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Cajal bodies (CBs) are important compartments containing accumulated proteins that preferentially regulate RNA-related nuclear
events, including splicing. Here, we studied the nuclear distribution pattern of CBs in neurogenesis. In adult brains, coilin was
present at a high density, but CB formation was absent in the nuclei of the choroid plexus of the lateral ventricles. Cells of the adult
hippocampus were characterized by a crescent-like morphology of coilin protein. We additionally observed a 70 kDa splice variant
of coilin in adult mouse brains, which was different to embryonic brains and mouse pluripotent embryonic stem cells (mESCs),
characterized by the 80 kDa standard variant of coilin. Here, we also showed that depletion of coilin is induced during neural
differentiation and HDAC1 deficiency in mESCs caused coilin accumulation inside the fibrillarin-positive region of the nucleoli.
A similar distribution pattern was observed in adult brain hippocampi, characterized by lower levels of both coilin and HDAC1.
In summary, we observed that neural differentiation and HDAC1 deficiency lead to coilin depletion and coilin accumulation in
body-like structures inside the nucleoli.

1. Introduction

Cajal bodies (CBs) are striking nuclear structures consisting
of accumulated proteins that play various roles in nuclear
processes. These structures were designated Cajal’s accessory
bodies (cuerpo accesorio) and were discovered for the first
time in rat brain neurons [1]. A role of the CBs during
neurogenesis was also significantly studied and summarized
by Lafarga et al. [2] and Baltanás et al. [3]. At this moment, it
is well known that the function of these structures is dynamic
because CBs regulate RNA synthesis and the assembly of
ribonucleoproteins (RNPs) [4]. Moreover, Tapia et al. [5]
showed that the symmetrical dimethylation of arginines on
coilin supports the formation of CBs, positive on survival
motor neuron (SMN) proteins and small nuclear ribonu-
cleoproteins (snRNPs). These regulatory factors probably
determine the association of CBs with the spliceosome and
a role for CBs in pre-mRNA splicing [6]. Conversely, coilin

hypomethylation depreciates its function and causes the dis-
integration of canonical CBs into small microfoci. Unmethy-
lated coilin does not support the formation of robust CBs but
is located inside the dense fibrillar component of the nucleoli.
In this form, there is no link between the coilin nuclear
pattern and global transcription activity [5]. On the other
hand, canonical CBs, which are nonmembrane nuclear com-
ponents, are prominent structures in dividing cells with high
transcriptional activity [4]. CBs have a diameter of 0.5–1.0𝜇m
and contain many proteins, including the abovementioned
p80 coilin, which becomes increasinglymore phosphorylated
during mitosis and, particularly in human embryonic stem
cells, is present at high levels in the nucleoplasmic pool [7–12].
However, coilin is not completely essential because knockout
of coilin in mice is not lethal [13]. On the other hand, coilin-
positive CBs play an important role in genome organization
in terms of gene expression and pre-mRNA splicing via
their association with many chromosomes. The periphery of
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these chromosomes represents a site of interaction for genes
that are poised for transcription and thus associates with
regulatory components. Human chromosome 1 is a key player
in these processes, and its periphery is frequently occupied by
CBs [14].The use of chromosome conformation capture anal-
ysis (4C-seq), a novelmolecular biologymethod, has revealed
an association between highly expressed histone genes,
sn/snoRNA coding loci, andCBs, which are involved in intra-
and interchromosomal clusters [14, 15]. This interaction is
of immense functional importance during transcription and
especially splicing. CBs are also highly mobile structures, as
revealed by single-particle tracking analysis and fluorescence
recovery after photobleaching (FRAP) [10, 16–19]. For exam-
ple, we recently demonstrated the constrained local motion
of individual CBs after cell exposure to 𝛾-radiation. Further-
more, in mouse embryonic stem cells (mESCs), the coilin
dispersed in the nucleoli and accumulated in CBs was char-
acterized by a reducedmobile fraction compared to the GFP-
tagged coilin in the nucleoplasm [10]. FRET (fluorescence
resonance energy transfer) analysis additionally revealed
a specific interaction between coilin and SMN protein in
CBs as well as the appearance of coilin-coilin dimerization
[17]. However, as regards to DNA repair machinery, our
experiments did not show coilin-SMN interaction or coilin
dimerization in UVA-induced DNA lesions, which are char-
acterized by pronounced coilin recruitment [10]. Together,
the abovementioned results illustrate the dynamic behavior
of coilin and CBs, which is required not only for optimal pre-
mRNA processing but also for DNA repair [15].

Interestingly, in some tumor cells, the functional prop-
erties of coilin are associated with both CBs and nucleoli.
The nucleoli contain many different proteins that play a role
during the transcription of ribosomal genes or during DNA
repair [18–20]. In UVA-damaged chromatin, we observed the
recruitment of the upstream binding factor UBF, a major
transcription factor for ribosomal genes, and we noted a
similar response for coilin [10, 21]. As determined by Boulon
et al. [22], UVA and UVC cause the disintegration of coilin-
positive CBs, and ionizing irradiation has a similar, notable
effect of CB disruption [23, 24]. Thus, nucleolar proteins,
including coilin that also appears in nucleoli of tumor
cells, appear to be involved in the DNA repair machinery,
which is, for example, also activated in Purkinje cells during
neurodegeneration, characterized by the disintegration of
nucleoli and CBs [3].

In this study, we focused especially on the nuclear
distribution patterns of the CBs, and we studied coilin levels
in embryonic and adult mouse brains and during neural
differentiation of mESCs. Based on the initial observations
of Raymond Cajal, who noted that the CBs are striking
nuclear components of the rat brain and, more specifically,
the pyramidal cells of the human cerebral cortex [1, 25], we
analyzed the nuclear distribution patterns and formation of
the CBs in the hippocampus and olfactory bulbs (OBs) of
adult mouse brains. We also investigated the distribution of
coilin in the ventricular ependyma of e15.5 embryonic brains.
Furthermore, to elucidate the CB dynamics in neurogenesis,
we analyzed the formation of CBs during the neural differen-
tiation of wild-type (wt) and HDAC1 double-knockout (dn)

mESCs. From the view of neural differentiation, it was shown
that embryonic neural progenitor stem cells are characterized
by a high level of HDAC1, while HDAC2 is expressed
during neural differentiation and pronouncedly in terminally
differentiated neurons [26]. Differentiation processes in the
brain are also regulated by HDAC3, as shown by Volmar
and Wahlestedt [27]. Moreover, in neural progenitor stem
cells, functional HDAC3 was found to be responsible for the
balance between cell proliferation and differentiation [28].
Based on these data we addressed the following hypothesis:
whether neural differentiation and HDAC1 depletion can
affect the levels of coilin and the nuclear distribution of Cajal
bodies because we expected that depletion of some HDAC
induces chromatin relaxation; thus this nuclear event could
change distribution pattern of CBs.We also analyzed HDAC1
depletion in order to show how changes in histone acety-
lation, a central epigenetic factor responsible for chromatin
accessibility [29, 30], can change the level of coilin, which is
methylated when it accumulates in CBs [5].

2. Results

2.1. The Nuclear Distribution Pattern of Cajal Bodies in the
Embryonic and Adult Mouse Brain. We inspected sections
of embryonic and adult mouse brains and observed the
formation of single, robust CBs at the cortex periphery in
embryonic brains at stage e15.5 after fertilization (Figures
1(a)–1(c)). We additionally found that in approximately 90%
of the cell nuclei at the cortex periphery, the Cajal bodies
(CBs) were located away from clusters of centromeric hete-
rochromatin called chromocenters (Figure 1(c)).

The cell nuclei in adult brains were highly positive for
the coilin protein, particularly in the chondroid plexus of
the lateral ventricle (Figure 2(a)). However, the cells in this
region did not have easily discernable CBs. Next, we observed
clustering of coilin inside the cell nuclei occupying the cortex
periphery in adult mouse brains (Figure 2(b)). Analysis of
the hippocampal blade (Figures 2(c)(A) and 2(c)(B)) revealed
both the crescent-like accumulation of coilin and individual
canonical CBs (Figures 2(d)–2(f)). Surprisingly, in olfactory
bulbs (Figures 3(a)(A), 3(a)(B), and 3(b)(A)), high levels
of coilin were noted in the highly DAPI-dense nuclear
regions surrounding single CBs (Figures 3(b)(B)–3(b)(D)).
This nuclear distribution pattern of coilin was observed in
individual nuclei of the granular layer of the OBs in adult
brain (Figures 3(b)(A)–3(b)(C); see magnification in Fig-
ure 3(b)(D) and quantification in Figure 3(b)(E)).

2.2. Levels and Nuclear Distribution Pattern of Coilin, Fibril-
larin, and SC35 in Mouse Brain and Pluripotent or Differenti-
ated mESCs. In comparison to nondifferentiated and differ-
entiated wt mESCs, pan-acetylation of lysines was very high
in HDAC1 dn mESCs and their differentiated counterpart
(Figure 4(a)). In these experiments, we addressed a question
if hyperacetylated surroundings of CBs in HDAC1 dnmESCs
could change formation or maintenance of CBs, which is
regulated by methylation-related processes [5].

Here, western blot analysis revealed reduced levels of
coilin (80 kDa) during neural differentiation of wt mESCs
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Figure 1: Formation of Cajal bodies (CBs) in the cortex periphery of e15.5 mouse embryonic brains (a–c). CBs were visualized with Alexa 594
fluorescence (red), and DAPI (4,6-diamidino-2-phenylindole) was used as a counterstain (blue). Arrows in (a) show individual CBs and the
frame in (b) shows a selected region in the cell nucleusmagnified in (c). Red arrows in (c) indicate the clusters of centromeric heterochromatin
(chromocenters) and white arrows show the selected CB.

(Figures 4(b) and 4(e)(A)). We also analyzed the levels of
coilin in nondifferentiated and differentiated wt and HDAC1
dn mES cells. Our statistical analysis, using Student’s 𝑡-test,
documented significant changes at ∗𝑝 ≤ 0.05 when we
compared nondifferentiated and differentiated wt mESCs
(Figures 4(b) and 4(e)(A)). In HDAC1-depleted cells, the
difference was even more pronounced: a significantly differ-
ent result (at ∗∗𝑝 ≤ 0.01) was found when we compared
nondifferentiated and differentiated HDAC1 dn cells (Figures
4(b) and 4(e)(A)). We also examined the coilin levels in

mouse brains at various developmental stages. We studied
the whole brains of e13.5, e15.5, and e18.5 embryonic stages
and adult mice (Figure 4(c)). Compared to embryonic brains,
which are characterized by the 80 kDa coilin variant, we
observed a different splice variant of coilin (∼70 kDa) in
adult brains. During mouse brain development, coilin levels
were stable at the e13.5, e15.5, and e18.5 developmental stages.
Interestingly, mouse ESCs were characterized by a very low
level of 80 kDa coilin in comparison to embryonic brains
(Figure 4(c)). In parallel with coilin, we analyzed fibrillarin
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Figure 2: Continued.
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Figure 2:The nuclear distribution patterns of coilin in adult mouse brain sections. (a) shows the chondroid plexus of the lateral ventricle. (b)
Coilin distribution in the cortex periphery of an adult brain. ((c)(A), (c)(B)) Hippocampal regions visualized by hematoxylin-eosin staining,
an image from the brain atlas (see [31]). (d–f) Accumulation of coilin in crescent-like foci in the hippocampal region of an adult brain. DAPI
staining is used to visualize cell nuclei. Coilin (red) was labeled by a secondary antibody conjugated with Alexa 594. Nuclear distribution of
coilin in cells 1 and 2 (e) is shown in graphs 1 and 2. Fluorescence intensity along white lines with arrows was measured using the Image J
software (NIH freeware). (f) shows a high density of coilin in the hippocampus (hippocampal blade) of an adult mouse brain.

levels in the mouse brains because individual CBs colocalize
with fibrillarin in many cell types (Figures 4(c), 5(a), and
5(b)). By western blots, in mouse adult brains, we observed a
very low level of fibrillarin (see two western blot expositions
in Figure 4(c)), especially compared to mouse embryonic
stem cells (mESCs). In our samples, shown in Figure 4(c),
we found that when the level of coilin was high, the level of
fibrillarin was low and vice versa.

Using western blot, we also detected the levels of 70 kDa
coilin variant and 39 kDa fibrillarin in the OBs of the adult
brain, the adult hippocampus, the brain cortex, and the whole

adult brain (Figures 4(d) and 4(e)(B)). Compared to OBs,
the hippocampus and the brain cortex were characterized
by coilin depletion, which was accompanied by a decrease
in HDAC1 level when it was normalized to total protein
level and 𝛼-tubulin (Figures 4(d), 4(e)(B), and 4(e)(C)). The
fibrillarin levels were not substantially different in the brain
regions analyzed (Figure 4(d)).

Here, we also compared the nuclear pattern of CBs in
mESCs and the human cancer cells line HeLa, which has
been used by many authors for CBs studies [17, 33]. In
HeLa cells, the CBs were always positive for both coilin and
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Figure 3: Coilin expression in the olfactory bulbs (OBs) of the adult brain. ((a)(A)) The OB regions of an adult mouse brain visualized by
DAPI staining (blue) and an antibody against acetylated histone H3 (red; an antibody raised against H3K9ac [#06-942, MerckMillipore] was
used to visualize the granular layer of OB due to its high density). The morphology of the OB in ((a)(A)) is compared with the morphology
of the OB according to ((a)(B)) the brain atlas (see [31]). ((b)(A)–(b)(D)) show coilin accumulation in the Cajal bodies. In adult OBs, CBs
were surrounded by DAPI- and coilin-dense regions (red and blue) (see (b)(C)). ((b)(D)) shows a magnification of the cell nucleus from OB.
((b)(E)) indicates the density of coilin, visualized by Alexa 594 fluorescence, analyzed across the selected region delineated by a white arrow
in ((b)(D)).
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Figure 4:The levels of coilin, HDAC1, and fibrillarin in pluripotent and differentiatedmouse ESCs and in themouse brain. (a) In comparison
to nondifferentiated and differentiated wt mESCs, a very high level of lysine pan-acetylation was found in HDAC1 dn cells and in their
differentiated counterpart.Neural differentiationwas induced in bothwt andHDAC1dn cells by identical differentiation protocol. (b)Western
blot shows coilin and𝛼-tubulin (reference protein) levels in nondifferentiated and differentiated (neuronal pathway)wt andHDAC1 dnmouse
ESCs. HDAC1 depletion in these cells was first published by Lagger et al. [32]. (c) Western blot analysis of the coilin and fibrillarin levels in
embryonic mouse brains at developmental stages e13.5, e15.5, and e18.5 and in the whole adult brain as well as in mESCs. Two expositions for
fibrillarin were used in order to show the differences between the levels of fibrillarin in the adultmouse brain (ADL) andmESCs. (d)The levels
of coilin, fibrillarin, HDAC1, and 𝛼-tubulin in the following regions of adult brain: the olfactory bulb (OB), the adult hippocampus (HIP),
the brain cortex (CTX), and the whole adult mouse brain (ADL). (b–d) show the conclusions from three independent experiments, and the
total loaded protein levels are also documented. (e)(A) Quantification of the results from (b); (B) quantification of (c); and (C) analysis of the
HDAC1 level from (d). Asterisk (∗) denotes statistically significant results at 𝑝 ≤ 0.05 and (∗∗) at 𝑝 ≤ 0.01.
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Figure 5: The spatial link between coilin and fibrillarin in HeLa cells and mouse pluripotent mESCs before and after neural differentiation.
Arrows show fibrillarin and coilin occurrence in CBs in (a) HeLa cells; CB (blue) colocalizes with fibrillarin foci (red) (white arrows). (b) In
(A) wt and (B) HDAC1 dn pluripotent ESCs, CBs (green) were located in a close proximity to the periphery of the fibrillarin-positive regions
of the nucleoli (red). An example of CBs is shown by arrows. (c)The spatial link between CBs (green) and fibrillarin (red) in (A, B) wt mESCs
and (C, D) HDAC1 dn mESCs undergoing neural differentiation (white arrows). Accumulated coilin (green) inside the nucleoli (red) was
observed in HDAC1 dn cells (see (C) and (D)). DAPI staining (blue) was used to visualize the cell nuclei.
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Figure 6: Spatial interactions between coilin and SC35-positive splicing speckles. (a) In wt mESCs, coilin (red) was distributed in the
nuclear interior, and this coilin-positive region was surrounded by SC35 protein (green). (b, c) show that the mutual interaction between
coilin and SC35 is changed during neural differentiation. Many cells were characterized by the formation of SC35-positive CBs (red). The
colocalization tool in the Leica software showed ∼30% colocalization between CBs (red) and SC35-positive nuclear speckles (green) in both
(d) nondifferentiated HDAC1 dn mESCs and (e, f) differentiated HDAC1-depleted cells. A 3D projection (𝑥-𝑦-𝑧) of interphase nuclei is
documented in all panels.

fibrillarin (Figure 5(a)). We additionally studied the nuclear
distribution pattern of CBs and fibrillarin in nondifferenti-
ated mESCs and mESCs undergoing neural differentiation
(Figures 5(b) and 5(c)(A)–5(c)(D)). Wild-type and HDAC1
dn mESCs were characterized by a very subtle occurrence
of fibrillarin in CBs (see white arrows in Figure 5(b)).
However, in differentiated HDAC1 dn mESCs, robust foci of
accumulated coilin appeared on the periphery of the nucleoli
(Figure 5(c)(C); ∼40% of cells) or high coilin positivity was
found inside the nucleoli (Figure 5(c)(D);∼60% of cells).This
nuclear distribution pattern of coilin was not observed in
differentiated wt mESCs (Figures 5(c)(A) and 5(c)(B)).

Because CBs are nuclear regions associated with splicing
processes, we additionally analyzed the spatial link between
CBs and SC35-positive nuclear speckles (Figures 6(a)–6(f)).
In mouse pluripotent ESC colonies, we observed high levels
of coilin in the nuclear interior, and these regions were sur-
rounded by the SC35 protein (Figures 6(a)–6(c)). We found
that most of the CBs and SC35-positive nuclear speckles were
spatially distinct, but some of them partially overlapped.This

nuclear distribution pattern was identical in both wt and
HDAC1 dn (Figures 6(a)–6(f)).

3. Discussion

CBs, which were first described by Cajal [1], consist of several
proteins, including p80 coilin. The functional properties of
coilin in CBs were characterized by Andrade et al. [34] and
Raška et al. [12]. CBs are also the sites for various factors that
play roles during pre-mRNA splicing, pre-ribosomal RNA
processing, and histone pre-mRNA maturation [7, 33, 35].
Moreover, CBs are highly mobile structures, as demonstrated
by photobleaching experiments [16, 17].

Here, we addressed the morphology of CBs in embryonic
and adult brains and during the in vitro induction of mESC
neural differentiation. Previously, in certain human and
mouse ESCs (particularly at the periphery ofmESC colonies),
we observed the accumulation of coilin into visible CBs [10].
Conversely, human andmouse pluripotent ESCs, particularly
those at the center of the colony, are highly positive for
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diffusely dispersed coilin protein (Figures 6(a) and 6(b); [10]).
Thus, our results indicate that the peripheries of ESC colonies
are more prone to spontaneous differentiation, which is
characterized by an appearance of CBs [36]. Here, the for-
mation of robust CBs or coilin-positive microfoci was more
pronounced after induced neural differentiation, especially
in HDAC1 dn ES cells (compare Figures 5(b) and 5(c)(A)–
5(c)(D)). Our analyses confirmed that embryonic stem cells,
characterized by an immense differentiation potential, are a
good tool for the studies of nuclear architecture. For example,
Butler et al. [37] showed the formation of CBs as a con-
sequence of the spontaneous differentiation that frequently
appears at the periphery of human ESC colonies, and it is
also the case documented here. A good experimental model
in which the formation of CBs is studied are the cells of the
embryonic brain (particularly the cells in the prominent neu-
rogenic regions destined for pronounced differentiation). For
our analysis, we selected the hippocampus and the OBs (Fig-
ures 2(c)–2(f) and 3(b)(A)–3(b)(E)).Our data fitwell with the
original observations of Cajal, who noted the appearance of
CBs in primary cells, such as the pyramidal cells from the
human cerebral cortex (see also [8]) and the cells undergoing
terminal differentiation (Figures 2(d), 3(b)(C), and 5(c)(A)–
5(c)(D)). Here, for the first time, we show the accumulation
of coilin in a crescent-like structure that is specific to the hip-
pocampal regions of the adult brain (Figures 2(d) and 2(e)).
Furthermore, OBs were characterized by well-visible CBs
surrounded by high levels of coilin (Figures 3(b)(C)–3(b)(E)).
These results support the conclusions of other authors that
noted cell-type specificity regarding the size, morphology,
and numbers of CBs [15, 38–44].

Here, we additionally revealed a link among the focal
accumulation of coilin in the nucleolus, decreased coilin lev-
els and HDAC1 depletion. This connection was particularly
observed during the neural differentiation of mESCs and in
the hippocampus (Figures 2(d), 2(e), 4(b), 4(d), 4(e)(A)–
4(e)(C), 5(c)(C), and 5(c)(D)). In these cases, coilin was
depleted and accumulated into robust CBs or microfoci
inside the nucleoli of cells with an HDAC1 deficiency or
HDAC1 decreased level.Thus, changes in histone acetylation,
mediated by HDAC1 function, likely affected the interaction
between coilin and chromatin-related factors. Accumulation
of coilin to the nucleoli was found to be linked to coilin
hypomethylation [5]. Interestingly, both HDAC1 depletion
and coilin hypomethylation likely caused the coilin transition
to the fibrillarin-positive dense fibrillar component of the
nucleoli (compare Figures 4(b) and 4(e)(A) with Figures
5(b), 5(c)(C), and 5(c)(D) and [5]). Moreover, it seems to be
possible that coilin could be hypomethylated in hyperacety-
lated surroundings in the genome, which can be caused by
HDAC1 depletion.This epigenetic nuclear event could also be
a consequence of HDAC1-dependent changes in chromatin
accessibility.

4. Conclusion

Nuclear bodies, including CBs, are functionally important
nuclear compartments containing accumulated proteins that
play roles inmany nuclear processes, including transcription,

splicing, and DNA repair. The morphology and nuclear
distribution patterns of these nuclear bodies likely reflect
their functional properties, which contribute to themolecular
mechanisms that maintain the balance between cell physi-
ology and pathophysiology. We showed here that coilin is
highly expressed in brain tissue, especially in the embryonic
brain. Cajal bodies, recognized by accumulated coilin, were
found to be localized inside nucleoli, especially in HDAC1-
depleted cells, which was accompanied by coilin downreg-
ulation. These results show that epigenetic events, such as
histone acetylation (or lysine pan-acetylation) affecting the
accessibility of regulatory elements to chromatin, can stand
behind changes in the nuclear distribution pattern of Cajal
bodies.

5. Materials and Methods

5.1. Cell Cultivation. The nuclear distribution patterns of the
coilin protein and its accumulation in CBs were analyzed
in wt mESCs and HDAC1 dn mESCs (a generous gift from
Dr. Christian Seiser, Max F. Perutz Laboratories, Vienna
Biocenter, Austria) [32, 45]. Mouse ESCs were cultivated in
DMEM (Thermo Fisher Scientific, USA) supplemented with
15% fetal bovine serum, 0.1mM nonessential amino acids,
100 𝜇MMTG, 1 ng/mL leukemia inhibitory factor (LIF),
10,000 IU/mL penicillin, and 10,000𝜇g/mL streptomycin.
Culture dishes were coated with Matrigel (#354277, Corning,
USA) according to the protocols described by Franek et al.
[46]. Neural differentiation was induced in medium without
LIF. After two days, the medium was replaced with serum-
free commercial DMEM/F-12 (1 : 1) (GIBCO, UK) supple-
mented with insulin, transferrin, and selenium (ITS-100x,
GIBCO, UK), 1 𝜇g/mL fibronectin (Sigma-Aldrich, Czech
Republic), and penicillin/streptomycin (according to Pach-
ernı́k et al. [47] describing this DMEM/F-12/ITSF medium).
In the next two days, this medium was additionally sup-
plemented by 0.5𝜇M all-trans retinoic acid (ATRA, Sigma-
Aldrich, Czech Republic) that was replaced at day 4 by
DMEM/F-12/ITSF medium.

HeLa-Fucci cells were purchased and cultivated as previ-
ously described [48].

5.2. Tissue Sectioning and Immunostaining. Adult and embry-
onic mouse brains (at developmental stages e13.5, e15.5,
and e18.5 after fertilization; mouse strain C57Bl6) were
maintained in tissue freezing medium (OCT embedding
matrix, Leica Microsystems, Germany) at −20∘C. A Leica
cryomicrotome (Leica CM 1800, Leica, Germany) was used
for tissue sectioning. Tissue sections were washed in PBS and
postfixed in 4% formaldehyde for 20min for immunostain-
ing. The tissues were permeabilized in 1% Triton X-100 and
0.1% saponin (Sigma-Aldrich, Czech Republic) dissolved in
PBS. Immunohistochemistrywas performed according to the
protocols described by Bártová et al. [49]. In our studies,
we used a primary antibody raised against coilin (H-300)
(#sc-32860, Santa Cruz, USA), fibrillarin (#ab4566, Abcam,
UK), and a goat anti-rabbit Alexa Fluor 594 secondary
antibody (#A11012, Invitrogen) or goat anti-mouse Alexa
Fluor 594 (#A11032, Invitrogen, USA) or anti-rabbit Alexa
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Fluor 488 (#ab150077, Abcam, UK). The primary antibodies
were diluted 1 : 100, and the secondary antibodieswere diluted
1 : 200 in PBS containing 1% BSA. The DNA was counter-
stained with DAPI (4,6-diamidino-2-phenylindole) (Sigma-
Aldrich, branch in the Czech Republic) dissolved in the
mounting medium Vectashield (Vector Laboratories, USA).

We additionally used an antibody raised against acety-
lated H3K9 (#06-942, Merck Millipore, Czech Republic) to
visualize the granular layer of the OBs (Figure 3(a)(A)).

5.3. Western Blots. Western blot was performed according
to the protocols described by Krejč́ı et al. [50]. To analyze
coilin levels by western blot, we used an antibody raised
against coilin (#sc-32860, Santa Cruz, USA) at a dilution
of 1 : 1000. Coilin levels were analyzed in nondifferenti-
ated and differentiated mESCs as well as embryonic and
adult brains. In addition, we examined fibrillarin, histone
deacetylase 1 (HDAC1), pan-acetylated lysine, and 𝛼-tubulin
levels using the following antibodies: fibrillarin (#ab5821,
Abcam, UK), HDAC1 (#sc7872, Santa Cruz Biotechnology,
Inc., USA), anti-pan-acetylated lysine (#ab21623, Abcam,
UK), and 𝛼-tubulin (#LF-PA0146, Thermo Fisher Scientific
Inc., branch in Czech Republic).The secondary antibody was
a peroxidase-conjugated anti-rabbit IgG (#A-4914; Sigma,
Munich, Germany) diluted 1 : 2000. Equal amounts of protein
were loaded in each gel lane. Protein levels were normalized
to the total protein levels measured with a 𝜇Quant spec-
trophotometer and the KCjunior software (BioTek Instru-
ments, Inc., Winooski, VT, USA) or to total histone H3 levels
(#ab1791, Abcam, UK).

5.4. Confocal Microscopy and Image Analysis. We acquired
images with a Leica TCS SP5 X confocal microscope (Leica
Microsystems, Germany). Image acquisition was performed
using awhite light laser (WLL)with the following parameters:
1024 × 1024-pixel resolution, 400Hz, bidirectional mode, and
zoom 8–12. For 3D projections, we obtained 30–40 optical
sections with axial steps of 0.3𝜇m. 3D projection reconstruc-
tion was conducted using the Leica Application Suite (LAS)
software. The scanning of larger biological objects, such as
embryonic brain sections, was conducted in tile scanning
mode with the Leica software, as previously described [49].

5.5. Statistical Analysis. We used Excel software for data
presentation. Florescence intensity and density of western
blot fragments were calculated by ImageJ software (NIH free-
ware). Statistically significant results at 𝑝 ≤ 0.05 (𝑝 ≤ 0.01)
are labeled by asterisks ∗ (∗∗). Statistical analysis was per-
formed by Student’s 𝑡-test, a tool of Sigma Plot 8.0 software.
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