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ABSTRACT: Clarifying the primary structure of nanomaterials is invaluable to
understand how the nanostructures lead to macroscopic material functions. Nano-
cellulose is attracting attention as a sustainable building block in materials science. The
surface of nanocellulose is often chemically modified by polymer grafting to tune the
material properties, such as the viscoelastic properties in rheology modifiers and the
reinforcement effect in composites. However, the structure, such as molecular
conformation of the grafted polymer and the twist of the core nanocellulose, is not
well understood. Here, we investigated the structure of polymer-grafted nanocellulose in
the colloidal dispersion system by combining small-angle X-ray scattering measurement
and all-atom molecular dynamics simulation. We demonstrated formation of the polymer brush layer on the nanocellulose surface in
solvents, which explains the excellent colloidal stability. We also found that twisting of the nanocellulose in the core is suppressed by
the existence of the polymer brush layer.
KEYWORDS: Molecular dynamics simulation, Nanocellulose, Polymer grafting, Small-angle X-ray scattering

Cellulose nanofiber (CNF), a naturally occurring crystal-
line fibril, has been attracting attention as a sustainable

building block in advanced materials science.1−4 CNFs are
obtained from plants by disassembling the natural hierarchical
structures of the cell walls. In the case of trees, the resultant
CNF exhibits a width of only ∼3 nm and a length of up to
several micrometers, possessing a crystalline nanofibrillar
structure composed of only a few tens of cellulose molecular
chains.5,6 Owing to the crystal structure, the axial modulus and
strength of an individual CNF are as high as 110−140 and 2−3
GPa,5,7 respectively. The excellent mechanical properties and
unique nanosized morphology of CNF offer a number of
potential applications including nanofillers in composite
materials, high-performance packaging films, and rheology
modifiers.1,2,8−11

Controlling the colloidal stability of CNF is needed to
efficiently develop its functionalities, such as the viscoelastic
properties in rheology modifiers and the reinforcement effect
in composites. Chemical modification of the CNF surface not
only can change the surface properties but can also increase the
repulsive forces between CNFs. Typically, anionic or cationic
functional groups are introduced on the surface of CNFs to
achieve colloidal stability in water or polar organic solvents.12

However, these CNFs rapidly aggregate in low-polarity organic
solvents, in which electric double layer repulsion between the
CNFs is significantly weakened.
The colloidal stability in low-polarity organic solvents is

dramatically enhanced by grafting a long polymer on an
individual CNF unit.1,12,13 The grafted CNFs are individually
dispersed in the solvents of various polarities, which is mainly
driven by steric repulsion, and form macroscopically stable

dispersions. The dispersions not only allow homogeneous
mixing with other materials, such as polymers but also realize
idealized interfacial stress transfer in the final composites.14

Because the grafted polymer chains induce colloidal stability in
the dispersion, clarifying the molecular conformation of the
grafted chains is the key to understanding how the nano-
architectures lead to macroscopic functions. However, how the
grafted polymers are structured on the surface of an individual
CNF is not understood owing to the complex molecular
arrangement of the polymers in the dispersed system.
Here, we report the structure of polymer-grafted CNF in the

colloidal dispersion system. Combining small-angle X-ray
scattering (SAXS) measurement and all-atom molecular
dynamics (MD) simulation, we visualized the structure, not
only the conformation of the CNF and grafted polymer chain
but also the chemical bonding between them. We found that a
polymer brush layer formed on the CNF surface. The brush
layer induced the colloidal stability in low-polarity solvents and
also suppressed twisting of the core CNF. These results will be
helpful not only for understanding CNF structures but also for
bottom-up design of advanced CNF-based materials that
satisfy sustainability requirements.
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The fabrication steps of the polymer-grafted CNF are shown
in Figure 1a. In nature, cellulose molecular chains assemble
into crystalline nanofibers, which are called cellulose micro-
fibrils. The microfibrils from wood predominantly consist of
cellulose Iβ,

15,16 which has a monoclinic unit cell and C6
primary hydroxy groups exposed on the (1 1 0) and (1 1̅ 0)
surfaces. The primary hydroxy groups on the surface were
selectively oxidized to carboxy groups through 2,2,6,6-
tetramethylpiperidin-1-oxyl (TEMPO)-mediated oxidation.17

The introduced carboxy groups act as anchoring sites for
immobilizing amine-terminated polyethylene glycol (PEG)
chains. The PEG chains were selectively introduced onto the
surface carboxy groups, which was confirmed by Fourier
transform infrared (FT-IR) spectroscopy (Figure 1b); the peak
due to the PEG chains appeared after the grafting, and the
carbonyl stretching band of COOH groups on the CNF
surfaces (1720 cm−1)18 was entirely shifted to that of COO−

groups (1600 cm−1), which demonstrates the formation of
ionic bond.19 The surface PEG chains enable control over
CNF aggregation, yielding stable dispersions in solvents with
various polarities, such as water (Figure 1c), tetrahydrofuran
(THF, Figure 1d), chloroform, and toluene.20

To gain structural insights into the polymer-grafted CNF in
the dispersion system, we performed all-atom MD simulation.
The MD simulation is a powerful tool for investigating
dynamics and conformation of molecules in cellulose
crystallites. A number of studies have been conducted to
understand the structure of CNF with various kinds of crystal
sizes.23−28 In this study, the CHARMM carbohydrate force

field, which is one of the most widely used force fields for
cellulose,27,29−32 was used to study the structure of the
polymer grafted CNF. First, we placed the initial structure
(Figure 2a) in a periodic box with dimensions of 22 nm × 28
nm × 60 nm, and the box was solvated with THF molecules.
Then, an MD production run for 15 ns was performed and the
final structure was obtained (Figure 2b and Figure S1 in
Supporting Information). The simulation results showed that
the CNF core finally twisted (Figure 2a,b).33 In the early steps
of the simulation, the CNF started to twist in a right-handed
manner. The twist angle along the fiber axis per cellobiose unit
(θtwist) plateaued at ∼1° after 10 ns of the simulation (Figure
2c and Figure S2 in the Supporting Information). The MD
simulation suggested that the PEG chains were stretched and
formed a polymer brush layer on the CNF surface. This is
because the average distance between two adjacent carboxy
groups on the surface (∼0.8 nm)17,20 is smaller than the radius
of gyration (Rg) of free or sparsely end-grafted PEG chains in
THF (1.7 nm; see Figure S3), which is determined by MD
simulation. Therefore, the PEG chains grafted on the CNF
were forced to stretch away from the surface. The thickness of
the PEG brush layer was ∼10 nm, which is consistent with the
value of ∼11 nm calculated by the theory of end-grafted
polymer brushes.34 In general, the repulsive force between
grafted polymer brush layers depends on the thickness and
density of the polymer layer. When short alkyl chains are
grafted onto the CNF, the grafted-CNFs cannot be dispersed
in THF, chloroform, and toluene, even though the grafting
density is the same as that in this study.19 Therefore, the PEG

Figure 1. Polymer grafting onto the CNF surface. (a) Schematic of preparation of polymer-grafted CNF, illustrated with a CNF model containing
18 cellulose chains.21,22 The primary hydroxy groups exposed on the (1 1 0) and (1 1̅ 0) surfaces (light and dark blue, respectively) were selectively
converted to carboxy groups (light and dark red, respectively) by TEMPO-mediated oxidation. Amine-terminated PEG (R = −(CH2)3−
(OC2H4)48−OCH3) chains were end-grafted onto the carboxy groups through ionic bonds. (b) FT-IR spectra of the original cellulose (softwood
bleached kraft pulp, blue), oxidized CNF (red), and polymer-grafted CNF (green). Photograph of a 1% w/w polymer-grafted CNF dispersion in
(c) water and (d) tetrahydrofuran.
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layer in this work seemed to be sufficiently thick to prevent
aggregation of the CNFs even in THF. This was corroborated
by the experimentally observed high colloidal stability of the
grafted CNF dispersion system without any appreciable
aggregation for over a year (Figure S4). The long-term
colloidal stability has been confirmed also in chloroform and
toluene.20

The representative structures at the polymer−CNF interface
are shown in Figure 2d,e. The ammonium and carboxylate
groups formed ion pairs with electrostatic interactions (N+···
O−), together with hydrogen bonds (N+−H···O−). The radial
distribution functions extracted from the simulation results
showed a distance of 2.7 Å between the carboxylate and
ammonium groups (N+···O−) and a hydrogen-bond length of
1.7 Å (N+−H···O−) (Figure 2f), which are consistent with
Figure 2d,e. This combined interaction is a so-called salt
bridge,35,36 which is well-known in protein and supramolecular
chemistry. It should be noted that almost all of the ammonium
groups formed another salt bridge with a carboxylate group
neighboring the cellulose molecular sheets. Formation of an
ion pair is mainly driven by entropic contributions through
desolvation of the ions.37 Therefore, it is likely that the system
thermodynamically favored more interactions with the closely
neighboring (∼0.7 nm) carboxylate groups. The radial
distribution functions gH···O(r) and gN···O(r) showed second

largest peaks at 3.1 and 4.8 Å, respectively, which correspond
to the other combination of the atoms between the ammonium
and carboxylate groups, as described in Figure 2d,e.
Interestingly, the radial distribution functions of the initial
and final structures exhibited almost the same peak shapes and
positions (Figure 2f). Furthermore, the Rg value of the grafted
PEG remained unchanged from that of the initial structure
(Figure 3). Thus, during the simulation, twisting of the core
CNF exclusively occurred, maintaining the PEG/CNF
interaction and PEG brush conformation.
To compare the predicted structure with experimental data,

we performed SAXS analysis. The experimental SAXS curves
of polymer-grafted CNF dispersed in THF are shown in Figure
4. Two types of dispersions with CNF concentrations of 0.5%
and 1.0% w/v were prepared, and the shapes of the scattering
curves were the same (Figure 4a). This demonstrates that the
structure factor, which describes interference scattering
between the particles (polymer-grafted CNFs in this case),38

can be ignored and that the cross-sectional size and shape of
the polymer-grafted CNFs remained unchanged in this
concentration range.
To rationalize the experimentally obtained SAXS curves, we

calculated the theoretical SAXS pattern from all of the atoms in
the simulated structure. Notably, the calculated SAXS pattern
agreed well with the experimentally obtained patterns (Figure

Figure 2. Structure of polymer-grafted CNF from the all-atom MD simulation. (a) Initial structure. The structure was obtained by pre-equilibrating
the polymer-grafted CNF in THF for 10 ns while applying position restraint only to the CNF core using a force constant of 1000 kJ mol−1 nm−2.
(b) Simulated structure obtained by equilibrating the initial structure in THF for 15 ns without any position restraint so that the core CNF started
to twist. (c) Change of the calculated value of θtwist/cellobiose unit with time. (d, e) Magnified interface showing the molecular details of the
interaction between amine-terminated PEG and the CNF. Oxygen, nitrogen, the hydrogen atoms of the ammonium group, the carbon atoms of the
CNF, and the carbon atoms of PEG are colored red, blue, white, gray, and green, respectively. (f) Radial distribution functions between the
ammonium hydrogen and carboxylate oxygen atoms gH−O(r), and the ammonium nitrogen and carboxylate oxygen atoms gN−O(r) before and after
the simulation. The functions were extracted from the final 1 ns of the trajectories.
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4a). The slopes showed excellent agreement in wide q ranges
(Figure 4b,c). The calculated scattering pattern changed with
the increase of the twist angle of the CNF core (Figure S5),
and the pattern of the final structure was in the best agreement
with the experimentally obtained patterns. This emphasized
that the twist angle of the CNF core was well reproduced by
the simulation. In the range of 2 < q < 7 nm−1, the slope of the
double logarithmic plot provides information about the surface
smoothness at the molecular scale, which can be described by a

surface fractal dimension.39 The slope from the MD simulation
was in good agreement with the experimental results,
demonstrating that the surface smoothness of the brush layer
was also well modeled by the simulation.
We also fitted the experimentally obtained SAXS patterns

using simple cylinder models with uniform electron density
(Figure 5). However, the fitting was not satisfactory, probably
because these models were insufficient to recreate the
scattering curves in the Porod region originating from the

Figure 3. Radius of gyration (Rg) of grafted PEG in the simulated structure. (a) PEG molecules along one side of the CNF categorized into six
groups, with the PEG molecules end-grafted to the same oxidized cellulose chain grouped into the same group. (b) Time evolution of Rg for the
surface PEG chain in the production run for 15 ns. The data are expressed as the mean ± the standard deviation, obtained from 40 PEG chains
grafted on each oxidized cellulose chain.
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complex surface molecular structure. The hybrid method
combining SAXS measurement and MD simulation is much
more suitable for clarifying the molecular details of surface
grafted CNFs.
The scattering patterns in the q range of 0.15−1.5 nm−1,

which contains information about the cross-sectional shape of
the polymer-grafted CNF, showed no dependence on the
concentration (Figure 4). This shows that the concentration
range of 0.5−1.0% w/v is valid for form-factor analysis. The
validity is also supported by neutron scattering analysis of
surfactant-coated cellulose whiskers,40 in which the concen-
tration of cellulose was varied from 0.2% to 1.5% w/w.
The simulated structure showed right-handed twisting along

the axis (Figure 2), and θtwist of the final structure was 1.0° per
cellobiose unit, which suggests twisting of the CNF in the
dispersion system. Significant effort has been devoted to
analyze twisting of CNFs, not only by experimental micro-
scopic observation in dried33,41−43 or cryogenic44,45 systems
but also by MD simulation in vacuum or aqueous
systems.25−27 Interestingly, our θtwist value was smaller than

those previously obtained by MD simulations. The θtwist value
significantly depends on the model dimensions, and θtwist
increases with decreasing cross section.25,26 In the case of
the CNF model with 18 chains, θtwist has been reported to be
4.6° per cellobiose unit,27 which is larger than the value of the
polymer-grafted CNF in this study. When a pristine CNF,
which was not grafted with PEG chains but contained sodium
ions as counter cations, was used for simulation of twisting, the
θtwist value of the CNF was 4.7°, which is similar to the
previously reported values25−27 (see Figure S6). Therefore,
twisting of the CNF core was suppressed by the existence of
the bulky polymer layer, probably because of steric repulsion
between the brush layers on both sides of the CNF core
brought into closer contact by twisting of the CNF core.
In conclusion, we have clarified the structure of polymer-

grafted CNF in the colloidal dispersion system through a
combination of SAXS measurement and MD simulation. The
experimental results were well rationalized by the simulation,
and not only the conformation of PEG and the CNF but also
the interaction at the PEG−CNF interface were investigated.

Figure 4. SAXS measurement of the polymer-grafted CNF in the dispersion system. (a) Experimental SAXS patterns with concentration-
normalized intensity, along with the calculated SAXS pattern from the final structure of the MD simulation (red line). (b, c) Magnified SAXS
patterns in the q ranges of 0.15−0.25 and 0.4−0.6 nm−1. The MD structure was able to accurately reproduce the experimentally obtained SAXS
curves of the polymer-grafted CNF.

Figure 5. Fitting results using simple cylinder models. The experimental data of the 1.0% w/w polymer-grafted CNF dispersion were fitted to
elliptical and circular cylinder models. The best fits for the lower q region profiles (an elliptical cylinder with a radius of 3.0 nm and an axis ratio of 3
and a circular cylinder with a radius of 4.7 nm) are shown.
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The amine-terminated PEG chains were anchored on the
surface of the CNF through a salt-bridge structure with
carboxylate groups. The densely grafted structure allowed
formation of a polymer brush layer on the CNF, which explains
the good colloidal stability in solvents. It was found that the
existence of the brush layer affects the conformation of the
CNF, and twisting of the CNF core is suppressed in the grafted
system. Our approach through combined computational and
experimental analysis is applicable to other systems such as the
colloidal dispersions in toluene and chloroform, and the
versatility of this method will allow us to understand the CNF
structures in various media. Moreover, the knowledge of the
structures and dynamics may give insights into the assembly
behavior of the CNFs during preparation of the materials such
as films, gels, and composites, which will lead to development
of advanced mechanical, thermal, and optical properties in the
materials. Therefore, these results will be helpful not only for
understanding the mechanism of colloidal stabilization but also
for better design of CNF-based materials from dispersions.
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