a 
slower rate during the following 18 months. Friedman test showed a significant trend for these changes (p < 0.05).
Conclusion: Bilateral oophorectomy leads to a rapid decrease in lumbar BMD, an increase in marrow fat content, and a 
decrease in marrow blood perfusion. 
Index terms: Oophorectomy; Bone mineral density; Blood perfusion; Marrow fact content; Magnetic resonance
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INTRODUCTION

Bilateral oophorectomy causes a systemic reduction in 
bone mineral density (BMD) in both, experimental animals 
and female human subjects (1-4). Lumbar spine BMD 
shows only a small age-related decrease before menopause, 
but a large change after menopause (1). Measurement of 
spine BMD by quantitative CT (QCT) in young women with 
estrogen deficiency averaged 20% below the expected value 
for age (5-7). Both men and women experience an increase 
in marrow fat content and a decrease in bone marrow 
perfusion with increased age, as well as with decreasing 
BMD (8-13). Endothelial dysfunction is a potential cause of 
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densitometry software (Image Analysis Inc., Columbia, KY, 
USA) was used to calculate BMD values. MRI was performed 
on a 3-tesla clinical system (Achieva, Philips Healthcare, 
Best, the Netherlands). A surface coil was placed under 
the lumbar spine region as the radiofrequency receiver 
and the body volume coil was used as the radiofrequency 
transmitter. Sagittal images of the lumbar spine were 
obtained to guide positioning of L3 vertebral body. The 
width (w), depth (d), and height (h) of the L3 vertebral 
body were measured on MR images to define a volume of 
interest. A volume of interest with dimensions w/2·d/2·h/2 
cm3 was located central to the vertebral body. After local 
shimming and gradient adjustments, data were acquired 
at a spectral bandwidth of 1000 Hz and with 512 data 
points, and 64 non-water suppressed signals were obtained 
by using a point-resolved MR spectroscopic sequence 
(repetition time [TR]/echo time [TE] = 3000/25) (9, 10). 

MR spectroscopic data were analyzed at an off-line 
computer (Precision 650 Workstation; Dell, Austin, TX, USA). 
Water (4.65 ppm) and lipid (1.3 ppm) peak amplitudes were 
measured to determine vertebral marrow fat fraction (FF), 
which was defined as the relative fat signal amplitude in 
terms of a percentage of total signal amplitude (water and 
fat). It was calculated according to the following equation: 
fat content = (Ifat / [Ifat + Iwat]) x 100, where Ifat and Iwat 
are the peak amplitudes of fat and water, respectively. No 
correction for relaxation losses was applied (9, 10). 

For DCE MRI, after obtaining an axial T1-weighted image 
of L3 vertebra, a dynamic short T1-weighted gradient echo 
sequence single slice MR series was obtained in the axial 
plane using the following parameters: TR = 4.2 msec, TE = 
2.3 msec, flip angle = 12°, slice thickness = 10 mm, matrix 
= 300 x 74, in-plane resolution = 1.0 x 2.0 mm2, number of 
excitation = 1. A bolus of gadoteric acid (Dotarem; Guerbet, 
Roissy, France) of 0.6 mmol/kg was injected at a rate of 
2.5 mL/sec by an MR injection system (Spectris, Medrad, 
Pittsburgh, PA, USA) through a 21-G intravenous catheter 
inserted into an antecubital vein, followed by a 20-mL 
saline flush. Perfusion MRI started after the first 50 image 
acquisitions. 

Dynamic contrast-enhanced MR images were processed on 
a dedicated workstation (Viewforum, Philips Healthcare). 
A region-of-interest was drawn over the cancellous part 
of the L3 vertebra just inside the cortical margins. Signal 
enhancement over time was recorded, and plotted as a time-
signal intensity curve. From the time-signal intensity curve, 
2 MR perfusion indices were analyzed, namely, maximum 

impaired bone perfusion in osteoporosis (14, 15). Surgical 
oopherectomy without ovarian hormone replacement in 
monkeys showed coronary artery vasoconstriction after an 
acetylcholine infusion, whereas their counterparts with 
physiologic replacement of estradiol had vasodilation after 
the acetylcholine infusion. Co-administration of progestin 
attenuated vasoconstriction (16).

The temporal relationship between reduced BMD, reduced 
marrow perfusion, and increased bone marrow fat, and 
how quickly these changes occur after female sex hormone 
depletion remains unknown. MR proton (1H) spectroscopy 
(MRS) is used to quantify marrow fat content, while dynamic 
contrast-enhanced (DCE) MR imaging is used to assess bone 
marrow perfusion (8-13, 17-19). The reproducibility of these 
techniques is sufficiently high to allow for serial evaluation 
of either longitudinal changes of marrow fat content and 
marrow perfusion (19). We undertook this longitudinal 
study to investigate the temporal relationship between 
BMD, marrow fat content and bone marrow perfusion after 
bilateral oophorectomy in women using MR imaging. 

MATERIALS AND METHODS

The study was approved by the Institutional Ethics 
Committee and all subjects provided informed signed 
consent. In total 6 female patients with a mean age of 
49.5 years (range: 45–54 years) were studied. Five patients 
had menorrhagia due to uterine fibroids and uterine 
adenomyosis occurred in the remaining case. These patients 
had no malignancies or hematogical disorders, and had no 
medication that could lead to osteoporosis. The body mass 
index of the patients ranged from 17.9 to 28.3 (mean: 24.7) 
kg/m2. Hysterectomy plus bilateral salpingo-oophorectomy 
was performed in all cases with uneventful surgical 
recovery. BMD measurement and MRS measurement was 
conducted in all 6 patients at baseline and 3 months post 
surgery; while 5 patients completed DCE MRI measurement 
at baseline and 3 months after surgery. At 9 months after 
surgery, 5 patients completed BMD measurement and 
MRS measurement, while 4 patients completed DCE MRI 
measurement. At 21 months post surgery, 4 patients had 
MRS measurement, 3 patients had BMD measurement and 2 
patients had DCE MRI measurement.

The third lumbar (L3) vertebra trabecular BMD was 
measured using a multidetector CT (LightSpeed VCT 
64, General Electric, Milwaukee, WI, USA). A QCT Torso 
Phantom was used as the external reference. QCT 5000 bone 
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enhancement (Emax) and enhancement slope (Eslope). Emax 
was defined as the maximum percentage increase of signal 
intensity from baseline. Eslope was defined as the rate of 
enhancement between 10% and 90% of the maximum signal 
intensity difference between maximum signal intensity (Imax) 
and baseline signal intensity (Ibase), i.e., 

Emax = (                 ) x 100,

Eslope = (                         ) x 100

Where Ibase was defined as the mean signal intensity of 
the first 50 images, Imax was defined as the maximum value 
of the first rapidly rising part of the time-signal intensity 
curve, t10% and t90% were the time points at which signal 
intensity reaches 10% and 90% of the signal intensity 
difference between Ibase and Imax, respectively (9-11). 

The quantitative results were expressed as mean ± 
standard deviation. Non-parametric Friedman test was used 
to test the difference among different examination time 
points. Statistical analysis was performed using SPSS v.18.0 
(IBM Corp., Armonk, NY, USA), and p < 0.05 was considered 
as statistically significant. 

RESULTS

No vertebral fracture or other spinal disorder was present 
in any patient. The longitudinal results of BMD, vertebral 
marrow FF, Emax, and Eslope were shown in Table 1 and Figures 
1–6. There was a sharp decrease in BMD, a sharp increase 
in marrow FF, and a sharp decrease in Emax, and Eslope during 
the initial 3 months followed bilateral oophorectomy. BMD 
and marrow perfusion continued to decrease, and marrow FF 
continued to increase, though at a slower rate during the 
later follow-up period. These changes were concomitant. 
Friedman test showed a statistically significant trend among 
different examination time points (Table 2).

DISCUSSION 

Bone resorption increases more suddenly after an artificial 
rather than natural menopause, because of the acute 
decrease in serum estradiol. While the rate of bone loss in 
the peri- and post-menopausal period can be up to 5% per 
annum, a prospective study showed that lumbar vertebral 
trabecular bone decreased by 15% to 19% during the first 
12 months after bilateral oophorectomy; however, within 
several years the rate of trabecular bone loss slowed to the 
more typical post-menopausal rate of 1% per year (20). 
Prior et al. (21) also showed rapid bone loss of 14% in the 
lumbar spine over one year in oophorectomised women. 

Several studies indicated that marrow perfusion is 
reduced in osteopenic and osteoporotic bone (8-12). The 
current study in human subjects concurs with a previous 
animal-based study that showed a reduction in bone 
perfusion synchronous with a reduction in BMD post-
oophorectomy (22). The reduction in perfusion associated 
with decreased BMD post-oophorectomy is most likely due 
to a combination of reduced erythropoetic marrow and 
endothelial dysfunction (22). An increase in marrow fat 
is essentially a marker of reduced erythropoetic marrow 
(13). Positron emission tomography imaging study has 
indicated that the metabolic activity of erythropoetic 
marrow is up to 6 times greater than that of fatty marrow 
(23). The post-oophorectomy reduced bone perfusion 
may well reflect reduced marrow demand secondary to 
a reduced red cell mass. Bone metabolism is relatively 
low compared to functioning marrow, hence a change in 
bone metabolism rate is unlikely to contribute to changes 
in marrow perfusion (8, 20-23). Vertebral bone marrow 
perfusion significantly decreased in subjects older than 50 
years in a cross-sectional study (24). Particularly, women 
demonstrated a more marked decrease than men older than 
50 years (24). The increase of FF in bone marrow, and the 
associated reduction of red marrow may also be associated 
with ‘senile anemia’ where elderly subjects tend to be 
prone to borderline anemia (25, 26). Two other potential 
etiologies need to be considered for post-oopherectomy 

[Imax - Ibase] x 0.8
Ibase x [t90% - t10%]

Table 1. BMD, Marrow Fat Fraction, Emax and Eslope Changes after Bilateral Oophorectomy

Change between 0–3 Months Change between 3–9 Months Change between 9–21 Months
BMD -12.0 ± 6.9% (n = 6) -4.0 ± 3.6% (n = 5) -2.9 ± 4.9% (n = 3)
Fat fraction 92.2 ± 46.3% (n = 6) 28.8 ± 23.3% (n = 5) 14.1 ± 16.6% (n = 4)
Emax -23.0 ± 3.9% (n = 5) -12.4 ± 5.9% (n = 4) -19.7 ± 2.3% (n = 2)
Eslope -44.9 ± 7.7% (n = 5) -22.3 ± 10.2% (n = 4) -29.4 ± 0.6% (n = 2)

Note.— BMD = bone mineral density

[Imax - Ibase]
Ibase
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marrow changes. The first is a potential estrogen-mediated 
switch in mesenchymal stem cell differentiation. A lack of 
estrogen leads to adipocytic rather than hematopoietic or 
osteoblastic differentiation of mesenchymal stem cells (27). 
A reduced need for hematopoietic marrow with cessation 
of menorrphagia following hysterectomy may have led to 
conversion to a more fatty marrow in our patient cohort. 

The main limitation of the current study was the small 
patient number, and missed examinations in some patients. 
Many patients were unwilling to commit to attending 
multiple times. Technical improvements in quantitative 

imaging, such as non-invasive arterial spin labeling allow 
more patient-friendly studies (28-30). Despite the small 
number of patients, this was the first longitudinal study 
of post-oophorectomy patients with serial BMD, marrow 
fat and marrow perfusion measurements. Despite the small 
patient number, Friedman test confirmed a statistically 
significant trend for the observed changes. An age-related 
conversion of red to yellow bone marrow in the axial 
skeleton in female subjects begins at 40–49 years of age 
(31). Therefore, apart from the initial rapid change of FF 
during the 3 months after oophorectomy, the latter FF 
increase may be compounded by the aging effect (31). The 
biological causes of these changes and their relevance to 

Fig. 1. Lumbar vertebral bone mineral density (BMD) during 
course of study.
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Fig. 2. Typical MR spectra presentation of marrow fat fraction 
increase post oophorectomy. Water peak is at 4.65 ppm and lipid 
peak is at 1.3 ppm.
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Fig. 4. Typical time-intensity enhancement curve at baseline 
(top trace) and 3 months post oophorectomy (bottom trace). 
Time-intensity curve post surgery shows reduced Emax and less steep 
Eslope.
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Fig. 3. Fat fraction (FF) changes during course of study.
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clinical management warrant further studies. 
In conclusion, this study demonstrated a sharp increase 

of marrow FF and a rapid decrease in bone marrow perfusion 
during the initial 3 months post bilateral oophorectomy. 
During the later follow-up period up to 21 months, BMD and 
bone marrow perfusion continued to decrease, and bone 
marrow fat content continued to increase, although at a 
slower rate. 
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