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Abstract
The brain is an extraordinarily complex system that facilitates the optimal integration of information from different regions 
to execute its functions. With the recent advances in technology, researchers can now collect enormous amounts of data from 
the brain using neuroimaging at different scales and from numerous modalities. With that comes the need for sophisticated 
tools for analysis. The field of network neuroscience has been trying to tackle these challenges, and graph theory has been 
one of its essential branches through the investigation of brain networks. Recently, topological data analysis has gained more 
attention as an alternative framework by providing a set of metrics that go beyond pairwise connections and offer improved 
robustness against noise. In this hands-on tutorial, our goal is to provide the computational tools to explore neuroimaging data 
using these frameworks and to facilitate their accessibility, data visualisation, and comprehension for newcomers to the field. 
We will start by giving a concise (and by no means complete) overview of the field to introduce the two frameworks and then 
explain how to compute both well-established and newer metrics on resting-state functional magnetic resonance imaging. 
We use an open-source language (Python) and provide an accompanying publicly available Jupyter Notebook that uses the 
1000 Functional Connectomes Project dataset. Moreover, we would like to highlight one part of our notebook dedicated to 
the realistic visualisation of high order interactions in brain networks. This pipeline provides three-dimensional (3-D) plots 
of pairwise and higher-order interactions projected in a brain atlas, a new feature tailor-made for network neuroscience.
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Introduction

Neuroscience is still a young research field, with its emer-
gence as a formal discipline happening only around 70 years 
ago (Cowan et al. 2000). The field has since mushroomed, 
and much of our current knowledge about the human brain’s 
neurobiology was made possible by the rapid advances in 

technologies to investigate the brain in vivo at high-resolu-
tion and different scales. An example is magnetic resonance 
imaging (MRI), which allows us to measure regional char-
acteristics of the brain’s structure non-invasively and may 
also be used to assess anatomical and functional interactions 
between brain regions (Rosen and Savoy 2012; Sizemore 
et al. 2018). This expansion in the field led to an exponential 
increase in data size and complexity. To analyse and inter-
pret this ‘big data’, researchers had to develop robust theo-
retical frameworks. Complex network science was brought 
to neuroscience and has been increasingly used to study the 
brain’s intricate communication and wiring (Bassett and 
Sporns 2017; Sporns 2018). The resulting field—network 
neuroscience—aims to see the brain through an integrative 
lens by mapping and modelling its elements and interactions 
(Bassett and Sporns 2017; Fornito et al. 2016).

One of the main theoretical frameworks from complex 
network science used to model, estimate, and simulate brain 
networks is graph theory (Gross and Yellen 2003; Bull-
more and Sporns 2009). A graph is comprised of a set of 
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interconnected elements, also known as vertices and edges. 
Vertices (also known as nodes) in a network can, for exam-
ple, be brain areas, while edges (also known as links) are a 
representation of the functional connectivity between pairs 
of vertices (Sporns 2018). Various imaging modalities are 
available to reconstruct the brain network (Hart et al. 2016; 
Bullmore and Sporns 2009). The focus of this hands-on 
paper will be resting-state functional MRI (rsfMRI). As the 
name suggests, rsfMRI indirectly measures brain activity 
while a subject is at rest (i.e., does not perform any task). 
This type of data provides information about spontaneous 
brain functional connectivity (Raichle 2011). Functional 
connectivity is often operationalised by a statistical depend-
ency (usually a Pearson correlation coefficient) between 
signals measured from anatomically separated brain areas 
(Rosen and Savoy 2012; Smith et al. 2013). An in-depth 
explanation of rsfMRI and functional connectivity is out 
of the scope of our manuscript. However, considering the 
focus on this type of data here, we recommend readers who 
are not familiar with this imaging method to read Lee et al. 
(2013); van den Heuvel and Hulshoff Pol (2010); Smith et al. 
(2013); Smitha et al. (2017) for a comprehensive overview.

Several descriptive graph metrics1 (Do Carmo 2016) can 
be calculated to describe the brain network’s characteristic; 
examples include the degree or the total number of connec-
tions of a vertex and the path length (number of intermediate 
edges) between two vertices (Fornito et al. 2016; Hallquist 
and Hillary 2018). These metrics have consistently allowed 
researchers to identify non-random features of brain net-
works. A key example is the ground-breaking discovery that 
the brain (like most other real-world networks) follows a 
‘small-world network’ architecture (Bassett and Bullmore 
2017; Bassett and Sporns 2017; Watts and Strogatz 1998). 
This refers to the phenomenon that, to minimise wiring cost 
while simultaneously maintaining optimal efficiency and 
robustness against perturbation, the brain network obeys a 
balance between the ability to perform local processing (i.e., 
segregation) and combining information streams on a global 
level (i.e., integration).

Network neuroscience has thereby offered a compre-
hensive set of analytical tools to study not only the local 
properties of brain areas but also their significance for the 
entire brain network functioning. Using graph theory, many 
insights have been gathered on the healthy and diseased 
brain neurobiology (Farahani et al. 2019; Hallquist and 
Hillary 2018; Hart et al. 2016; Sporns 2018).

Another perspective on the characteristics of the brain 
network can be provided by (algebraic) topological data 
analysis (TDA), by analysing the interactions between a set 
of vertices beyond the ‘simple’ pairwise connections (i.e., 
higher-order interactions). With TDA, one can identify a net-
work’s ‘shape’ and its invariant properties [i.e., coordinate 
and deformation invariances (Zomorodian 2005; Offroy and 
Duponchel 2016)]. Thus, as we will illustrate along with the 
manuscript, TDA often provides more robustness against 
noise than graph theoretical analysis (Blevins and Bassett 
2020; Blevins et al. 2021), which can be a significant issue 
in imaging data (Sizemore et al. 2019; Liu 2016; Greve et al. 
2013). Although TDA has only recently been adopted in 
network neuroscience (Curto and Itskov 2008; Singh et al. 
2008), it has already shown exciting results on rsfMRI 
(Expert et  al. 2019; Curto 2017). For example, group-
level differences in network topology have been identified 
between healthy subjects that ingested psilocybin (psyche-
delic substance) and the placebo group (Petri et al. 2014) and 
between attention-deficit/hyperactivity disorder children and 
typically developing controls (Gracia-Tabuenca et al. 2020). 
A limitation of this framework is that the complexity and 
level of mathematical abstraction necessary to apply TDA 
and interpret the results might keep clinical neuroscientists 
without prior mathematical training from using it. Moreover, 
the high-order interaction structure that emerges from TDA 
analysis is often challenging to visualise realistically and 
understandably. Despite technical constraints, TDA allows 
us to deal with high order and large combinatorial coding 
capacity properly.

Therefore, we would like to facilitate the use of network 
neuroscience and its constituents graph theory and TDA 
by the general neuroscientific community by providing a 
step-by-step tutorial on how to compute different metrics 
commonly used to study brain networks and realistic high-
order network plots. We offer a theoretical and experimen-
tal background of these metrics and include code blocks in 
each section to explain how to compute the different metrics. 
We also list several additional resources (Tables 1 and 2) of 
personal preference (and by no means complete), includ-
ing a Jupyter Notebook that we created to accompany this 
hands-on tutorial publicly available on GitHub and Zenodo 
(Centeno and Santos 2021) (see Table 1, under the Jupyter 
Notebooks section—Notebook for network and topological 
analysis in neuroscience).

Our work differs from previous literature (Hallquist 
and Hillary 2018; Otter et al. 2017) since we describe the 
concepts central to graph theory and TDA and provide an 
easy-to-grasp step-by-step tutorial on how to compute these 
metrics using an easily accessible, open-source computer 
language. Furthermore, we offer new 3-D visualisations of 
simplicial complexes and TDA metrics in the brain that may 
facilitate the application and interpretation of these tools. 

1  Notice that the notion of metric in mathematics defines distance 
between two points in a set (Do Carmo 2016), which is distinct from 
what we are using in this work. We denote as metric any quantity that 
can be computed, i.e., “measured”, in a brain network or simplicial 
complex.
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Finally, we would like to stress that even though this tutorial 
focuses on rsfMRI, the main concepts and tools discussed in 
this paper can be extrapolated to other imaging modalities, 
biological or complex networks.

Since graph theory has been extensively translated for 
neuroscientists elsewhere, we refer the reader to the book 
in Fornito et al. (2016). This tutorial mainly focused on the 

topics covered in chapters 3, 4, 5, and the particular sections 
of chapters 6, 7, 8, and 9 about assortativity, shortest paths 
and the characteristic path length, the clustering coefficient, 
and modularity. In the second part of the tutorial, we explore 
hands-on TDA metrics, providing a summary of both theo-
retical and neuroscientific aspects with the calculations used 
in our work. We believe that our tutorial, which is far from 

Table 1   List of computational resources

Table content was organised in alphabetic order

Name Brief explanation Source

Jupyter Notebooks
 AML-days-TDA-tutorial A set of notebooks on the theory and applications of 

TDA pipelines
https://​github.​com/​lordg​rilo/​AML-​days-​TDA-​tutor​ial

 DyNeuSR Notebook on how to use Mapper—an algorithm for 
high dimensional dataset exploration

https://​github.​com/​brain​dynam​icslab/​dyneu​sr-​noteb​
ooks/

 Notebook for network and 
topological analysis in neuro-
science

Notebook on how to compute both classical and newer 
metrics of network and topological neuroscience

https://​github.​com/​multi​netlab-​amste​rdam/​netwo​rk_​
TDA_​tutor​ial

 NI-edu A collection of neuroimaging-related course materials 
developed at the University of Amsterdam covering 
fMRI basic concepts and methodology

https://​github.​com/​lukas​snoek/​NI-​edu

 Tutorials for Topological Data 
Analysis with the Gudhi 
Library

A collection of notebooks for the practice TDA with 
the Python Gudhi library

https://​github.​com/​GUDHI/​TDA-​tutor​ial/

MATLAB toolboxes and scripts
 CliqueTop A collection of MATLAB scripts for TDA https://​github.​com/​nebne​uron/​clique-​top
 The brain connectivity toolbox MATLAB toolbox for brain network analysis https://​sites.​google.​com/​site/​bctnet/

Python packages and scripts
 Data visualisation
  DyNeuSR “DyNeuSR is a Python visualisation library for topo-

logical representations of neuroimaging data.”
https://​brain​dynam​icslab.​github.​io/​dyneu​sr/

  Nxviz “nxviz is a graph visualisation package for NetworkX.” https://​nxviz.​readt​hedocs.​io/
  Plotly “Plotly’s Python graphing library makes interactive, 

publication-quality graphs.”
https://​plot.​ly/​python/

 Graph theory
  Bctpy “A direct translation to Python of the MATLAB brain 

connectivity toolbox.”
https://​github.​com/​aestr​ivex/​bctpy

  NetworkX “A package for the creation, manipulation, and study 
of the structure, dynamics, and functions of complex 
networks.”

https://​netwo​rkx.​github.​io/

 TDA
  Dionysus “A library for computing persistent homology. It is 

written in C +  + , with Python bindings.”
https://​mrzv.​org/​softw​are/​diony​sus2/

  Giotto “A collection of algorithms that harbours theoretical 
and technological advances spanning several key 
disciplines, including TDA.”

https://​giotto.​ai/

  Gudhi “The library offers state-of-the-art data structures and 
algorithms to construct simplicial complexes and 
compute persistent homology.”

http://​gudhi.​gforge.​inria.​fr/

  Scikit-TDA “Topological Data Analysis Python libraries intended 
for non-topologists”.

https://​scikit-​tda.​org/

  Topology ToolKit “The Topology ToolKit (TTK) is an open-source 
library and software collection for topological data 
analysis and visualisation. Written in C +  + but 
comes with Python bindings”.

https://​topol​ogy-​tool-​kit.​github.​io/​index.​html

https://github.com/lordgrilo/AML-days-TDA-tutorial
https://github.com/braindynamicslab/dyneusr-notebooks/
https://github.com/braindynamicslab/dyneusr-notebooks/
https://github.com/multinetlab-amsterdam/network_TDA_tutorial
https://github.com/multinetlab-amsterdam/network_TDA_tutorial
https://github.com/lukassnoek/NI-edu
https://github.com/GUDHI/TDA-tutorial/
https://github.com/nebneuron/clique-top
https://sites.google.com/site/bctnet/
https://braindynamicslab.github.io/dyneusr/
https://nxviz.readthedocs.io/
https://plot.ly/python/
https://github.com/aestrivex/bctpy
https://networkx.github.io/
https://mrzv.org/software/dionysus2/
https://giotto.ai/
http://gudhi.gforge.inria.fr/
https://scikit-tda.org/
https://topology-tool-kit.github.io/index.html
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being exhaustive, can make this emerging branch of network 
and topological neuroscience accessible to the reader. The 
codes we provide only require the knowlege of the functional 
connectivity matrix. For our realistic 3-D visualisation of 
simplicial complexes, we only need the coordinates of the 
nodes of a given brain atlas. Therefore, our scripts can be 
adapted to different databases, image modalities, and brain 
atlas. A short glossary with the key terms to understand this 
manuscript can be found in Table 3.

Hands‑on tutorial

General requirements

The following Python 3 packages are necessary to perform 
the computations presented below. The accompanying Jupy-
ter Notebook can be found on GitHub (Table 1) or Zenodo 
(Centeno and Santos 2021).

Table 2   List of reading resources

Table content was organised in numerical order

Name Source

Key articles and books
 Cliques and cavities in the human connectome Sizemore et al. (2018)
 Network neuroscience Bassett and Sporns (2017)
 Fundamentals of brain network analysis (the primary reference of our hands-on tutorial) Fornito et al. (2016)
 Graph theory approaches to functional network organisation in brain disorders: a critique for a brave new 

small-world
Hallquist and Hillary (2018)

 Topology for computing Zomorodian (2005)
 The importance of the whole: Topological data analysis for the network neuroscientist Sizemore et al. (2019)
 Editorial: Topological Neuroscience Expert et al. (2019)
 What can topology tell us about the neural code? Curto (2017)
 Homological scaffolds of brain functional networks Petri et al. (2014)
 Two’s company, three (or more) is a simplex Giusti et al. (2016)
 A roadmap for the computation of persistent homology Otter et al. (2017)
 Networks beyond pairwise interactions: structure and dynamics Battiston et al. (2020)
 Clique topology reveals intrinsic geometric structure in neural correlations Giusti et al. (2015)
 Computational topology: an introduction Edelsbrunner and Harer (2010)

Table 3   Glossary with key terms

Table content was organised in alphabetic order

Term Brief explanation

Clique complex A simplicial complex constituted of all cliques of a network
Clique participation rank The number of k-cliques in which a vertex i participates for density d
Connectivity matrix A square N x N matrix is used to represent connectivity between vertices
Face A subset of a k-simplex. For example, if the k-simplex is a 2-simplex (triangle), all edges and vertices composing this 

simplex are also its faces
Filtration A nested sequence of simplicial complexes
Functional magnetic 

resonance imaging 
(fMRI)

The imaging technique used to measure brain activity by detecting brain blood flow changes, i.e., blood-oxygen-level-
dependent (BOLD) signal

k-clique A subset of k vertices in an undirected graph in which all vertices are connected to each other
k-simplex Geometrically, it is the generalisation of the region delimited by a tetrahedron to an arbitrary dimension k, which 

can be done in many ways (Zomorodian 2005). In this work, a k-simplex is a complete graph of k + 1 vertices. For 
example, 0-simplex is a point (or vertex), 1-simplex is a line segment (or edge), 2-simplex is a triangle, and so on

Simplicial complex A simplicial complex K is a finite set of k-simplexes (e.g., vertices, edges, triangles, tetrahedrons, and their n-dimen-
sional counterparts). The formal definition states that if K contains a k-simplex, then K also contains all faces of this 
k-simplex. Moreover, if two simplexes in K intersect, then this intersection is a face of each of them
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Code example

Fig. 1   Types of networks. a A binary directed graph. b Binary, undi-
rected graph. In binary graphs, the presence of a connection is signi-
fied by a 1 or 0 otherwise. c A representation of graph f as a network 
of brain areas. d A weighted, directed graph. f A weighted, undi-

rected graph. In a weighted graph, the absolute strength of the con-
nections is often represented by a number w , where  0 ≤ w ≤ 1. g A 
connectivity matrix of c and f. Source: Part of the image was obtained 
from smart.servier.com

The basis: the adjacency matrix

The basic unit on which graph theory and TDA are applied 
in the context of rsfMRI in our work is the adjacency or 
functional connectivity matrix (Fig. 1g), which presents the 
connections between all vertices in the network (Bassett and 
Sporns 2017; Fornito et al. 2016; Sporns 2018; Sporns et al. 
2000). Typically, rsfMRI matrices are symmetric and do not 
specify the direction of connectivity (i.e., activity in area A 
drives activity in area B), thus yielding undirected networks 
(Fig. 1b and f). In contrast, non-symmetric matrixes would 
produce directed networks.

Before calculating any metrics on such matrices, several 
crucial factors must be considered when dealing with con-
nectivity data (Jalili 2016; Hallquist and Hillary 2018). One 
critical decision is whether one wants to keep the information 
about edge weights. When the edges’ weights (e.g., correlation 
values in rsfMRI connectivity) are maintained, the network 
will be weighted (Fig. 1d and f). Another approach is to use an 
arbitrary threshold or density, e.g., only keep and binarise the 
20% strongest connections (Fig. 1a and b). There is currently 
no gold standard for the weighting issue in rsfMRI matrices 
(Fornito et al. 2016; Jalili 2016) and may also be dependent 
on the dataset or proposed analysis (van den Heuvel et al. 
2017). Brain network data are often analysed using a specific 
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thresholding procedure (or criteria). These thresholded brain 
networks often display ubiquitous signatures of the brain as 
a complex system, such as skewed degree distributions, clus-
tering, Giant components, small wordness, and short average 
path lengths, to name a few (Eguíluz et al. 2005). However, 
some of these properties, considered signatures of complex 
networks, are observed, even when one threshold normally 
distributed data (Cantwell et al. (2020). Yet, some brain net-
work properties are not robust towards changes in the thresh-
old (Garrison et al. 2015). Those results raised the awareness 
for using methods of network analysis that are independent 
of thresholding, such as minimum spanning trees (van Del-
len et al. 2018; Stam et al. 2014) or topological data analysis 
(Phinyomark et al. 2017), as we will discuss below. Please see 
Chapter 11 in Fornito et al. (2016) and van Wijk et al. (2010); 
Simpson et al. (2013) for a more in-depth discussion on the 
issue of matrix thresholding and statistical connectomics.

Another relevant discussion about rsfMRI matrices is the 
interpretation of negative weights or anticorrelations. The 
debate of what such negative correlations mean in neuro-
physiology is still going on (Zhan et al. 2017). Studies have 
suggested that they could be considered artefacts introduced 
by global signal regression or pre-processing methods or 
simply by large phase differences in synchronised signals 

between brain areas (Chen et al. 2011; Murphy et al. 2009). 
Nevertheless, a few authors have suggested that anticorrela-
tions might carry biological meaning underlying long-range 
synchronisation and that in diseased states, alterations in 
these negative correlations could indicate network reorgani-
sation (Chen et al. 2011; Zhan et al. 2017). Negative weights 
can be absolutised to keep the potential biological informa-
tion they may carry. If one decides to discard them, it is 
crucial to remember that some physiological information 
might be lost (Chen et al. 2011; Zhan et al. 2017; Fornito 
et al. 2016; Hallquist and Hillary 2018).

In this tutorial, we will use an undirected, absolutised 
(positively) weighted matrix. In our Jupyter notebook tuto-
rial on GitHub (Centeno and Santos 2021), we provide an 
example matrix which is an average of all connectivity 
matrices available in our repository.

To follow the steps below, we assume that rsfMRI was 
already pre-processed and converted to a matrix according 
to some atlas. Steps and explanations on data pre-processing 
and atlas choices are beyond the scope of this paper; please 
see Strother (2006) or the NI-edu course materials (Table 1) 
for further information. Details on our Jupyter Notebook’s 
dataset pre-processing can be found in Brown et al. (2012); 
Biswal et al. (2010).

Code example

When working with fMRI brain network data, it is helpful 
to generate some plots (e.g., the heatmaps for matrix visu-
alisation and distribution plots of edge weights) to facilitate 
data exploration, comprehension, and flag potential artefacts. 

In brain networks, we expect primarily weak edges and a 
smaller proportion of strong ones. When plotted as a prob-
ability density of log10, we expect the weight distribution to 
have a Gaussian-like form Fornito et al. (2016).

Code example
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Graph theory

Here, we will cover the most commonly used graph met-
rics in network neuroscience (see Fig.  2), also in line 
with Fornito et al. (2016). First, we need to create a graph 
object using the package NetworkX (Hagberg et al. 2008) 
and remove the self-loops (i.e., the connectivity matrix’s 
diagonal).

Degree

Vertex degree quantifies the total number of vertex connec-
tions in an undirected binary network (Fornito et al. 2016). 
In an undirected weighted network like our rsfMRI matrix, 
the vertex degree is analogous to the vertex strength (i.e., 
the sum of all edges of a vertex) and equivalent to its degree 
centrality. This metric is one of the most fundamental met-
rics in network analysis and is a useful summary of how 
densely individual vertices are connected. It can be com-
puted as the sum of edge weights of the neighbours of vertex 
i as follows:

Fig. 2   Graph theoretical metrics. a A representation of a graph indi-
cating centralities. Highest degree centrality indicates the vertex 
with the most connections. Highest betweenness centrality refers to 
the vertex with most short paths passing through it. Highest close-
ness centrality denotes the vertex that needs the least edges to reach 
all the other nodes. The highest eigenvector centrality is achieved by 
the vertex best connected to the rest of the network, considering the 

number of neighbours and how well connected they are. b Represen-
tation of modularity and clustering coefficient. The latter indicates the 
tendency for any two neighbours of a vertex to be directly connected 
to each other. c The shortest path between vertices a and b. d The 
minimum spanning tree is a subset of a graph’s edges, which does not 
contain cycles, and that has the lowest sum of distances

Code example
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where wij is the weight of the edge linking vertices i and j.

CD = si =
∑

j≠i

wij,

Code example

By removing the argument weight from the function, one can 
compute the degree of binarised networks where all edges are 
either 0 or 1 (useful if working with a sparse/not fully con-
nected matrix). This change will give the vertex degree by 
calculating the number of edges adjacent to the vertex. One 
can also remove the specified vertex to estimate the degree/
strength of all vertices. The degree/strength distribution 
allows us to scope the general network organisation in a single 
shot by displaying whether the network contains a few highly 
connected vertices, i.e., hubs (Hallquist and Hillary 2018).

must be converted to ‘distance’ by computing the inverse 
of the original weight ( 1 − weight or 1

weight
 ); a higher cor-

relation value represents a shorter distance (Fornito et al. 
2016). This conversion is essential for all the following 
path-based metrics.

b)	 Average path length (or characteristic path length) is the 
average shortest path length for all possible pairs of ver-
tices in a network. It is a global measure of information 
transport efficiency and integration in a network and is 
widely known due to the famous Watts–Strogatz model 
(Watts and Strogatz 1998). It can be computed as follows:

where V is a set of vertices, d(i, j) is the shortest path 
between vertices i and j , and N is the number of vertices 
in the network.

L =
∑

i,j∈V

d(i, j)

N(N − 1)
,

Path length

a)	 The shortest path is the path with the least number of 
edges (or least total weight) between two vertices in a 
network. In a weighted graph, the shortest path is cal-
culated by the minimum sum of the weights of edges 
between two vertices (Fornito et al. 2016). It is seen as a 
measure for understanding the efficiency of information 
diffusion in a network. Several algorithms can calculate 
path lengths, but Dijkstra’s algorithm (Dijkstra 1959) is 
one of the oldest and most well-known. An important 
detail is that this algorithm is only applicable to graphs 
with non-negative weights (Dijkstra 1959).

	   A pivotal point to keep in mind is that in the case of 
correlation matrices, such as rsfMRI data, the weights 

Code example

The clustering coefficient

The clustering coefficient assesses the tendency for any two 
neighbours of a vertex to be directly connected (or more 
strongly connected in the weighted case) to each other and 
can also be termed cliquishness (Hallquist and Hillary 2018; 
Watts and Strogatz 1998). This metric is also used to com-
pute the small-worldness coefficient (ratio between the char-
acteristic path length and the clustering coefficient relative to 
random networks) (Watts and Strogatz 1998). The formula 
can be defined as follows:

Cl =
2

si
(

si − 1
)

∑

j,h

(

ŵijŵjhŵhi

)
1

3 ,
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where si is the degree/strength of vertexi , and the edge 
weights are normalised by the maximum weight in the net-
work, such that ŵij =

wij

max(w)
.

Code example

Centralities

a.	 Eigenvector (degree-based) centrality measures a ver-
tex’s importance in a network while also considering its 
neighbours’ influence (Golbeck 2013). Thus, it consid-
ers both the quantity and quality of a vertex’s connec-
tions. The eigenvector centrality can be computed from 
the spectra of the adjacency matrix:

	   where A is the adjacency matrix, and x is an eigen-
vector of A with eigenvalue λ. We can now define the 
eigenvector centrality of a vertex i as the following sum 
over its neighbours:

	   For weighted networks, certain conditions apply. 
According to the Perron–Frobenius theorem, the adja-
cency matrix’s largest eigenvalue, denoted here by �1 , 
must be unique and positive, guaranteed only for matri-
ces with positive values (Fornito et al. 2016; Newman 
2008).

b.	 Closeness (shortest path-based) centrality measures how 
closely or’ directly’ connected a vertex is to the rest of 
the network. If the vertex is the closest to every other 
element in the network, it has the potential to spread 
information fast and efficiently (Fornito et al. 2016). 

Ax = λx,

CE(i) =
1

λ1

N
∑

j=1

Aijxj.

Formally, the closeness centrality of a vertex i is the 
inverse of its average shortest path length (N.B. weights 
need to be converted to distances) to all N − 1 other 
vertices:

	   where d(i , j ) is the shortest-path distance between i 
and j , and N is the number of vertices in the graph. In 
weighted networks, closeness centrality can be estimated 
by considering the summed weight of the shortest paths 
according to Dijkstra’s algorithm (Dijkstra 1959).

c.	 Betweenness (shortest path-based) centrality is the pro-
portion of all vertex-pairs shortest paths in a network 
that pass through a particular vertex (Newman 2008; 
Freeman 1977). It is used to understand the influence of 
vertices in the overall flow of information in a network. 
To compute the betweenness centrality of a vertex i , one 
has to calculate the proportion of shortest paths between 
two vertices, e.g., i, j , that pass through vertex h:

where V  is a set of vertices, �ij is the total number of shortest 
paths between i and j , and �ij(h) is the number of those paths 
that pass through h . For weighted graphs, edges must be 
greater than zero, and the metric considers the sum of the 
weights (Fornito et al. 2016). Again, it is necessary to use 
the distance when using this shortest path-based metric. This 
formula can also be normalised by putting 2

(N−1)(N−1)
 in front 

of the sum (N being the number of vertices).

Cc(i) =
N − 1

∑N−1

i=1
d(i, j)

,

CB(h) =
∑

i≠h≠j∈V

�ij(h)

�ij
,

Code example
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The minimum spanning tree

The minimum spanning tree is the backbone of a network, 
i.e., the minimum set of edges necessary to ensure that paths 
exist between all vertices without forming cycles (Stam et al. 
2014; van Dellen et al. 2018). A few main algorithms are 
used to build the spanning tree, with Kruskal’s algorithm 
being implemented in NetworkX (Kruskal 1956). Briefly, 
this algorithm ranks the distances between vertices, adds 
the ones with the smallest distance first, and at each added 
edge, it checks if cycles are formed or not. The algorithm 
will not keep an edge that results in the formation of a cycle.

Fig. 3   Topological data analysis. a Illustration of simplexes. b Repre-
sentation of simplexes/cliques of different order being formed in the 
brain across the filtration process. c Barcode respective to panel b, 
representing the filtration across distances (i.e., the inverse of weights 
in a correlation matrix). Line A represents cycle A in B. �0, �1, and 

�3 indicate the homology groups. ( �0 = connected components, �1 = 
one-dimensional holes, �2 = 2-dimensional holes). d Circular projec-
tion of how the brain would be connected. e Persistence diagram (or 
Birth/Death plot) obtained from real rsfMRI brain data. In this plot, it 
is also possible to identify a phase transition between �1 and �2

Code example

Modularity

Modularity states how divisible a network is into different 
modules (or communities). The identification of the modules 
is performed by the community detection algorithm (Fornito 
et al. 2016; Meunier et al. 2010; Bullmore and Sporns 2009). 
Here, we will use the Louvain algorithm (Blondel et al. 
2008) as recommended by Fornito et al. (2016). It works in 
a two-step iterative manner, first looking for communities by 
optimising modularity locally and then concatenating ver-
tices that belong to the same module (Blondel et al. 2008).
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Fig. 4   Simplicial complex. An example of a simplicial complex com-
posed of eight vertices (0-simplexes), 11 edges (1-simplexes), five tri-
angles (2-simplexes), one tetrahedron (3-simplexes)

Fig. 5   Simplex 3-D visualisation. Here we visualise the rising 
number of 3-cliques (triangles) in a functional brain network as 
we increase the edge density d (0.01, 0.015, 0.02, and 0.025, from 

a to d). For higher densities, we have a more significant number of 
3-cliques compared to smaller densities. The vertex colour indicates 
the clique participation rank

Topological data analysis

In this section, we will use TDA on our rsfMRI adjacency 
matrices. TDA can identify different network character-
istics by addressing the high-order structure of a network 
beyond pairwise connections as used in graph theory (Carls-
son 2020; Battiston et al. 2020; Kartun-Giles and Bianconi 
2019). TDA generally uses topology and geometry methods 
to study the shape of the data (Carlsson 2009). A core feature 
of TDA is the ability to provide robust results compared with 
alternative methods, even if the data are noisy (Blevins and 
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Fig. 6   Euler characteristic in convex polyhedra. Note that there are no 
cavities in their shapes for convex polyhedra, and the Euler character-
istic is always equal to two

Fig. 7   The Euler characteristic in polyhedra with cavities. The Euler 
characteristic of a cube with a cavity is equal to zero, just as the torus. 
This value drops to minus two if we have two cavities in the cube, just 
like a bitorus

Bassett 2020; Expert et al. 2019). In this context, it is essen-
tial to frame the difference between noise and systematic 
error for applications of TDA properly. Noise is caused by 
factors that affect the measurement of the variable of inter-
est entirely at random. Systematic errors, however, are not 
determined exclusively by chance. They are introduced by 
a factor that systematically influences the variable of inter-
est measurement (e.g. by an inaccuracy involving either the 
observation or measurement process). In rsfMRI (and other 
brain-related measures), both types of noise can be present.

One of the benefits of using TDA in network neurosci-
ence is the possibility of finding global properties of a net-
work that are preserved regardless of the way we represent 
the network (Petri et al. 2014), as we will illustrate below. 
Those properties are the so-called topological invariants.

We will cover a few fundamental TDA concepts: filtra-
tion, simplicial complexes, Euler characteristic, phase transi-
tions, Betti numbers, curvature, and persistent homology. A 
summary can be found in Fig. 3.

The basis: the adjacency matrix and filtration

As indicated in the earlier section on graph theory, there 
is no consensus on the necessity or level of thresholding 
performed on rsfMRI-based adjacency matrices. However, 
TDA overcomes this problem by investigating functional 
connectivity over all possible thresholds in a network. This 
process of investigating network properties looking for all 
possible thresholds instead of choosing a fixed one is called 
filtration (Fig. 3b and Supplementary Material 1). It consists 
of changing the threshold, e.g., the density d of the network, 
from 0 ≤ d ≤ 1 . This yields a nested sequence of networks, 
in which increasing d leads to a more densely connected 
network. Notice that the notion of filtration is not only used 
in high order interactions but has also been applied in pair 
wise, graph-theoretical work (Wang et al. 2018; Gracia-
Tabuenca et al. 2020).
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Fig. 8   Betti numbers and examples of each k-dimensional hole. �0 is 
the number of connected components or zero-dimensional holes. �1 
is the number of one-dimensional holes (loops). �2 is the number of 
two-dimensional holes (voids). �3 is the number of 3-D holes. For �1 , 
�2 , �3 only the left figure of each pair represents the k-dimensional 
hole. In the right figure, a connection is added, and so the k-hole is 

lost: the right figure of each pair no longer represent a � hole. For �0 
the number of connected components is the number of separate clus-
ters we have in the figure; therefore, we should consider the figure as 
a whole (in the case represented here, we have four connected com-
ponents)

Simplicial complexes

In TDA, we consider that the network as a multidimensional 
structure called the simplicial complex. Such a network is 
not only made up of the set of vertices (0-simplex) and edges 
(1-simplex) but also of triangles (2-simplex), tetrahedrons 
(3-simplex), and higher k-dimensional structures (Fig. 3a). 
In short, a k-simplex is an object in k-dimensions and, in our 
work, is formed by a subset of k+1 vertices of the network 
(Fig. 4).

We can encode a network into a simplicial complex in 
several ways (Lambiotte et  al. 2019; Edelsbrunner and 
Harer 2010; Maletić et al. 2008). However, here, we will 
focus on building a simplicial complex only from the brain 
network’s cliques, i.e., we will create the so-called clique 
complex of a brain network. In a network, a k-clique is a 
subset of the network with k all-to-all connected nodes. 
0-clique corresponds to the empty set, 1-cliques correspond 
to nodes, 2-cliques to links, 3-cliques to triangles, and so on. 

In the clique complex, each k + 1 clique is associated with a 
k-simplex. This choice for creating simplexes from cliques 
has the advantage of using pairwise signal processing to 
create a simplicial complex from brain networks, such as in 
Giusti et al. (2015). It is essential to mention that other strat-
egies to build simplicial complexes beyond pairwise signal 
processing are still under development, such as applications 
using multivariate information theory together with tools 
from algebraic topology (Baudot 2019a, b; Barbarossa and 
Sardellitti 2020; Baudot et al. 2019; Baudot and Bennequin 
2015; Rosas et al. 2019; Gatica et al. 2020).

Our Jupyter Notebook provides the code to visualise the 
clique complex developed in (Santos et al. 2019). To create 
the 3-D plots, we used mesh algorithms available in Plotly 
(Inc. 2015), together with a mesh surface of the entire brain 
available in Fan et al. (2016); Bakker et al. (2015). In Fig. 5, 
we display an example of 3-D visualisation of 3-cliques in 
the 1000 Functional Connectomes data. When we increase 
the filtration density d, we obtain more connections, and 
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more 3-cliques arise. In Fig. 5, only 3-cliques are shown; 
however, the same can be done for higher-dimensional 
cliques like a tetrahedron, et cetera. In Supplementary Mate-
rial 1, we offer filtration in a functional brain network up to 
4-cliques. In the Jupyter Notebook, we can also visualise the 
clique complex at arbitrary sizes, up to computational limits. 
The computation is not shown here as code blocks due to its 
size and complexity (see the Jupyter Notebook).

The Euler characteristic

The Euler characteristic is one example of topological invar-
iants: the network properties that do not depend on a specific 
graph representation. We first introduce the Euler character-
istic for polyhedra, as illustrated in Fig. 6. Later, we translate 
this concept to brain networks. In 3-D convex polyhedra 
(for example, a cube, a tetrahedron, et cetera, see Fig 6), 
the Euler characteristic is defined as the numbers of verti-
ces minus edges plus faces of the considered polyhedra. For 

convex polyhedra without cavities (holes in its shape), which 
are isomorphous to the sphere, the Euler characteristic is 
always two, as you can see in Fig. 6. If we take the cube and 
make a cavity, the Euler drops to zero as it is in the torus. If 
we make two cavities in a polyhedral (as in the bitorus), the 
Euler drops to minus two (Fig. 7). We can understand that 
the Euler characteristic tells us something about a polyhe-
dron’s topology and its analogous surface. In other words, if 
we have a surface and we make a discrete representation of 
it (e.g., a surface triangulation), its Euler characteristic will 
always be the same, regardless of the way we do it.

We can now generalise the definition of Euler character-
istic to simplicial complex in any dimension. Thus, the high 
dimensional version of the Euler characteristic is expressed 
by the alternate sum of the numbers Clk(d) of the k-cliques 
(which are (k-1)-simplexes) present in the network’s sim-
plicial complex for a given value of the density threshold d.

χ(d) = Cl1 − Cl2 +…Cln =
∑n

k=1
(−1)k+1Cl

k
(d).

Fig. 9   Betti number and Euler characteristic approximation. We cre-
ate a random network for each probability of connection between ver-
tices, and we compute the � and the absolute value of the Euler char-
acteristic. We repeated the experiment 10 times and calculated the 
mean curves with errors. This plot only shows the mean (with errors) 
of the ten experiments for the Euler and Betti curves. We notice that 
the absolute value of the Euler characteristic is a good approximation 
of �

Code example

Note that the clique algorithm, the primary function used 
in our code (euler—Supplementary Material 2), is an NP-
complete problem, which is computationally expensive for 
large and/or dense networks, regardless of how you imple-
ment it (Pardalos and Xue 1994). An alternative is to fix an 
upper bound for the cliques’ size (Pardalos and Xue 1994; 
Gillis 2018). Therefore, the second function (euler_k—Sup-
plementary Material 2) allows the user to constrain the max-
imum size of the cliques we are looking for. This means that 
we are fixing the dimension k of our simplicial complex and 
ignoring simplexes of dimension greater than k.

Topological phase transitions

Phase transitions can provide insight into the proprieties 
of a ‘material’. For example, water is known for becoming 
steam at 100 °C. Similarly, by using TDA when comparing 
a patient and healthy population, one could identify these 
populations’ properties by studying each group’s topological 
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phase transition profile. This strategy has already been 
applied for investigating group differences between con-
trols and glioma brain networks (Santos et al. 2019) and 
typically developing children and children with attention-
deficit/hyperactivity disorder (Gracia-Tabuenca et al. 2020). 
In other fields, topological phase transitions were also inves-
tigated in the S. cerevisiae and C. elegans protein interaction 
networks, reionisation processes, and evolving coauthorship 
networks (Amorim et al. 2019; Giri and Mellema 2021; Lee 
et al. 2021).

To investigate topological phase transitions in brain net-
works, we first need to visualise the Euler entropy (Fig 3 in 
Santos et al. 2017):

Sχ = ln|χ |.when χ = 0 for a given value of the density of 
the network, the Euler entropy is singular, Sχ → ∞ . Under 
specific hypotheses, a topological phase transition in a 
complex network occurs when the Euler characteristic is 
null (Santos et al. 2019). This statement finds support in 
the behaviour of Sχ at the thermodynamic phase transitions 
across various physical systems (Santos et al. 2017). In net-
work theory, the Giant component transition is associated 
with network changes, from smaller connected clusters to 
the emergence of Giant ones (Erdős 1959). Theoretically, 
topological phase transitions are related to the extension of 

the Giant component transition for simplicial complexes 
(Linial and Peled 2016). Based on numerical simulations, 
it was also conjectured that the longest cycle is born in the 
phase transition vicinity (Bobrowski and Skraba 2020; Spei-
del et al. 2018). Phase transitions can also be visualised in 
Birth/Death plots (Fig. 3e) which will be discussed later in 
the Persistent Homology section.

Betti numbers

Another set of topological invariants are the Betti numbers 
( � ). Given that a simplicial complex is a high-dimensional 
structure, �k counts the number of k-dimensional holes in 
the simplicial complex. These are topological invariants 
that correspond, for each k ≥ 0, to the number of linearly 
independent k-dimensional holes in the simplicial complex 
(Zomorodian 2005).

In Fig. 8, we show the representation of the k-dimensional 
holes. We give one example for each dimension. In a simpli-
cial complex, there can be many of these k-holes and count-
ing them provide the Betti number � , e.g., if �2 is equal to 
five, there are 5 two-dimensional holes.

Fig. 10   Curvature 3-D plot. Distribution of curvatures in a functional brain network for densities 0.01 (a) and 0.03 (b) after the first topological 
phase transition. The sum of curvature over all vertices is equal to the Euler characteristic

Code example
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Notice that for higher k or dense simplicial complexes, the 
calculation of the � becomes computationally expensive.

There are ways to estimate the � of a simplicial complex 
without calculating it directly. It is known that the � relate to 
Euler characteristics and phase transitions. The Euler char-
acteristics of a simplicial complex can also be computed 
using the � via the following formula (Edelsbrunner and 
Harer 2010):

where k_max is the maximum dimension that we are com-
puting the cycles.

Furthermore, topological phase transitions are also 
defined as the � of a simplicial complex (Bobrowski and 
Kahle 2018). We know that β0 counts the number of the 
connected components of a simplicial complex. Suppose 
we compute the Betti curves as a function of probability 
in stochastic models. In that case, each Betti curve passes 
through two distinct phases in a narrow interval: one when 
it first emerges and the other when it vanishes (Linial and 
Peled 2016). That means that, under similar assumptions 
as in theoretical models, if the � distribution is unimodal, 
increasing the density of edges of a brain network will lead 
to the appearance of � of a higher order. In contrast, smaller 
Betti numbers will disappear at the vicinity of a topological 
phase transition.

In Fig. 9, we illustrate this property on simplicial com-
plexes obtained from random networks. As the probability 
increases and so the density of the network is higher, we find 
a sequence of dominant �k starting from k = 0, that change 
(i.e., k is incremented by one unity) every time a topological 
phase transition occurs. While the singularities of the Euler 
entropy Sχ determine the transitions’ location, the crossover 
of the � characterises which kind of multidimensional hole 
prevails in each topological phase of the filtration.

Curvature

Curvature is a TDA metric that can link the global network 
properties described above to local features (Weber et al. 
2017; Farooq et al. 2019; Santos et al. 2019). When work-
ing with brain network data, this will allow us to compute 
topological invariants for the whole-brain set of vertices and 
understand the contribution of specific individual nodal, or 
subnetwork, geometric proprieties to global properties of 
the brain network.

Several approaches to defining a curvature for networks 
are available (Najman et  al. 2017; Weber et  al. 2017), 
including some already used in neuroscientific investiga-
tions (Santos et al. 2019). We will illustrate the curvature 
approach linked to topological phase transitions, previously 

χ = �0 − �1 + �2 −…(−1)kmax�kmax
=
∑kmax

k=0
(−1)k�k,

introduced for complex systems in (Farooq et al. 2019; Naj-
man et al. 2017; Wu et al. 2015).

To compute the curvature (Supplementary Material 4), 
filtration is used to calculate the clique participation rank 
(i.e., the number of k-cliques in which a vertex i participates 
for density d) (Sizemore et al. 2018), which we denote here 
by Clik(d) . The curvature of the vertex based on the partici-
pation rank is then defined as follows:

where Clik = 1 since each vertex i participates in a single 
1-clique (the vertex itself), and kmax the maximum number 
of vertices that are all-to-all connected in the network.

To link this nodal curvature to the network’s global 
properties, we use the Gauss-Bonnet theorem for networks, 
through which one can connect a local curvature of a net-
work and its Euler characteristic. Conversely, by summing 
up all the curvatures of the network across different thresh-
olds, one can reach the alternate sum of the numbers Clk 
of k-cliques (a subgraph with k all-to-all connected verti-
ces) present in the simplicial complex of the network for a 
given density threshold d ∈ [0, 1], according to the following 
equation:

By doing so, we also write the Euler characteristics as a 
sum of the curvature of all network vertices, i.e.,

We illustrate the curvature distribution for a functional 
brain network for densities before and after the transition 
in Fig. 10.

Persistent homology

Homology is a topology branch that investigates objects’ 
shapes by studying their holes (or cycles). Persistent homol-
ogy tracks the emergence of cycles across the evolving sim-
plicial complexes during filtration, allowing us to recog-
nise whether there were homology classes that “persisted” 
for many filtrations (time here meaning the threshold gap 
between the birth and death of a cycle) (Curto 2017; Giusti 
et al. 2016). Importantly, to compute persistent homology, 
we need to work with a distance matrix, the first step in the 
code below. We can then calculate the simplicial complex’s 
persistence and plot it as a barcode or a persistence dia-
gram (Fig. 3c and e). Here we used the Gudhi package for 
the implementation of those steps (Maria et al. 2014). The 

�_i =

kmax
∑

k=1

(−1)k+1
Clik(d)

k
,

�(d) =

N
∑

k=1

(−1)k+1Clk(d).

χ(d) =
∑N

i=1
ki(d).
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topological phase transitions in complex networks (Amorim 
et al. 2019; Santos et al. 2019) can also be identified between 
the changes in the dimensionality of the birth/death graphs 
mentioned above (Fig. 3e).

Discussion

This tutorial has explained some of the main metrics related 
to two network neuroscience branches—graph theory and 
TDA—providing short theoretical backgrounds and code 
examples accompanied by a publicly available Jupyter 
Notebook. We innovate by combining hands-on explana-
tions with ready-to-use codes of these subfields and visu-
alisations of simplicial complexes in the brain, hopefully 
lowering the high threshold necessary for neuroscientists to 
get acquainted with these new analysis methods, particularly 
for these new methods rsfMRI data. Here, we also innovate 
by providing realistic visualisation of higher-order simplices 
in brain networks.

Our main goal was to provide a step-by-step computa-
tional tutorial to use graph theory and TDA on brain imaging 
data, particularly rsfMRI, with in-depth explanations behind 
each metric. The core idea of applying these analysis frame-
works to brain data is that both frameworks can quantita-
tively combine two evidently essential characteristics of the 
brain: the brain not only works both at a local level in spe-
cialised brain regions but also contains apparent global prop-
erties that are of importance for its functioning, which are 
usually investigated in isolation. As a potentially powerful 
fusion between localizationism and holism, graph theory and 
TDA concepts have already been applied in brain research. 
Starting with graph theory, all the metrics mentioned above 
have been used in the investigation of brain networks in both 
normal or pathological states (Eijlers et al. 2017; Garcia-
Garcia et al. 2015; Wang et al. 2017; Wink 2019; Breedt 
et al. 2021; DeSalvo et al. 2020; Liu et al. 2012; dos Santos 
Siqueira et al. 2014; Yu et al. 2012; Davis et al. 2013; Suo 
et al. 2015). As one can identify by reading these articles, 
researchers often use different graph-theoretical metrics in 
the same study, which helps them look for alterations that 

data. Santos et al. (2019) applied the concepts of the Euler 
characteristic, topological phase transitions and curvature 
in human brain data, to show that these transitions can be 
found in brain data, helping pave the way for TDA in brain 
data applications.

Moreover, alterations in whole-brain connectomes were 
identified in attention-deficit/hyperactivity disorder subjects 
using Betti numbers and persistent homology, complement-
ing connectomics-related methods that aim to identify the 
markers of this disorder (Gracia-Tabuenca et al. 2020). A 
similar approach was used in an Alzheimer’s disease dataset 
by Kuang et al. (2019). More considerations on how TDA 
can be used in brain imaging big data and resting-state func-
tional connectivity analyses can be found in Phinyomark 
et al. (2017); Petri et al. (2014); Anderson et al. (2018); 
Saggar et al. (2018); Salch et al. (2021); Songdechakraiwut 
and Chung (2020).

Notably, limitations and other relevant points should 
be kept in mind when working with these metrics. Firstly, 
it is common in network neuroscience to use null models 
for comparison with real data. The idea is to show that the 
results are different from what one would obtain by chance 
(or randomly). The generation and comparison with null 
models must be performed differently for graph theory and 
TDA, and it is crucial to define what propriety should be 
kept constant (e.g., the density of the network or degree 
distribution). For instance, in Viger and Latapy (2005), if 
one wants to generate null models with a prescribed degree 
sequence. In this context, simplicial complexes built from 
Erdo-Renyi networks illustrated in Fig. 9 are the simplest 
(and by no means realistic) null models we can generate.

Nevertheless, the computation and discussion of null 
models are beyond this tutorial’s scope and would be an 
article in itself. A more in-depth discussion of null models 
in graph theory can be found in Fornito et al. (2016). Please 

might explain group differences in specific contexts (gender, 
age, pathology, development). This brief review and com-
mentary (Eijlers et al. 2019) summarise some applications. 
Now, moving on to the newer framework of TDA in neu-
roscience, fewer studies have been published using rsfMRI 

Code example
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see Sect. 4 of Battiston et al. (2020) and Blevins and Bassett 
(2020) for null models in simplicial complexes.

Moreover, it is crucial to appreciate limitations in inter-
pretation when using these metrics in connectivity-based 
data. Since rsfMRI data is often calculated as a temporal 
correlation between time series using Pearson’s correlation 
coefficient, a bias on the number of triangles can emerge. For 
example, suppose areas A and B and areas C and B are com-
municating and thus correlated. In that case, a correlation 
will be present between A and C, even if there would be no 
actual communication between these vertices (Zalesky et al. 
2012). This can affect graph-theoretical metrics such as the 
clustering coefficient, with networks based on this statisti-
cal method being automatically more clustered than random 
models, and TDA metrics, where the impact depends on 
how high-order interactions are defined. The proper way to 
determine and infer high-order interactions in the brain is an 
ongoing challenge in network neuroscience. Here we simpli-
fied our approach using the cliques of a network to define 
our simplicial complex. For those interested in a more in-
depth discussion on the topic, we recommend Sects. 1 and 
3 of chapters 7 and 10, respectively, in Fornito et al. (2016).

The use of weighted matrices can also come with caveats. 
As mentioned above, various metrics use the sum of weights 
to compute final nodal values. From that, multiple edges 
with low weights might have a final sum equal to a few edges 
with higher weights. How to deal with this limitation and 
distinguish between these cases is still under discussion. A 
possible solution was proposed by Opsahl et al. (2010), in 
which the addition of a tunable parameter in the computation 
of centralities can allow the researcher to include the number 
of edges in the total sum, not only the sum of the weights.

Concerning TDA, it is essential to think about limitations 
in its use due to computational power. The computation of 
cliques falls in the clique-problem, an NP (nonpolynomial 
time) problem, thus listing cliques may require exponential 
time as the size of the cliques or networks grows (Gillis 
2018; Pardalos and Xue 1994). For example, if the matrix to 
be analysed has 60 vertices with a maximum clique size of 
23, this will correspond to 

∑

�

60

k

�

 for k ∈ {0,… , 23} 
cliques, resulting in an enormous amount of time to compute 
all cliques. What we can do for practical applications is to 
limit the clique size that can be reached by the algorithm, 
which determines the dimension of the simplicial complex 
in which the brain network is represented. This arbitrary 
constraint implies a theoretical simplification, limiting the 
space or the dimensionality in which we would analyse brain 
data. Another issue is that, to finish TDA computations in a 
realistic timeframe, the researcher might need to establish a 
maximal threshold/density for convergence even after reduc-
ing the maximal clique size. Even though TDA approaches 
lead to substantial improvements in network science; apart 

from applications using the Mapper algorithm (Saggar et al. 
2018), the limitations mentioned above contribute to losing 
information on the data’s shape (Stolz 2014).

Furthermore, given the early stage of TDA approaches in 
clinical network neuroscience, it is relevant to recognise that 
the neurobiological meaning of the metrics mentioned here 
is still limited. Further studies contrasting different neuro-
scientific techniques with TDA must be done to improve the 
understanding, in the neurobiological level, on what a topo-
logical metrics represent and how they correlate with brain 
functioning. However, it is already possible to use these 
metrics to differentiate groups (Santos et al. 2019; Gracia-
Tabuenca et al. 2020), and plausible to assume that the inter-
pretation of some classical metrics could be extrapolated 
to higher orders interactions. For example, the concept of 
the centralities using pairwise interactions is used to under-
stand node importance and hubs, the same, in theory, could 
be applied to the relationships between 3 or more vertices 
by extending the definition of centrality from networks to 
simplicial complexes, as done in Hernández Serrano and 
Sánchez Gómez (2020); Estrada and Ross (2018).

Last, we would like to briefly mention more general prob-
lems in network neuroscience and brain imaging. Before 
applying graph theoretical or topological data analysis, 
one should be aware of frequent arbitrary decisions such 
as defining thresholds, using binary or weighted matrices, 
and controlling for density. Besides, one should think about 
the differences that arise from using particular atlases and 
parcellations and their influence on the findings (Wang 
et al. 2009; Douw et al. 2019; Fornito et al. 2016; Gracia-
Tabuenca et al. 2020; Wu et al. 2019; Eickhoff et al. 2018; 
Bullmore and Sporns 2009). All these factors can impact 
how credible and reproducible the field of network neuro-
science will be, inevitably influencing how appealing the 
metrics’ use might be to clinical practice (Douw et al. 2019).

Conclusion

Network neuroscience is pivotal in the understanding of 
brain organisation and function. Graph theory has been the 
most utilised framework so far, but as the field of network 
neuroscience expands, newer methods such as TDA are 
starting to take part in the investigation. To further improve 
the field, especially in clinical network neuroscience, it is 
imperative to make the computation of the developed met-
rics accessible, easy to comprehend, visualise, and efficient. 
Moreover, researchers must be aware of the crucial deci-
sions one must make when executing data analysis and how 
these can affect studies’ results and reproducibility. We hope 
to have facilitated the comprehension of some aspects of 
network and topological neuroscience, the computation and 
visualisation of some of its metrics. As a final reminder, 
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we would again suggest the reader to explore our table of 
resources and the Jupyter Notebook developed by our team.

Supplementary Information  The online version contains supplemen-
tary material available at https://​doi.​org/​10.​1007/​s00429-​021-​02435-0.
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