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One of the most paramount receptor-induced signal transduction mechanisms in hema-
topoietic cells is production of the lipid second messenger phosphatidylinositol(3,4,5)
trisphosphate (PIP3) by class I phosphoinositide 3 kinases (PI3K). Defective PIP3 
signaling impairs almost every aspect of hematopoiesis, including T cell development 
and function. Limiting PIP3 signaling is particularly important, because excessive PIP3 
function in lymphocytes can transform them and cause blood cancers. Here, we review 
the key functions of PIP3 and related phosphoinositides in hematopoietic cells, with a 
special focus on those mechanisms dampening PIP3 production, turnover, or function. 
Recent studies have shown that beyond “canonical” turnover by the PIP3 phosphatases 
and tumor suppressors phosphatase and tensin homolog (PTEN) and SH2 domain-con-
taining inositol-5-phosphatase-1 (SHIP-1/2), PIP3 function in hematopoietic cells can 
also be dampened through antagonism with the soluble PIP3 analogs inositol(1,3,4,5)
tetrakisphosphate (IP4) and inositol-heptakisphosphate (IP7). Other evidence suggests 
that IP4 can promote PIP3 function in thymocytes. Moreover, IP4 or the kinases producing 
it limit store-operated Ca2+ entry through Orai channels in B cells, T cells, and neutrophils 
to control cell survival and function. We discuss current models for how soluble inositol 
phosphates can have such diverse functions and can govern as distinct processes as 
hematopoietic stem cell homeostasis, neutrophil macrophage and NK cell function, and 
development and function of B cells and T cells. Finally, we will review the pathological 
consequences of dysregulated IP4 activity in immune cells and highlight contributions of 
impaired inositol phosphate functions in disorders such as Kawasaki disease, common 
variable immunodeficiency, or blood cancer.

Keywords: phosphoinositide 3 kinase, AKT, SH2 domain-containing inositol-5-phosphatase, phosphatase and 
tensin homolog, ORAi, iTPKB/iP3-3KB/iP3KB, iTPKC/iP3-3KC/iP3KC, Kawasaki disease

iNTRODUCTiON

In one of the most paramount receptor-induced signal-transduction mechanisms, class I phospho-
inositide 3 kinases (PI3K) phosphorylate the membrane-lipid phosphatidylinositol(4,5)bisphosphate 
[PI(4,5)P2, hereafter PIP2] into the lipid second messenger phosphatidylinositol(3,4,5)trisphosphate 
[PI(3,4,5)P3, hereafter PIP3, Figure 1]. By binding to their pleckstrin homology (PH) or certain other 
domains, PIP3 recruits key signaling effectors to cellular membranes, enabling their incorporation 
into signaling complexes and activation (1). Important examples in lymphocytes include the tyrosine 
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FigURe 1 | Symmetric signaling by phosphoinositide 3 kinase (PI3K)  
and Itpkb controls effector recruitment through the analogous but  
phase-separated pleckstrin homology (PH) domain ligands PIP3 and IP4. 
Engagement of antigen receptors activates PI3K, which phosphorylates  
the membrane-lipid phosphatidylinositol(4,5) bisphosphate (PIP2) on  
the 3-position of its cytoplasm-exposed inositol ring to generate 
phosphatidylinositol(3,4,5) trisphosphate (PIP3). Alternatively but not  
shown to emphasize the PI3K/Itpkb symmetry, phospholipase-Cγ1 (PLCγ1) 
can hydrolyze PIP2 into the second messengers diacylglycerol (DAG) and 
soluble inositol(1,4,5) trisphosphate (IP3). Canonically, PIP3 accumulation is 
limited through its removal by two families of phospholipid phosphatases: 
Phosphatase and tensin homolog (PTEN) which reverses the PI3K reaction, 
and SH2 domain-containing inositol polyphosphate-5-phosphatases 
(SHIP-1/2) which convert PIP3 into phospatidylinositol(3,4) bisphosphate 
[PI(3,4)P2]. Mainly through their IP headgroups, PIP2, PIP3, and PI(3,4)P2 can 
bind to PH and other domains in signaling proteins such as Itk and Akt, and 
recruit them to membranes. IP3 mobilizes Ca2+ but can also be 
phosphorylated at its 3-position into Inositol(1,3,4,5) tetrakisphosphate  
(IP4) by IP3 3-kinases (Itpka/b/c and inositol-phosphate-multikinase) (8, 19). 
Because it resembles the PIP3 headgroup, IP4 can also bind to certain 
PIP3-binding PH and other domains and promote (green) or inhibit (red) PIP3 
binding. In CD4+CD8+ thymocytes, IP4 promotes PIP3 binding to the Itk/Tec 
PH domains to establish a feedback loop of PLCγ1 activation (20, 21). In 
neutrophils, NK cells, CD4−CD8− thymocytes undergoing β-selection and in 
hematopoietic stem cells (HSC), IP4 competition with PIP3 or PI(3,4)P2 for 
binding to its PH domain may limit Akt membrane recruitment and activation 
(22–27). IP4 can also inhibit RASA3/GAP1IP4BP-binding to PI(4,5)P2 or PIP3  
(28, 29). Whether this occurs in immunocytes remains unknown. R1, R2, fatty 
acid side-chains. Circled P, phosphate moiety. Orange, enzymes with 
demonstrated physiological relevance in immunocytes.
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kinase expressed in hepatocellular carcinoma (Tec)-family pro-
tein tyrosine kinases (TFK) IL-2-inducible T-cell kinase (Itk), 
Tec, and Bruton’s tyrosine kinase (Btk). TFK have essential 
functions in antigen–receptor signaling (2, 3). PIP3 also recruits 
the kinase Akt, a key promoter of cell survival, proliferation, dif-
ferentiation, and activation. PI3K/Akt dysregulation contributes 
to immunodeficiencies, autoimmune diseases, allergies, and 
cancer (4–11). In this review, we discuss how immune cells use 
inositolphosphates (IPs) as soluble analogs of PIP3 and other 
phosphoinositides to control the functions of their lipid counter-
parts and other important cellular processes (Table 1).

Evidenced by the phenotypes of mice lacking the hemat-
opoietically enriched PI3Kγ and PI3Kδ, reduced PIP3 signaling 
impairs most aspects of hematopoiesis, including hematopoietic 

stem cell (HSC) homeostasis and the development or function of 
T, B, and NK cells, myeloid mast cells, monocytes, granulocytes, 
and erythrocytes (4–9) (Figure  2). Limiting PIP3 signaling is 
particularly important, because excessive PIP3 function not only 
oppositely affects many of the same hematopoietic processes but 
can also transform lymphocytes and cause blood cancers. This is 
shown by the phenotypes of mice lacking the phosphoinositide-
phosphatases phosphatase and tensin homolog (PTEN) or 
SH2 domain-containing inositol-5-phosphatase-1 (SHIP-1), 
which canonically limit PIP3 function by dephosphorylating 
it back into PIP2, or into PI(3,4)P2, respectively (8) (Figure 1). 
Moreover, PTEN is a pivotal tumor suppressor, and SHIP-1 and 
PTEN cooperatively suppress B  cell lymphomagenesis (12). 
Besides SHIP-1, hematopoietic cells also express the closely 
related SHIP-2 (13–15). SHIP-2 dampens immunoglobulin-
receptor signaling in macrophages and mast cells (16, 17). Its 
functions in lymphocytes remain to be elucidated. Highlighting 
the translational importance of preventing PIP3 hyperactivity in 
hematopoietic cells, the PI3Kδ inhibitor Idelalisib is approved 
for treating relapsed chronic lymphocytic leukemia (CLL), fol-
licular B-cell non-Hodgkin lymphoma, and small lymphocytic 
lymphoma (18). Oncogenic PI3K mutations in 50% of human 
cancers, PTEN status as the second most-often mutated tumor 
suppressor gene in human cancers, and multiple efforts to 
therapeutically inhibit PI3K signaling for cancer, metabolic, 
and immune diseases further illustrate the broad therapeutic 
importance of preventing PIP3 hyperactivity (10, 11).

Adding a non-canonical perspective to the mechanisms 
controlling PI3K function, we and others found that PIP3 
activity in hematopoietic cells can also be dampened through 
antagonism with the soluble PIP3-analogs inositol(1,3,4,5)tet-
rakisphosphate (IP4, Figure 1) and inositol-heptakisphosphate, 
also called diphosphoinositol-pentakisphosphate (hereafter IP7) 
(22–27). Because IP4 is identical to the cytoplasm-exposed, PH 
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FigURe 2 | Phosphoinositide 3-kinase (PI3K) loss-of-function or gain-of-function affects multiple stages of hematopoietic development, and mature hematopoietic 
cells. Hematopoiesis originates from quiescent, long-lived, and pluripotent hematopoietic stem cells (HSC) which reside in BM (BM) niches with low-metabolic and 
cell cycle activity (26, 30). After occasional division and activation, HSC daughter cells can differentiate through multiple hematopoietic progenitor cell stages 
including multipotent progenitors (MPP) into lymphoid or myeloid lineages. During lymphopoiesis, MPP-derived common lymphoid progenitors (CLP) give rise to the 
T cell, NK cell, and B cell lineages. CLP can also generate subsets of dendritic cells (DC), in particular plasmacytoid DC (pDC). CLPs initiate the B/T cell lineages 
through early thymic progenitors (ETP) and pro-B cells, respectively. ETPs develop through CD4−CD8− (DN) and CD4+CD8+ (DP) stages into mature T cells. In the 
bone marrow, pro-B cells develop via pre-B cells into immature B cells. These translocate into the spleen to mature through transitional stages into mature B cells. In 
myelopoiesis, MPP-derived common myeloid progenitors (CMP) give rise to granulocyte–monocyte progenitors (GMP) which in turn generate granulocytes, 
monocytes, and mast cells. Alternatively, CMP can give rise to megakaryocyte–erythrocyte progenitors (MEP), which in turn generate megakaryocytes and 
erythrocytes. CMP can also generate common DC precursors, which in turn generate most DC subsets (31). The map indicates major hematopoietic progenitors 
and mature cell types that are negatively (red font) or positively (green font) affected in mice deficient for the indicated PI3K isoforms, SHIP-1, or PTEN (4–9, 26, 
30–34). Mixed red–green font indicates complex phenotypes with activation and inactivation components. Immune cells express multiple class I PI3K isoforms. 
Among those, mature T cell, B cell, NK cell, and mast cell functions or chemotaxis are particularly dependent on the protein tyrosine kinase-dependent receptor-
activated PI3Kδ with contributions by the GPCR-activated PI3Kγ (32, 33). Monocyte/macrophage and granulocyte chemotaxis is critically dependent on PI3Kγ, with 
contributions by PI3Kδ and, in macrophages and neutrophilic granulocytes, PI3Kβ (33, 35). DC require PI3Kγ and δ for various aspects of their function (33). For 
detailed recent reviews of PI3K isoform functions in hematopoietic cells, see Ref. (32, 33).
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domain-binding PIP3 headgroup, IP4 and PIP3 can compete for 
binding to the Akt PH domain. Similarly, IP7 can compete with 
PIP3 binding to PH domains (36, 37). Many PH domains bind 
PIP3 and IP4 with similar affinities, so IP4/PIP3 antagonism could 
be broadly relevant (1, 38). But how many PI3K functions are 
regulated by IP4 and IP7 remains a major open question (8, 38). 
We and others found that in HSC, T cell precursors, NK cells, and 
neutrophils, IP4 dampens PIP3 recruitment of Akt; IP7 dampens 
Akt recruitment in neutrophils (22–27). Other evidence suggests 
that IP4 may promote PIP3 function in thymocytes undergo-
ing positive selection (20, 21). IP4 has additional functions in 
preventing anergy and death in developing B cells, apoptosis in 
peripheral T cells, and monocyte hyperactivity that may be unre-
lated to PI3K (29, 39–44). An emerging common mechanism 

controlling these different processes is the inhibition of store-
operated Ca2+ entry (SOCE) through the plasma membrane by 
IP4, its metabolites, or the enzymes producing IP4.

IP4 is produced through phosphorylation of inositol(1,4,5)
trisphosphate (IP3) by four IP3 3 kinases, three of which belong 
to the inositol trisphosphate kinase family (Itpka, Itpkb, and 
Itpkc, Figure 1) (8, 45). Hematopoietic functions of the fourth 
IP3 3-kinase, inositol phosphate multikinase (IPMK), remain 
unknown. IP3 is an important second messenger that medi-
ates receptor-induced Ca2+ mobilization (46). Although many 
tissues can produce IP4, the hematopoietic system has proven 
particularly useful for elucidating its physiological functions. 
This may in part reflect a particularly high expression of the 
best studied IP3 3-kinase, Itpkb, in hematopoietic cells (8, 25). 
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FigURe 3 | Itpks control multiple aspects of hematopoiesis. Shown are aspects of hematopoiesis affected positively (green symbols and fonts) or negatively (red 
symbols and fonts) by inactivation of Itpkb or Itpkc. Pink, human diseases associated with loss-of-function (lof) alleles of ITPKC (Kawasaki disease, KD) or ITPKB 
(common variable immunodeficiency, CVID). Abbreviations: cKO, conditional, gKO, germline knockout mice; AICD, activation-induced cell death; BMDM, bone 
marrow-derived macrophages. Hematopoietic cell stages and pathways are explained in the legend to Figure 2. For more details and references, see text. Mast 
cells express Itpkb and produce IP4 after stimulation (53). Small-molecule Itpk inhibition might augment their activation (54, 55), but the target selectivity of the 
low-affinity Itpk inhibitors used is unknown and genetic studies are needed. Adapted with permission from Ref. (8).
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Itpkb is a major producer of IP4 in leukocytes, and several studies 
have used Itpkb−/− mice to show that IP4 deficiency profoundly 
affects hematopoietic cell development, homeostasis, survival, 
and function (Figure 3) (20–23, 25, 26, 28, 29, 39, 41–43, 47, 48). 
Itpkb is also abundant in the brain, which co-expresses Itpka. 
Itpka is not abundant in immune cells. Itpka deficiency caused 
neurological phenotypes in mice without reported immune 
defects (49, 50). No significant neurological phenotypes have 
been reported in Itpkb−/− mice (8, 45). Loss of the more broadly 
expressed Itpkc in mice hyperactivated macrophages and wors-
ened coronary arteritis in a mouse model for Kawasaki disease 
(KD) (44), but did not affect other immunocytes as far as studied 
(44, 47, 51). But reduced ITPKC function in humans may hyper-
activate T  cells, B  cells, and monocytes and promote KD (40, 
44). Itpka/b mRNA expression is not affected by immunocyte 
activation, and Itpk expression profiles are overall comparable 
between mice and humans (15, 25, 52). Phorbol-12-myristate-
13-acetate/ionomycin upregulated ITPKC mRNA in human 
PBMC and other cells (40).

IP7 can be produced in several steps from IP4 or other precur-
sors (8, 45). Among the required enzymes, deficiency in inositol 
hexakisphosphate kinase-1 (IP6K1) has unveiled important IP7 
roles in dampening Akt function in neutrophils (24). IP4 and 
IP7 can both be metabolized into various other soluble IPs with 
unknown functions in lymphocytes, several of which were found 
in T cells (8, 45, 56).

Below, we review the impact of soluble IPs on hematopoietic 
cells in detail and discuss current models for how these interesting 
molecules can have such diverse functions (Table 1). Available 
data suggest that IP4 primarily engages two distinct mechanisms: 
non-canonical PIP3 antagonism to dampen PI3K signaling, and 
dampening of SOCE to restrict Ca2+ mobilization.

NON-CANONiCAl ANTAgONiSM BY iP4 
PReveNTS eXCeSSive Pi3K SigNAliNg 
iN HeMATOPOieTiC CellS

Itpkb loss in mice causes either hyperactive or loss-of-function 
(lof) phenotypes in hematopoietic cells (Figure 3). Interestingly, 
most of the hyperactivation phenotypes appear to result at least 
in part from Akt hyperactivity due to reduced IP4 antagonism 
with PIP3.

iP4 limits Neutrophil Function
The intriguing functions of Itpkb and IP4 as physiologi-
cal antagonists of PI3K and PIP3 upstream of Akt were first 
described when the Luo and Schurmans labs characterized 
Akt gain-of-function phenotypes in Itpkb−/− neutrophilic 
granulocytes, an important component of the innate immune 
system (Figures 1 and 4) (57). Among Itpks, neutrophils mainly 
express Itpkb (8, 57). Stimulation with chemoattractants such 
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FigURe 5 | Itpkb controls immune cell biology by dampening store-operated 
Ca2+ entry (SOCE). Several studies suggest that in peripheral T cells, 
developing and mature B cells, neutrophils and macrophages, Itpkb or Itpkc 
dampen SOCE through Orai channels (23, 39–42, 44, 59). This may be 
required for T cell viability, for preventing B cell anergy, and for ensuring 
neutrophil function. The ability of an exogenously provided cell-permeable 
IP4-ester to reduce SOCE very quickly after administration would be 
consistent with direct SOCE inhibition through IP4 (39, 59). However, variably 
affected ER store release and previously published, complicated roles for 
Itpks, IP3, IP4, and IP4 metabolites in controlling Ca2+ mobilization in 
mammalian cells could point to alternate mechanisms and possible other 
effectors (8, 45, 60, 61). For more detailed discussions, see text.

FigURe 4 | Non-canonical antagonism between phosphoinositide 3-kinase 
(PI3K) and Itpkb or inositol hexakisphosphate kinase-1 (IP6K1) controls 
multiple aspects of hematopoiesis. PI3K and Itpkb convert the analogous 
substrates PIP2 and IP3 into the analogous products PIP3 and IP4, 
respectively. By competing with PIP3 for Akt pleckstrin homology domain 
binding, IP4 then dampens PI3K-mediated Akt activation and signaling via 
mammalian or mechanistic target of rapamycin (mTOR). This ensures 
hematopoietic stem cell (HSC) homeostasis and function, warrants 
appropriate GMP/neutrophil and NK cell production and function, and 
establishes the Notch-dependence and kinetics of thymocyte β-selection  
(22, 23, 25–27). In neutrophils, IP6K1 can also antagonize PI3K activation  
of Akt by producing the additional PIP3 analog IP7 (24).
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as N-formyl-methionyl-leucyl-phenylalanine (fMLP) induced 
IP3 3-kinase activity and IP4 accumulation in neutrophils (23, 
57, 58). Upon stimulation with fMLP or the complement fac-
tor C5a, bone marrow (BM)-derived neutrophils (BMN) from 
Itpkb−/− mice showed increased chemotaxis and superoxide 
production correlated with Akt hyperphosphorylation and actin 
hyperpolymerization (57). Akt PH domain–GFP fusion proteins 
co-precipitated IP4, IP5, and IP6. Treatment with cell-permeable 
IP4 had opposite effects to Itpkb knockout on neutrophils and 
inhibited fMLP-induced Akt PH domain membrane recruitment 
in HL60 promyelocytic leukemia cells. This suggested that Itpkb 
dampens chemoattractant-induced neutrophil activation, prob-
ably by producing IP4 which then competes with PIP3 or PI(3,4)
P2 to inhibit Akt membrane recruitment and activation. Although 
elevated PI3K/Akt signaling promotes neutrophil viability (23), 
Itpkb−/− BMN had reduced viability in vitro (22). Thus, Itpkb loss 
probably caused additional defects in neutrophils. Indeed, despite 
initially reported normal fMLP-induced Ca2+ responses in 
Itpkb−/− neutrophils (22), follow-up work showed decreased Ca2+ 
store-release but enhanced SOCE (Figure 5) (22, 23, 57). It will 
be interesting to study if defective Ca2+ mobilization underlies the 
reduced viability.

The effects of Itpkb loss on in vivo neutrophil function were 
more complicated. In an acute peritonitis model, neutrophil 
recruitment into inflamed peritoneal cavities was augmented, but 
clearance of the injected bacteria was normal or slightly decreased 
even though in vitro, Itpkb−/− neutrophils killed serum-opsonized 
bacteria better than wild-type neutrophils (23, 57). The discrep-
ancy likely reflects a reduced content of opsonizing IgG in the 
serum of Itpkb−/− mice due to defects in B cell function (29, 39, 
41). Indeed, serum from Itpkb−/− mice facilitated killing of bacte-
ria less efficiently than wild-type serum (23). Taken together, the 
data suggest that Itpkb limits neutrophil function, but the physi-
ological consequences are complicated by contributions of defects 
in other immune cells in germline Itpkb−/− mice, and by diverse 
effects of Akt hyperactivation, Ca2+ dysregulation, and possibly 
other perturbed Itpkb/IP4 functions (8). Phenotypic similarities 

between Itpkb−/− and PTEN−/− mice include Akt hyperactivation, 
variably elevated migration, lung or peritoneal recruitment, 
superoxide production, and bacterial killing (62–65). They are 
consistent with a PI3K-counteracting Itpkb function. Phenotypic 
discrepancies such as the elevated viability of PTEN−/− neutro-
phils, or massive neutrophil organ-infiltration despite strongly 
impaired in  vitro polarization and motility in SHIP−/− mice  
(62, 66, 67) might be explained by the aforementioned factors, 
or by distinct PTEN or SHIP functions that are unaffected by 
IP4 (25, 26). For example, SHIP-1 loss increases PIP3 levels but 
may also reduce production of its PH domain-binding product 
PI(3,4)P2, or perturb SHIP-1 scaffolding functions and protein 
interactions mediated by its adaptor domains (68). PTEN-loss 
causes PIP3 accumulation but may also reduce the levels of its 
product PI(4,5)P2, a PLC-substrate and protein ligand (69). IP4 
can serve as a substrate for PTEN and SHIP-1 in vitro (8). Thus, 
the phenotypes of SHIP-1−/− and PTEN−/− mice might involve IP4 
accumulation, which could limit the PI3K hyperactivation caused 
by loss of the PIP3 phosphatases. Moreover, PIP3 controls multiple 
effectors beyond Akt that can be differentially impacted by IP4, 
Itpks can have IP4-unrelated functions such as actin-bundling or 
removing IP3, and Itpkb can control different effectors depending 
on cell type and context. We discuss these possibilities in detail in 
Section “Conclusion and Perspectives.”

itpkb limits Myelopoiesis From gMP
Beyond neutrophil hyperactivation, Itpkb−/− mice also showed 
increased neutrophil production and peripheral blood numbers. 
This was associated with increased granulocyte–monocyte 
progenitor (GMP) proliferation and expansion and suggests that 
Itpkb restricts myeloid differentiation (22) (Figures  3 and 4). 
Hematopoietic progenitor cell-enriched BM  cells from Itpkb−/− 
mice showed increased phosphorylation (activation) of Akt and 
its substrate, the cell-cycle inhibitor p21Cip1. Phosphorylation by 
Akt decreases cell cycle inhibition by p21Cip1, suggesting that Akt 
hyperactivation promotes GMP expansion by inhibiting p21Cip1. 
Consistent with this view, Akt is essential for myelopoiesis and 
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can promote neutrophil and monocyte development (5, 26). 
While not formally proven, it is tempting to draw on the recently 
published HSC regulation by IP4 (26) and speculate that Itpkb 
limits GMP expansion and neutrophil production through IP4 
antagonism with PIP3 for Akt PH domain binding and recruit-
ment (Figure  4). To confirm this, conditional Itpkb disruption 
in GMP and phenotype-rescue studies with cell-permeable IP4 
or Akt inhibitors will be important. Such studies can also rule 
out that the GMP phenotype results in part from the earlier HSC 
mobilization, or indirectly from the defective hematopoiesis and 
lymphopenia in Itpkb−/− mice (26).

itpkb Dampens NK Cell Function
Other innate immunocytes highly impacted by intrinsic Itpkb 
loss are NK cells. These recognize and then kill virus-infected or 
cancer cells through imbalanced signaling by activating (aNKR) 
and inhibitory (iNKR) NK  cell receptors [references in Ref. 
(25)]. iNKR engagement prevents inappropriate NK cell attack of 
normal body cells (70, 71). Virus infection or malignant trans-
formation often downregulate iNKR ligands or upregulate aNKR 
ligands on target cells. The result is NK cell activation, the release 
of cytolytic granules, and secretion of pro-inflammatory cytokines 
and chemokines such as IFNγ. All aNKRs ultimately activate PI3K 
and/or phospholipase-Cγ (PLCγ). PI3K inactivation impairs 
NK cell maturation, IFNγ production, and cytotoxicity (1, 72–74).

aNKR ligation induced IP4 production in NK cells (75). Given 
the importance of PI3K in NK cells and the ability of IP4 to antago-
nize it, we assessed how loss of Itpkb and thus IP4 affects NK cells 
in Itpkb−/− mice. We found that Itpkb loss cell-autonomously elic-
ited a more immature NKR repertoire and a reduced fraction of 
CD11b+CD27− most mature, long-lived NK cells compared with 
wild-type mice (25). Itpkb loss also increased the proportion of 
NK cells responding to NKR engagement and augmented effector 
functions, including IFNγ production, cytolytic granule release, 
and in vivo clearance of target cells lacking iNKR-engaging major 
histocompatibility complex I molecules. This was, at least in part, 
caused by defective dampening of PI3K-mediated Akt activation 
by IP4, because Itpkb−/− NK cells contained hyperactive Akt and 
treatment with cell-permeable IP4 or selective Akt- or PI3K 
inhibitors reversed both their Akt hyperactivation and hyperde-
granulation (25). These data suggest that IP4 cell intrinsically pro-
motes NK cell terminal maturation and acquisition of a mature 
NKR repertoire, but limits mature NK cell effector functions, in 
part by dampening Akt activity. Thus, non-canonical antagonism 
of PIP3 and IP4 is part of the important mechanisms preventing 
NK  cell hyperactivity (Figure  4). Their limited understanding 
is a barrier to the development of safe and efficacious NK cell 
immunotherapies for cancer and virus infections (76, 77). In the 
future, it will be interesting to study possible IP4 roles in NK cell 
tolerance and to determine whether the Itpkb−/− NK cell pheno-
type arises exclusively from Akt hyperactivation or involves the 
deregulation of other NK cell-expressed PIP3 effectors, including 
Tec kinases or the guanine nucleotide exchange factor Vav (25).

Consistent with a PI3K gain-of-function phenotype in 
Itpkb−/− mice, loss of the NK cell-expressed PI3Kγ/δ caused an 
overall opposite phenotype with less CD11b+CD27+ NK  cells, 
abnormal NKR repertoires, and reduced NKR-mediated IFNγ 

production and target cell lysis due to impaired NKR signaling 
and NK cell migration (1, 72–74). One important difference is 
that Itpkb promotes NK cell maturation but limits effector func-
tions whereas PI3K promotes both processes (72–74). It will be 
important to elucidate the mechanistic underpinnings of this 
dichotomy. Among the PI3K-counteracting PIP3 phosphatases, 
SHIP-1 deficiency caused NKR repertoire changes distinct from 
those in Itpkb−/− mice and impaired effector functions includ-
ing IFNγ secretion despite Akt hyperactivation (74, 78–81). 
However, the results were complicated by genetic background 
dependencies and NK  cell dependence on both intrinsic and 
extrinsic SHIP-1 (82). PTEN knockdown in human NK  cells 
mildly elevated cytolytic activity; PTEN overexpression reduced 
cytolysis by human and murine NK cells through mechanisms 
involving impaired immunological synapse formation without 
altering NK cell development and NKR repertoire in mice (83). 
However, overexpression artifacts may likely contribute to these 
differences from PI3K−/− mice. In another study, conditional 
PTEN deletion in murine NK cells did not strongly affect their 
maturation and NKR-induced IFNγ production, but caused 
NK cell hyperproliferation and hyperresponsiveness to the mobi-
lizing chemoattractant S1P along with variable Akt/mammalian 
or mechanistic target of rapamycin (mTOR) hyperactivation. 
This resulted in premature BM egress and reduced lymphoid 
organ and liver, but elevated peripheral blood and lung NK cell 
numbers (84). Consistent with impaired tissue homing or -reten-
tion, PTEN−/− NK cells had an impaired ability to migrate to dis-
tal tumor sites, but cleared blood-borne tumor cells better than 
wild-type NK cells. The effects of Itpkb loss on NK cell migration 
remain to be elucidated. Based on the PTEN−/− phenotype and 
known PI3Kδ requirements for NK cell migration (1, 72–74), it 
will be interesting to study if reduced tissue homing or -retention 
contributes to the mildly reduced splenic NK  cell numbers in 
Itpkb−/− mice (25). The NK cell phenotypic differences between 
SHIP−/− or PTEN−/− and Itpkb−/− mice could involve the factors 
discussed above in the neutrophil section, or NK cell-extrinsic 
contributions whose elimination requires conditional knockouts. 
Altogether, more detailed mechanistic and genetic studies to 
better discern the interplay between Itpkb, SHIP, and PTEN in 
controlling PI3K function in NK cells should prove exciting.

itpkb is Required for HSC Quiescence  
and longevity
To warrant life-long hematopoiesis, HSC homeostasis must be 
tightly balanced between quiescence and activation (Figure 6). 
Persistent activation reduces HSC life span and pluripotency. This 
can cause immunodeficiencies, anemia, hematopoietic failure, 
blood cancer, and death (30).

Phosphoinositide 3-kinase is a key regulator of HSC homeo-
stasis. PI3K, Akt, and downstream mTOR complex-1 (mTORC1) 
are required for HSC self-renewal and function, but also mediate 
HSC activation and mobilization out of their niches by stresses 
such as BM injury, blood loss, or treatment with cytostatics or 
cytokines. This serves to transiently increase hematopoiesis and 
augment immunocyte or erythrocyte production. Upon resolu-
tion of the stress, PI3K inactivation is required for HSC re-entry 
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FigURe 6 | Hematopoietic stem cell (HSC) homeostasis is an exquisitely 
phosphoinositide 3-kinase (PI3K)-dependent process controlled by Itpkb. To 
ensure live-long hematopoiesis, HSC reside in BM niches and have low 
metabolic and cell cycle activity. As a consequence, HSC are long-lived and 
pluripotent. Stresses including BM injury, blood loss, exposure to cytostatic 
drugs or cytokines such as G-CSF or type 1 interferons activate and mobilize 
HSC to leave the BM niches, become metabolically active and proliferate. 
Some HSC daughter cells then differentiate into hematopoietic progenitors 
(Figure 2). As a consequence, activated HSC are short-lived and loose their 
pluripotency. This serves to rapidly replenish hematopoietic cells in a crisis or 
after HSC transplantation, but persistent HSC activation can lead to HSC 
damage and exhaustion, ultimately causing BM failure, anemia, 
immunodeficiencies, or blood cancer (85–87). To prevent this, resolution of 
HSC-activating stresses normally reverts them into quiescence once the 
activating stimuli subside. A key mediator of HSC activation that needs to be 
inactivated for re-entry into quiescence is PI3K signaling via Akt and 
downstream mammalian or mechanistic target of rapamycin (mTOR). In 
addition, we have identified Itpkb as a promoter of HSC quiescence and 
homeostasis that acts at least in part by inactivating Akt in HSC (26, 30).
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into quiescence. Excessive PI3K/Akt activity transiently expands 
HSC, followed by depletion and reduced long-term repopulating 
capability associated with variable myeloproliferative disease, 
T-cell acute lymphoblastic (T-ALL) or acute myeloblastic (AML) 
leukemia (30). Thus, PI3K/Akt activity in HSC needs to be tuned 
into an appropriate window. Although both PTEN and SHIP 
have been implicated, the relative importance of HSC-extrinsic 
vs. -intrinsic PTEN remains controversial, and SHIP-1 may pri-
marily control HSC homeostasis extrinsically by acting in niche 
cells to prevent production of HSC mobilizing factors and ensure 
production of HSC-attracting CXCL12 (88).

Because HSC express Itpkb (22, 26), we hypothesized that 
Itpkb might dampen PI3K/Akt signaling in HSC through PIP3/IP4 
antagonism to ensure their longevity. Supporting this view, young 
Itpkb−/− mice accumulated phenotypic HSC with a less quiescent, 
hyperproliferative phenotype (26). Itpkb−/− HSC underexpressed 
genes associated with stemness and quiescence, but overexpressed 
activation and differentiation-associated genes. They could home 
into the BM but had reduced persistence and colony-forming 
activity in vitro. In vivo, Itpkb−/− HSC had a massively reduced com-
petitive long-term repopulating potential. Consistent with severely 
defective HSC longevity, aging Itpkb−/− mice lost HSC and other 
hematopoietic progenitors, and died prematurely with anemia (26).

Increased stem cell factor-mediated Akt/mTORC1 activation 
in Itpkb−/− HSC in vitro that could be prevented by treatment 

with cell-permeable IP4 or a small-molecule Akt inhibitor, 
and elevated mTORC1 activity in HSC in Itpkb−/− mice sug-
gested that Itpkb dampens PI3K/Akt signaling in HSC via 
IP4. Moreover, Itpkb−/− HSC upregulated gene sets associated 
with Akt/mTORC1 hyperactivity, oxidative phosphoryla-
tion, and protein biosynthesis (26). HSC quiescence requires 
dampened protein biosynthesis and upstream PI3K/mTOR 
signaling (89). This suggests that the activation of Itpkb−/− 
HSC was at least in part caused by exaggerated metabolic 
activation and protein biosynthesis. Supporting this view, 
injection of the mTOR inhibitor rapamycin reversed the HSC 
hyperproliferation in Itpkb−/− mice (26). We proposed that 
Itpkb limits cytokine and PI3K/Akt/mTOR signaling in HSC 
to ensure longevity and prevent BM failure (Figures 4 and 6)  
(26, 30). Thus, Itpkb is a critical component of the mechanisms 
which tune PI3K activity in HSC appropriately to balance qui-
escence and activation.

The transient expansion but later depletion of HSC in 
Itpkb−/− mice is reminiscent of the phenotypes resulting from 
PTEN inactivation or expression of dominant-active Akt 
(90–92). However, T-ALL and AML have not been reported in 
Itpkb−/− mice (30). In addition, rapamycin reversed the HSC 
hyperproliferation in Itpkb−/− mice but did not rescue their 
colony-forming activity (26). The reasons remain to be deter-
mined, but could include differential effects of Itpkb inactiva-
tion, Akt activation, or PTEN loss on PI3K signaling in HSC, 
or, alternatively, a premature death of Itpkb−/− mice due to either 
anemia (26) or infections secondary to immunodeficiency (47) 
before blood cancer can develop. Itpkb loss might also impair 
signaling mechanisms required for colony-forming activity or 
cell transformation that are distinct from PI3K/mTORC1. But, 
rapamycin also reduced wild-type HSC colony-forming activ-
ity (26), and genetic studies suggest mTORC1 requirements 
for HSC regeneration and function (30). This might explain 
the difficulty of rescuing Itpkb−/− HSC function with mTORC1 
inhibitors. More detailed biochemical and genetic studies will 
be needed to fully elucidate how Itpkb controls HSC biology. In 
particular, conditional Itpkb disruption in HSC and large mouse 
cohorts may help clarify whether Itpkb loss can transform blood 
cells, and whether HSC-extrinsic Itpkb inactivation contributes 
to the HSC defects in Itpkb−/− mice (30).

itpkb is Required for Thymocyte  
β-Selection by Dampening  
Akt/mTORC1 Function
Recently, we found that beyond innate immunocytes, the para-
digm of Itpkb/PI3K antagonism upstream of Akt also applies to 
adaptive T lymphocytes (27). T cells develop in the thymus from 
HSC/CLP-derived early thymocyte progenitors (ETPs) through 
several CD4−CD8− “double negative” (DN) stages into CD4+CD8+ 
“double positive” (DP) thymocytes which then develop into CD4+ 
and CD8+ T cells (93, 94) (Figures 3 and 7A). To generate a diverse 
T  cell repertoire reactive against many pathogens, the T  cell 
receptor (TCR) α and β chain genes somatically rearrange in DN 
thymocytes. Productive rearrangement of one TCRβ-allele causes 
surface expression of a pre-TCR comprised of TCRβ, invariant 
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FigURe 7 | Non-canonical antagonism of phosphoinositide 3-kinase (PI3K) by Itpkb delays thymocyte β-selection and renders it Notch dependent. (A) T cells 
develop in the thymus from HSC and CLP-derived early thymocyte progenitors (ETPs) through several successive CD4−CD8− “double-negative” stages (DN2-DN4) 
and a CD8+ immature single-positive (ISP) stage into CD4+CD8+ double-positive (DP) thymocytes (93, 94). DP cells then undergo positive and negative selection to 
mature into CD4+ or CD8+ T cells. At the DN3a stage, expression of a pre-T cell receptor (TCR) composed of an invariant pre-TCRα (pTα) chain and a fully 
rearranged TCRβ chain triggers metabolic activation, proliferation, survival, β chain allelic exclusion, the initiation of TCRα chain somatic gene rearrangements, 
acquisition of the α/β T cell fate, and developmental progression to the DP stage. DP thymocytes express a mature TCR composed of fully rearranged α and β 
chains. The DN3-to-DP transition requires pre-TCR and costimulatory Notch signals. This process is termed β-selection, because it allows only DN3 cells expressing 
a functional TCRβ chain to survive and mature. (B) Based on studies in Itpkb−/− mice, we recently proposed a model in which pre-TCR and Notch signaling both 
activate PI3K to produce PIP3 in DN3 cells. PIP3 then recruits and activates Akt to increase glucose metabolism via the Akt/mammalian or mechanistic target of 
rapamycin (mTOR) pathway. This is required for β-selection. However, pre-TCR signaling also activates Itpkb to produce IP4, which competes with PIP3 for Akt 
pleckstrin homology domain binding and limits Akt recruitment and signaling in pre-TCR expressing DN3 cells. By limiting downstream glucose metabolism, this “IP4 
brake” delays the kinetics of β-selection and renders this process dependent on Notch costimulation (27). (C) Without Itpkb, IP4 no more dampens Akt activation. In 
the presence of Notch signals, Akt is now hyperactivated and causes an accelerated DN3-to-DP cell differentiation (indicated by bold arrows). (D) In absence of 
Itpkb, pre-TCR signaling alone sufficiently activates Akt/mTOR to trigger DP cell development without Notch engagement (27).
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pre-TCRα, and signal-transducing CD3 subunits on DN3a cells 
(95). If a pre-TCR is functional, its ligand-independent signaling 
triggers DN3 cell metabolic activation, proliferation and survival, 
allelic exclusion of the second TCRβ allele, initiation of TCRα 
gene rearrangements, and differentiation via CD8+ immature 
single-positive (ISP) into DP cells (93, 94). This “β-selection” 
ensures that only DN3 cells expressing a functional TCRβ chain 
develop further. It is the major cell-fate determining event for 
αβ T cells. Defective β-selection causes a DN3-block and severe 
immunodeficiency (4, 95).

β-Selection requires pre-TCR and co-stimulatory Notch 
signals, which promote DN3 cell metabolism, growth, survival, 
proliferation, and differentiation. Excessive Notch signaling, 
however, causes T-ALL. This is augmented by pre-TCR signals 
(6, 95–100). So, like cytokine signaling in HSC, pre-TCR/Notch 
signaling in DN3 cells needs to be tuned into an appropriate 
intensity window.

Both pre-TCR and Notch activate PI3K/Akt (4, 6, 97) 
(Figure  7B). PI3K/Akt are essential and rate limiting for 
β-selection by promoting glycolysis, proliferation, survival, and 
differentiation (6, 101–103). Pinpointing a need to limit PI3K/
Akt signaling in DN3 cells for β-selection and its dependence on 
both pre-TCR and Notch, conditionally Pten−/− DN cells showed 
constitutively active Akt and accelerated development to DP 
cells. They could generate DP cells without pre-TCR or Notch 
signaling (104–108). But many details about how pre-TCR and 
Notch crosstalk via PI3K are controversial, and it remains unclear 
why pre-TCR signaling alone is insufficient for β-selection (4, 6, 
108). The ability of IP4 to antagonize PIP3 binding to Akt and 
documented Itpkb expression and activation by TCR signaling 
in thymocytes (20, 28, 47, 48) prompted us to explore a role for 
Itpkb in this process.

We found that Itpkb−/− DN3 cells were pre-TCR hyperrespon-
sive with Akt/mTOR-hyperactivation and metabolic hyperactivity 
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(27). Mixed BM chimeras and in  vitro studies showed a DN3 
cell-intrinsic Itpkb requirement. In vitro and in  vivo, Itpkb−/− 
DN3 cells showed an accelerated and Notch independent, but 
pre-TCR dependent differentiation into DP cells with wild-type 
like proliferation and viability. Pharmacological inhibition of Akt, 
mTOR, or glucose metabolism restored wild-type developmental 
kinetics and the Notch dependence of Itpkb−/− DN3 cells in fetal 
thymic organ cultures or OP9/OP9-DL1 cell co-cultures. Finally, 
Itpkb codisruption enabled the CD3-induced development of 
Rag2−/− DN3 cells into ISP and DP cells in mice injected with a 
γ-secretase inhibitor which blocks Notch signaling and impaired 
the maturation of Itpkb+/+Rag2−/− DN cells in vivo (27). So, Itpkb 
loss in DN3 cells reduced the Notch dependence of DN thymo-
cyte development to DP cells in vitro and in vivo.

Itpkb−/− thymocytes had strongly reduced IP3 3-kinase activ-
ity and IP4 levels, but normal IP3 levels and Ca2+ mobilization 
(20, 28, 47). Based on the IP4/PIP3 antagonism in other immuno-
cytes, we proposed that pre-TCR induced IP4/PIP3 antagonism 
governs β-selection by restricting PI3K/Akt/mTOR signaling 
and metabolic activation (27). In our model, Itpkb controls pre-
TCR/Notch crosstalk through combined restriction of pre-TCR 
induced and Notch induced PI3K/Akt signaling (Figure  7B). 
This ensures that Akt is only activated to the extent needed for 
β-selection and only in an appropriate context: pre-TCR+ DN3 
cells interacting with Notch-ligand expressing stromal cells 
in the thymus (93). This prevents premature differentiation. 
Without Itpkb, excessive Akt signaling accelerates DN3-to-DP 
development (Figure 7C). In the absence of Notch, Itpkb loss 
enables pre-TCR signaling alone to suffici ently activate Akt 
to rescue DN3-to-DP thymocyte development (Figure  7D). 
Altogether, non-canonical Itpkb antagonism with PI3K both 
delays thymocyte β-selection and renders it Notch-dependent.

Interestingly, Itpkb has distinct functions from SHIP and 
PTEN in β-selection. SHIP-1−/− early thymocytes develop nor-
mally (109). Conditionally Pten−/− DN cells have constitutively 
active Akt and generate DP cells without pre-TCR or Notch 
signaling (104–107). And constitutively active Akt allows DN3-
to-DP cell development without pre-TCR or Notch-signaling, 
but not without both (97, 103, 105, 110). Notch may promote 
β-selection in part by inducing HES1 to repress PTEN, and 
c-Myc to promote proliferation (107). By contrast, Itpkb loss 
accelerates DN3 cell differentiation without significant effects 
on proliferation and viability, and overcomes the dependence 
of β-selection on Notch but not the pre-TCR (27). We hypoth-
esize that the latter reflects the requirement for TCR signals to 
activate Itpkb and produce IP4 (28, 47, 48). Without pre-TCR 
signals, Itpkb is inactive and its loss has no further effect. Itpkb 
loss might also reduce less essential positive Itpkb roles in pre-
TCR signaling, such as promoting Itk activation (20, 111). The 
PI3K-independent c-Myc induction by Notch (107) should be 
unaffected by IP4. This might explain why Itpkb loss overcomes 
Notch requirements and accelerates DN3 cell differentiation but 
not proliferation. The surprising lack of increased DN3/DN4 
cell viability in Itpkb−/− mice might reflect differing degrees of 
Akt/mTOR hyperactivation in Pten−/−, dominant-active Akt1-
expressing, and Itpkb−/− DN3/DN4 cells (27). Finally, the mecha-
nistic differences between Itpkb, PTEN, and Notch regulation of 

β-selection, and the aforementioned death due to hematopoietic 
failure or infections (26, 47) might explain why Itpkb−/− mice 
do not present the leukemias/lymphomas caused by excessive 
signaling of Notch, PI3K, or Akt in DN3 cells (6, 95, 98). It will 
be interesting to study if combined deficiency in Itpkb and PTEN 
or SHIP causes earlier blood cancer development and increases 
its incidence.

Wrapping up this section, neutrophils, NK cells, HSC, DN3 
thymocytes, and likely GMP provide examples where non-
canonical antagonism of Itpkb and PI3K/Akt controls important 
physiological processes (Figure  4). Thus, IP4 antagonism with 
PIP3 is broadly important at least in hematopoietic cells. One 
major downstream process is metabolism, although other PIP3-
regulated processes likely contribute depending on cell type and 
context. Additional roles for PIP3-independent functions of IP4 
and Itpkb cannot be ruled out (8, 45). Consistent with these pos-
sibilities, the precise effects of Itpkb, SHIP, or PTEN inactivation 
in hematopoietic cells often differ. This underscores the distinct 
importance of Itpks and IP4 in controlling hematopoiesis.

iP7 MAY ANTAgONiZe Pi3K iN 
NeUTROPHilS

Besides IP4, IP7 produced by IP6Ks can also compete with 
PIP3 for PH domain binding to dampen PI3K function. This 
was first shown in vitro and in Dictyostelium discoideum where 
IP6K1 deletion enhanced the membrane translocation of several 
PH domain-containing proteins and augmented downstream 
chemotactic signaling (36). A later study showed that through 
the same mechanism, IP6K1 and IP7 dampen Akt function in 
skeletal muscle, white adipose tissue and liver cells to limit insulin 
sensitivity (37). In IP6K1−/− mice, these organs showed elevated 
Akt/mTOR and reduced GSK3β signaling, resulting in insulin 
hypersensitivity and resistance to high-fat diet or aging-induced 
obesity. By contrast, IP7 treatment inhibited Akt phosphorylation 
and activation by PDK1 in a PH domain-dependent manner.

Expanding on these findings, the Luo lab demonstrated that 
IP7 can also dampen PIP3 signaling in neutrophils (24) (Figure 4). 
Neutrophils from IP6K1−/− mice or human neutrophils treated 
with a pharmacological IP6K1 inhibitor showed Akt hyperactiva-
tion after fMPL treatment, enhanced PIP3-mediated membrane 
recruitment of an ectopically expressed Akt PH domain, elev-
ated phagocytic and bactericidal activity, and augmented Akt-
dependent, NADPH-oxidase mediated superoxide production 
compared to wild-type or untreated neutrophils, respectively. By 
contrast, overexpression of wild-type but not catalytically inac-
tive IP6K1 in neutrophil-like differentiated HL60 cells (dHL60 
cells) caused IP7 overproduction and suppressed fMLP-induced 
Akt activation, membrane recruitment, and downstream super-
oxide production. And exogenous IP7 blocked PI3K-dependent 
superoxide production in neutrophils. Suggesting physiological 
relevance of these findings, IP6K1−/− mice had elevated perito-
neal ROS but reduced intraperitoneal bacterial counts in two 
different acute peritonitis models at early timepoints post-
bacterial infection when macrophages and lymphocytes are 
not yet recruited. This occurred despite attenuated peritoneal 
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neutrophil accumulation, possibly secondary to accelerated bac-
terial clearance or chemoattractant deactivation by the elevated 
ROS. Surprisingly, IP6K1−/− neutrophils showed wild-type like 
cell adhesion, directionality, migration velocity, and recruitment 
to the peritoneal cavity upon adoptive transfer and had wild-type 
like viability in vitro, although these processes are PI3K depend-
ent. This somewhat contrasts with the effects of PTEN loss in neu-
trophils and clould reflect different regulation of PI3K by PTEN 
and IP6K1 in these, non-redundant PI3K dampening by Itpkb in 
neutrophils, or the surprising but incomplete drop in neutrophil 
IP7 levels after fMLP stimulation (24). Comparing PIP3 vs. IP4 
vs. IP7 amounts and resulting PI3K/Akt activity in neutrophils 
lacking PTEN vs. IP6K1 vs. Itpkb might further elucidate how 
differential PIP3 antagonism by these enzymes impacts nuances 
of PI3K signaling.

Despite similarly increased fMPL-induced Akt recruitment 
and superoxide production, Itpkb−/− and IP6K1−/− neutrophils 
showed several phenotypic differences. In particular, Itpkb−/− 
neutrophils had reduced in vitro viability, increased chemotaxis 
and peritoneal recruitment, and normal-to-reduced bacterial 
clearance in  vivo (22, 57). By contrast, IP6K1−/− neutrophils 
showed unimpaired in vitro viability, migration, and peritoneal 
recruitment but improved bacterial clearance (24). The mecha-
nistic underpinnings of these differences remain to be elucidated. 
It is tempting to speculate that they include the normal vs. 
elevated Ca2+ mobilization in IP6K1−/− vs. Itpkb−/− neutrophils 
(23, 24, 112), and potential differences in the serum content of 
opsonizing IgG due to defective B cell functions in Itpkb−/− mice 
(29, 39, 41). Whether IP6Ks and IP7 have functions in B cells is 
unknown. Moreover, without conditional knockout mice, dif-
ferential contributions of possible phenotypes in other immune 
cells cannot be ruled out but might explain the improved bacterial 
clearance in IP6K1−/− mice despite attenuated neutrophil perito-
neal accumulation (24). Partial redundancy between IP6K1 and 
the also neutrophil-expressed IP6K2 is another possibility (24). 
In addition, IP7 can bind multiple proteins including epigenetic 
regulators, and contrasting with IP4 can serve as a non-enzymatic 
protein phosphorylating agent (113–115). It remains to be eluci-
dated whether these functions play roles in neutrophils. Finally, 
Ip6k1-mediated inorganic polyphosphate production in platelets 
promoted alveolar neutrophil accumulation during bacterial 
pneumonia (116). Distinct features of IP6K1 regulation in neu-
trophils, and of IP7 vs. inorganic polyphosphates, IP4 and PIP3 
may also explain differences between the neutrophil phenotypes 
of IP6K1−/−, PTEN−/− (63–65), and SHIP−/− mice (62, 117), sum-
marized above in the Itpkb section and in Ref. (112).

iP4 MAY PROMOTe Pi3K SigNAliNg  
TO eNABle THYMOCYTe POSiTive 
SeleCTiON

The first hematopoietic defect in Itpkb−/− mice reported indepen-
dently by the Schurmans/Erneux group and us was a severe T cell 
deficiency resulting from blocked thymocyte development at the 
DP stage (28, 47) (Figure 3). Studying the underlying molecular 
defect, we found evidence that IP4 may promote the PIP3-mediated 

membrane recruitment and activation of Itk downstream of the 
TCR by acting as a soluble PIP3 analog that binds the Itk PH 
domain and promotes PIP3 binding (20) (Figure 8). This was the 
first demonstration that IP4 has an important in vivo function 
and can act as a physiologically relevant PIP3 analog, and that 
Itpkb controls PI3K function in vivo.

In DP cells, TCR ligand-sensitivity is assessed through inter-
actions with self-peptide/MHC complexes on thymic stromal 
cells. Insufficient TCR signals cause thymocyte death by neglect. 
Adequately mild signals cause DP cell survival and differentiation 
into CD4 and CD8 single-positive T  cells. This “positive selec-
tion” ensures that only T  cells with a functional TCR develop. 
Intermediate TCR signals “agonist-select” regulatory T cells. But 
excessive TCR signals in DP cells cause activation-induced cell 
death (AICD). This “negative selection” prevents the maturation of 
self-reactive T cells which could cause autoimmune diseases (120).

T cell receptor stimulation activates proximal protein tyrosine 
kinases, which then phosphorylate transmembrane adaptors 
including LAT. Their phosphotyrosine moieties subsequently 
bind and recruit downstream effectors including PI3K, Itk, and 
phospholipase-Cγ1 (PLCγ1) (8, 19). Itk recruitment also requires 
binding of its PH domain to membrane-PIP3 (19) (Figure 8). Itk/
PLCγ1 co-recruitment to LAT allows Itk to phosphorylate and 
activate PLCγ1. PLCγ1 then hydrolyzes membrane PIP2 into dia-
cylglycerol (DAG) and soluble IP3. DAG recruits PKCs, and RAS-
GRP1 to activate Ras/Erk signaling. This is required for positive 
selection (8). IP3 binds to IP3 receptors in the ER to mobilize Ca2+. 
Alternatively, Itpkb can convert IP3 into IP4. In some cells, IP4 can 
also control Ca2+ mobilization (19, 45, 61, 121).

In Itpkb−/− mice, positive selection was severely blocked. Data 
about negative selection were negative or inconclusive (8, 20, 28, 
47). As expected, Itpkb−/− DP cells showed reduced TCR-induced 
IP4 production. Although Itpkb loss was expected to cause IP3 
accumulation and Itpkb−/− peripheral T cells showed elevated Ca2+ 
mobilization (59), Itpkb−/− DP cells produced normal amounts 
of IP3 and Ca2+ (28, 47). The inability of catalytically inactive 
Itpkb, but ability of exogenous IP4 to restore positive selection 
of Itpkb−/− DP cells suggested a specific IP4 requirement for this 
pivotal process (8, 20). Biochemical studies then showed that 
in Itpkb−/− DP cells, TCR-induced Erk activation was impaired 
because of defective Itk membrane recruitment and activation. 
This impaired PLCγ1 activation and DAG production (20, 28). 
Compensation of reduced IP3 turnover via Itpkb by reduced 
PLCγ1-mediated IP3-production might explain the normal IP3 
levels in Itpkb−/− DP cells (20).

The dual ability of IP4 to bind to the Itk PH domain and impair 
PIP3-binding at high, but promote PIP3-binding at low, physi-
ological concentrations then suggested that IP4 might be required 
for Itk membrane recruitment and activation by augmenting Itk 
PH domain binding to PIP3 (20). Although the precise mecha-
nism remains to be fully elucidated, the ability of full-length Itk 
or its PH domain alone to oligomerize is consistent with a model 
where IP4 binding to one Itk-subunit induces allosteric changes 
in the other Itk-subunits that cooperatively increase the affinity of 
their PH domains for PIP3 (2, 3, 8, 20, 122) (Figure 8).

These data suggest that in DP cells, IP4 may establish a posi-
tive feedback loop of PLCγ1 activation by Itk that is required for 
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FigURe 8 | Feedback-activation of Itk/phospholipase-Cγ1 (PLCγ1) by IP4 may amplify mild T cell receptor (TCR) signals such that they can trigger thymocyte 
positive selection. Based on studies of Itpkb−/− mice and mathematical simulations of different signaling circuitries in DP cells (20, 21, 28, 56), we proposed a 
simplified model where TCR engagement on DP thymocytes activates proximal protein tyrosine kinases (SFK, ZAP), which then tyrosine-phosphorylate 
transmembrane adaptors (TMAPs, LAT). Among other events, this activates phosphoinositide 3-kinase (PI3K), which then phosphorylates membrane PIP2 into PIP3. 
By binding to their PH domains, PIP3 recruits PLCγ1 and its upstream activator, the Tec-family protein tyrosine kinase Itk into the TCR signalosome which also 
contains LAT and the adaptors SLP-76 and Gads. In this model, Itk is oligomeric with low PH domain affinity for PIP3 (dark gray). Therefore, initial Itk recruitment is 
limited and only triggers low-level PLCγ1 activation. PLCγ1 hydrolyzes PIP2 into low amounts of the second messenger diacylglycerol (DAG) and IP3. IP3 mobilizes 
Ca2+. Ca2+ binds calmodulin (CaM) which then binds to and activates Itpkb and calcineurin (CaN) (118). CaN dephosphorylates and activates the transcription factor 
NFAT (data not shown) (119). Itpkb phosphorylates IP3 into IP4. IP4 binding to one Itk subunit allosterically increases the PH domain affinity of all Itk subunits for PIP3 
(light gray). This promotes Itk membrane recruitment, causing full PLCγ1 activation and sufficient DAG-production to activate Ras/Erk and trigger thymocyte positive 
selection. Itpkb loss perturbs this feedback activation through decreased IP4 production and Itk recruitment. As a result, insufficient DAG production impairs Ras/Erk 
activation and positive selection, causing a block of thymocyte development at the DP stage. Itpkb and IP4 may have additional functions in DP thymocytes, which 
also express additional IP3 3-kinases whose roles in positive/negative selection remain unclear (28, 47). For a detailed discussion, see text [adapted with permission 
from Ref. (8)].
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the production of sufficient DAG to activate Ras/Erk and trigger 
positive selection (8, 20). Ca2+ controls signaling by binding to 
various proteins, including calmodulin (CaM). Ca2+/CaM can 
bind and activate Itpkb (45, 48, 123–126). TCR-induced IP4 
production requires Itpkb, Ca2+, and CaM (8, 28, 47, 56, 127, 
128). This and the inability of CaM-nonbinding mutant Itpkb 
to restore Itpkb−/− thymocyte maturation (20, 48) suggested 
that TCR-induced IP4 production in DP cells may involve an 
additional feed-forward loop of Itpkb activation by Ca2+/CaM 
downstream of PLCγ1 (8). We proposed that this combination 
of feedback- and feedforward-activation loops establishes an 
IP4- and Ca2+-dependent signal amplifier that allows mild TCR 
stimuli to trigger positive selection, but is dispensable for negative 
selection triggered by strong stimuli (8). This circuitry might also 
underlie a previously proposed signal splitter that directs selec-
tion outcome (129). Supporting this model, strong TCR stimuli 
rescued DAG production and Erk signaling in Itpkb−/− thymo-
cytes (20, 28). However, detailed studies in sensitive models (130) 
will be required to conclusively determine how Itpkb loss affects 
negative and agonist selection.

Due to difficulties in quantifying Itk interactions with PIP3 and 
IP4, in monitoring Itk-oligomerization in  vivo, and in generat-
ing non-oligomerizing Itk mutants, the physiological relevance 
of Itk oligomerization remains controversial (20, 122, 131–136) 
and many mechanistic details of how IP4 controls Itk remain to 

be elucidated. Providing conceptual support for the model in 
Figure 8, computational simulations of various circuitries involv-
ing mono- or oligomeric Itk indicated that those models which 
shared a cooperative-allosteric Itk regulation by IP4 involving 
oligomeric PH domains were most robust against variations of 
reactant amounts and kinetic rates at the single-cell level (21). 
Interestingly, some models predicted an additional benefit for 
Itk inhibition through PIP3 antagonism by high doses of IP4. 
Although high-dose IP4 can inhibit Itk PH domain binding to 
PIP3, it is unknown whether such high doses can be achieved in 
DP cells (20). Further exploration of bimodal Itk regulation by IP4 
and of the physiological relevance of different Itk dimers remain 
important future research areas (21). Finally, recent evidence 
that in TCR-stimulated thymocytes, Itpkb is phosphorylated by 
Erk which is counteracted by the Ca2+-activated phosphatase 
calcineurin suggests complex additional circuitries whose physi-
ological relevance remains to be elucidated (137).

Although Itpkb is pivotal for positive selection, residual Itpk 
activity and IP4 production in Itpkb−/− DP cells suggest relevance 
for other IP3 3-kinases and that complete IP4 loss could have more 
severe phenotypes (28, 47). This would be consistent with the 
broader roles of PI3K and Itk in thymocyte selection (2–5, 111, 
138–142). Co-disruption of several IP3 3-kinases in DP cells will 
be required to address this question. Moreover, it will be impor-
tant to generate conditionally Itpkb-deficient mice and exclude 
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contributions of the defects in HSC (26) and β-selection (27) 
to the DP thymocyte defects in germline Itpkb−/− mice. Finally, 
differences in the selection phenotypes of Itpkb−/− and Itk−/− mice 
point toward possible roles for other IP4 targets, or for Itpkb 
interactions with actin (8, 45, 143, 144). Thus, deeper mechanistic 
studies should yield important additional insight.

iP4 DAMPeNS STORe-OPeRATeD Ca2+ 
eNTRY (SOCe) iN iMMUNOCYTeS TO 
PROMOTe SURvivAl AND PReveNT 
iNFlAMMATORY DiSeASe

itpkb is Required for T Cell viability and 
Function
Peripheral T  cells express all three Itpks. TCR stimulation 
induced IP3 3-kinase activity and IP4 production in Jurkat T cells 
(56, 127). To elucidate the functions of Itpkb and IP4 in peripheral 
T cells, two studies have used different approaches aimed to leave 
T cell development intact. The Cooke group combined studies of 
mice with tamoxifen-induced conditional Itpkb disruption (Itpkb 
cKO) with studies of the effects of a specific and selective, orally 
bioavailable pan-Itpk small-molecule inhibitor, GNF362 (59). 
Tamoxifen treatment of Itpkb cKO mice caused a mild defect in 
positive selection that contrasts with the severe block in germline 
Itpkb−/− (Itpkb gKO) mice (20, 28, 47). Indeed, Itpkb cKO mice 
had control-like numbers of splenic B and T  cells. Compared 
to Cre+ unfloxed controls, Itpkb cKO T  cells had normal basal 
viability but underwent AICD after TCR stimulation (59). Intact 
cytokine production may suggest that this is their primary defect, 
consistent with rescued T cell viability and proliferation by FasL 
blockade. Supporting T cell malfunction, Itpkb cKO mice failed 
to generate antibody responses to T  cell-dependent but not 
-independent antigens.

Following IP3-mediated Ca2+ release from ER stores, STIM1 
proteins in the ER sense the resulting Ca2+ depletion, translocate 
close to the plasma membrane and activate Orai channels which 
mediate SOCE. This is essential for T  cell activation (119). 
Interestingly, Itpkb cKO T  cells showed enhanced SOCE, and 
treatment with high doses of cell-permeable IP4 rapidly inhibited 
SOCE in HEK293 cells overexpressing STIM1 and ORAI (59). The 
opposing effects of Itpkb loss and IP4 treatment on SOCE might 
suggest that Itpkb limits SOCE through IP4. Consistent with this 
view, GNF362-treatment blocked IP4 production in Jurkat T cells 
and enhanced TCR-induced SOCE in thymocytes and murine 
T  cells. GNF362 also inhibited T  cell proliferation and caused 
Itpkb-dependent AICD (59). In mice, GNF362 recapitulated the 
blocked T cell development seen in Itpkb−/− mice. Consistent with 
T cell inhibition, GNF362 inhibited joint swelling and secondary 
antibody responses in a rat antigen-induced arthritis model (59).

While the precise mechanism through which Itpkb and IP4 
inhibit SOCE in T cells remains to be elucidated, elevated Ca2+ 
mobilization can induce pro-apoptotic genes to mediate AICD, 
and Orai1-deficient T cells are resistant to AICD (145). So, the 
elevated SOCE in Itpkb cKO T cells might explain their AICD (59). 
However, phenotype rescue through pharmacologic or genetic 
prevention of the SOCE elevation in Itpkb-inactivated T cells will 

be required to prove this. Otherwise, it remains possible that the 
AICD of Itpkb-inactivated T cells results at least in part from a 
hypersensitivity to TCR stimulation or generally increased TCR 
signals. Given the hyper-responsiveness of Itpkb−/− HSC, DN thy-
mocytes, NK cells, and neutrophils to stimulation, this remains a 
possibility worth testing. Then again, based on the defective Itk/
PLCγ1 activation in Itpkb−/− DP cells (20) and the Akt/mTOR 
hyperactivation in Itpkb−/− DN thymocytes (27), Itpkb-deficient 
peripheral T  cells could have complex additional defects with 
loss-of-function and gain-of-function components that remain 
to be explored.

In an independent study, transient transgenic Itpkb expres-
sion partially rescued thymocyte development in another line of 
Itpkb gKO mice (43). These but not mice transiently expressing 
catalytically inactive Itpkb showed partially restored SP thymo-
cytes. They also had low numbers of peripheral T  cells with 
an activated/memory phenotype but decreased TCR-induced 
proliferation and survival, and increased cytokine secretion 
compared to wild-type mice. TCR-induced Ca2+ mobilization 
was not signi ficantly altered.

The reduced proliferation and survival of Itpkb transgene-
rescued Itpkb gKO T cells are consistent with the Itpkb cKO or 
GNF362-treated T cell phenotypes (59). However, the activated/
memory phenotype and cytokine hypersecretion contrast with 
those. Possible reasons could be homeostatic expansion of the 
few transgene-rescued T cells, or confounding effects of infec-
tions. Moreover, transgenic Itpkb was expressed from the Lck 
proximal promoter which transiently expresses transgenes in 
DN and DP thymocytes but not in HSC (146). So, unrescued 
HSC defects in Itpkb gKO mice (26), the super-physiological 
amount of transgenic Itpkb in the rescued thymocytes (43), the 
incomplete rescue of thymocyte development, or low residual 
transgene expression in peripheral T cells could all possibly affect 
T cell phenotypes.

Wrapping up, both studies suggest that Itpkb and IP4 have 
critical functions in ensuring the survival and function of acti-
vated peripheral T cells (Figure 5). The underlying mechanism 
may involve IP4 dampening of SOCE, but the molecular details 
remain to be explored and other possibilities have not been ruled 
out. Clearly, further studies of how Itpkb controls T cell function 
should prove exciting.

itpkc Dampens Ca2+ Mobilization in 
immune Cells to Prevent inflammatory 
Disease
Despite its broad expression, studies in Itpkc−/− mice have not 
yet unveiled lymphocyte phenotypes, and co-disruption of Itpkb 
and Itpkc did not worsen the thymocyte defects in Itpkb−/− mice. 
Itpkc−/− thymocytes showed unaltered IP3 3-kinase activity 
(47, 51). This argues against major Itpkc roles in adaptive immune 
responses in mice. By contrast, human population genetics sug-
gest that ITPKC may limit Ca2+ mobilization in, and function 
of human T cells (Figure 5). In a seminal study (40), Onouchi 
et al. found an interesting association of a human ITPKC allele 
that reduced ITPKC mRNA splicing efficiency and abundance 
(ITPKClof) with increased susceptibility to KD, a multisystem 
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inflammatory vasculitis that mainly affects coronary arteries 
(147). KD is the leading cause of childhood-acquired heart 
disease in developed countries (40). Several subsequent studies 
confirmed the ITPKClof genetic association, although others 
found no evidence for it, likely due to different subject cohorts 
with unknown confounding genetic and environmental influ-
ences (148).

Acute phase KD patients showed T  cell infiltration into 
the coronary artery wall and IL-2 overproduction, suggesting 
T cell hyperactivation. PMA/ionomycin treatment upregulated 
ITPKC mRNA levels in human T cells, and ITPKC overexpres-
sion decreased, but ITPKC knockdown increased, phytohemag-
glutinin- and PMA-induced NFAT activation and IL-2 mRNA 
expression in Jurkat cells. This suggests that ITPKC inhibits 
human T  cell activation upstream of the Ca2+-activated tran-
scription factor NFAT (40, 149). Another important advance 
in our understanding of how ITPKC controls KD was provided 
by the recent finding that Itpkc limits Ca2+ mobilization in 
myeloid cells to restrict activation of the NLRP3 inflammasome 
(44). Compared to wild-type controls, bone marrow-derived 
macrophages from Itpkc−/− mice had elevated basal and 
ionomycin-induced Ca2+ levels and NLRP3 expression. They 
responded with NLRP3 hyper-induction and excessive release 
of pro-inflammatory IL-1β to in vitro activation by LPS/ATP or 
Lactobacillus casei cell wall extract (LCWE). In a LCWE-induced 
KD model, Itpkc−/− mice overproduced circulating IL-1β and 
developed a more severe disease compared to wild-type controls.

Ascribing human relevance to these findings, acute-phase KD 
patients had higher serum levels of IL-1β, IL-18, and their antago-
nists IL-1RA and IL-18BP than convalescent and age-matched 
febrile controls (44). Whole blood from acute-phase KD patients 
also hyperexpressed a gene signature suggesting NLRP3 activa-
tion. Interestingly, EBV-immortalized B cells from KD patients 
or healthy controls harboring homozygous ITPKClof had reduced 
Itpkc protein levels. They recapitulated the elevated basal and 
ionomycin-induced Ca2+ levels of murine Itpkc−/− macrophages, 
showed a more sustained Ca2+ mobilization, and overexpressed 
NLRP3 (44). They also overproduced mitochondrial superoxide, 
a Ca2+-dependent NLRP3-activator. So, Itpkc loss in human 
B  cells associates with Ca2+ hypermobilization, which likely 
triggers superoxide-mediated NLRP3 activation. Acute phase 
KD patients carrying homozygous ITPKClof also showed elevated 
plasma concentrations and LPS/ATP-stimulated PBMC produc-
tion of IL-1β and IL-1. This suggests that the NLRP3 hyperactivity 
caused overproduction of pro-inflammatory cytokines, similar to 
Itpkc loss in mice. Increased resistance to standard IVIG therapy 
in KD patients carrying ITPKClof supports pathological relevance 
of these effects (44). These observations suggest interesting 
similarities between KD and recurrent fever syndromes that 
may reflect causative NLRP3 hyperactivity. They may explain 
the efficacy of IL-1 blockade in recalcitrant KD and may identify 
IL-1β, IL-18, and their antagonists as much-needed biomarkers 
for early diagnosis (44).

Intriguingly, KD may not be the only disease affected by 
Itpkc. Recent studies found potential associations between 
ITPKC genetic variations and Hirschsprung disease, calcium 
nephrolithiasis, and cervical squamous cell carcinoma (150–152). 

Thus, further mechanistic studies of Itpkc biology are becoming 
exceedingly important.

itpkb Dampens SOCe in B Cells
Chemically induced Itpkb gKO mice showed overall normal B cell 
development in the BM but had markedly reduced numbers of all 
splenic B cell subsets (39, 41). Further studies showed that Itpkb 
is essential for the selection of functional B cells. To avoid auto-
immunity, B cells carrying a self-reactive B cell receptor (BCR) 
are tolerized through clonal deletion, functional inactivation 
(anergy), or BCR editing to a different antigen specificity (153). 
Mature B  cells from Itpkb−/− mice shared many features with 
B  cells from BCR and BCR-antigen transgenic anergy models 
(154). Examples are IgM downregulation, impaired BCR-driven 
proliferation, reduced upregulation of surface-CD69, CD86, and 
MHCII, and decreased antibody responses to T cell-independent 
antigens (29, 39, 41). Responses to LPS or CD40 stimulation were 
normal. In the HEL BCR transgenic model, Itpkb loss converted 
responses to mild BCR stimulation from activation to anergy, 
and responses to moderate stimuli from anergy to deletion (41). 
This resembles the effect of losing other inhibitors of BCR signal-
ing, such as CD22, SH2 domain containing phosphatase-1, or the 
Src family protein tyrosine kinase Lyn (8, 153). In developing 
B  cells, Itpkb thus prevents mild BCR stimuli from inducing 
tolerance and ensures that only B cells expressing self-reactive 
BCRs are tolerized.

The Schurmans group found overall similar changes in B cell 
development and impaired T cell-independent antibody responses 
in Itpkb gKO mice. This was associated with reduced in vitro sur-
vival of Itpkb−/− B cells, which upregulated pro-apoptotic Bim (29). 
Bim haploinsufficiency or transgenic expression of anti-apoptotic 
Bcl-2 increased B cell numbers in Itpkb−/− mice. Bcl-2 expressing 
Itpkb−/− B cells showed diminished BCR-induced Erk activation. 
The authors used data from non-lymphoid COS cells to suggest 
that IP4 increases B cell survival by sequestering the IP4-binding, 
Ras-inactivating protein RASA3/Gap1IP4BP (155) in the cytosol, 
resulting in sustained Ras/Erk activation, Bim-phosphorylation, 
and Bim-degradation (29). However, without confirmation in 
B cells, the physiological relevance of RASA3/Gap1IP4BP regula-
tion by IP4 remains unclear. Later, the same group used 3-83μδ 
BCR transgenic mice to explore Itpkb roles in B cell tolerance (42). 
They found that in a context of mild BCR engagement, Itpkb loss 
impaired B  cell maturation and viability, again associated with 
Bim upregulation. B cell deletion in a context of stronger BCR 
engagement was unimpaired. Overall, these findings support a 
shift from B cell functionality or anergy to deletion when Itpkb 
is lost. Although both BCR-transgenic models revealed surface 
IgM downregulation on Itpkb−/− B cells, some differences in the 
specific response patterns to increasing BCR engagement likely 
reflect different signaling capacities of the two transgenic BCRs.

In BCR-transgenic anergy models, constitutive expression of 
self-antigens causes BCR desensitization with defective activa-
tion of proximal Lyn/Syk kinases and downstream PLCγ2, IP3 
production, and Ca2+ mobilization (8, 153). By contrast, chemi-
cally induced Itpkb−/− anergic B  cells showed overall normal 
BCR activation of Lyn, Btk, PLCγ2, Erk1/2, and IKKα/β and 
control-like IP3-production, but increased SOCE (39). SOCE 
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normalization by exogenous cell-permeable IP4 suggested that 
the elevated SOCE might result from impaired SOCE dampen-
ing by IP4 (Figure  5). The Schurman group initially reported 
reduced BCR- or ionomycin-induced Ca2+ influx in Itpkb−/− 
B  cells (29). However, 3-83μδ BCR transgenic Itpkb−/− B  cells 
showed an elevated BCR-induced Ca2+ influx compared to 
Itpkb+/+ controls, similar to chemically induced Itpkb−/− IgHEL 
transgenic and non-BCR transgenic mice (39, 41). The reason for 
the discrepant Ca2+ defects in the original Itpkb−/− mouse cohort 
remains unclear, but might include differentially augmented 
B cell deletion between the models, or effects of an altered Bim/
Bcl-2 ratio on IP3-receptor function in those particular B cells 
(42, 156). Consistent with this view, Itpkb−/− IgHEL transgenic 
mice showed neither increased negative selection nor Bim accu-
mulation (41). Alternate explanations might include differences 
in housing, health status, genetic background, or age of the mice 
used in the different studies.

Despite minor differences, all four studies support a pivotal 
Itpkb role in dampening BCR signaling to prevent aberrant 
B  cell tolerization. By augmenting BCR signaling, Itpkb loss 
induces anergy of B  cells expressing low-to-moderately self-
reactive BCRs, but deletion of normally anergic B cells express-
ing more strongly self-reactive BCRs (41, 42). Thus, Itpkb 
feedback inhibits BCR signaling to broaden the repertoire of 
immature B cells that survive negative selection. This positions 
the BCR selection window appropriately to ensure a normal 
B  cell repertoire that is further tuned through BCR editing. 
One prediction of this model would be an increased generation 
of self-reactive B  cells which might eventually cause autoim-
mune disease. Reported diminished BCR light-chain editing 
in Itpkb−/− vs. wild-type B cells suggests that such autoreactive 
cells would probably not be “reprogrammed” through receptor 
editing (157). However, neither Itpkb−/− mice nor mixed radia-
tion chimeras of Itpkb−/− BM with wild-type T, B, and myeloid 
cells have shown signs of autoimmunity (8). This could reflect 
perturbed positive Itpkb functions in peripheral B cells, or the 
premature death of Itpkb−/− mice due to HSC defects (26) or 
infections (47) before autoimmunity can develop. Conditional 
Itpkb disruption in developing vs. mature B cells might prevent 
some of these problems and help clarify this conundrum, in 
particular when combined with detailed analyses of the BCR 
repertoire.

Indeed, a recent study reported that after tamoxifen-induced 
Itpkb deletion in all cells, Itpkb cKO mice had near normal B cell 
numbers and T cell-independent immunization responses asso-
ciated with reduced Ca2+ ER release but elevated SOCE in B cells 
(59). So, induced Itpkb loss recapitulated the SOCE increase in 
germline Itpkb−/− B cells but had no major effects on B cell devel-
opment, homeostasis, viability, and function. Similarly, GNF362 
pan-Itpk inhibitor treatment reduced BCR-induced Ca2+ ER 
release but augmented SOCE in wild-type B  cells (59). These 
effects strikingly resemble those reported for Itpkb−/− neutrophils 
(23, 112). They also resemble the elevated SOCE in Itpkb cKO 
and GNF362-treated wild-type T cells, although ER release was 
not detected there (59). Interestingly, GNF362 still inhibited ER 
release in Itpkb−/− B cells, but without affecting SOCE (59). So, 
in murine B  cells, SOCE is primarily dampened by Itpkb, but 

ER release requires additional IP3 3-kinases such as Itpkc, whose 
loss-of-function in human B cells elevated basal and ionomycin-
induced Ca2+ levels (44).

The overall normal B cell homeostasis and function in Itpkb 
cKO mice suggest that the increased tolerance of Itpkb gKO B cells 
results from their altered development and selection. The precise 
functional consequences of Itpkb loss in mature B cells remain to 
be elucidated. Drawing on the phenotypes of EBV-transformed 
human B cells carrying the ITPKClof allele (44), one might expect 
NLRP3 hyperactivation. It will be interesting to assess if Itpkb 
cKO mice hyperproduce immunoglobulins or pro-inflammatory 
cytokines and develop inflammatory disease.

It is intriguing that the main molecular defect in Itpkb−/− and 
ITPKClof B cells is aberrant Ca2+ mobilization. While effects on 
basal Ca2+ levels and ER store-release are discrepant (possibly 
depending on model system and assay conditions), elevated 
SOCE emerges as a common effect (Figure  5). This suggests 
that the main function of Itpkb/c and IP4 in B cells is to inhibit 
BCR-induced Ca2+ signaling. The precise mechanism causing 
the elevated SOCE in Itpkb- or Itpkc-deficient B cells and other 
immune cells remains unknown. We discuss possibilities in 
Section “Conclusion and Perspectives.” Beyond elucidating this 
mechanism, establishing causality of the elevated SOCE for the 
B cell phenotypes remains important.

Itpkb’s pivotal role in controlling B  cell development and 
function is further emphasized by the recent association of a 
microdeletion which causes ITPKB deficiency in humans with 
a common variable immunodeficiency (CVID) (158). A patient 
carrying this microdeletion expressed reduced ITPKB protein. 
He had reduced serum IgG and IgA, but normal IgM levels and 
suffered from recurrent skin infections and other symptoms. He 
did not respond to T cell-independent Streptococcus pneumoniae 
vaccinations and had decreased numbers of T, Treg, and NK cells, 
but normal B cell numbers with increased proportions of mar-
ginal zone, transitional, memory, and CD21low B cells. Antigen-
induced lymphocyte proliferation and neutrophil oxidative burst 
were severely impaired. Although additional genes are likely 
affected by the microdeletion and incomplete ITPKB protein 
loss, two ITPKB missense mutations and a synonymous variant 
may all explain differences between this patient and the KO mice, 
mechanistic studies to confirm causality of the ITPKB mutation 
for the CVID should prove exciting.

Limiting hematopoietic cell-intrinsic PI3K signaling is critical 
for preventing blood cancers. In mice, SHIP-1 and PTEN defi-
ciency in B cells caused B cell lymphoma associated with excessive 
PI3K/Akt signaling (12). Human diffuse large B-cell lymphoma 
(DLBCL) samples under-expressed PTEN and SHIP-1 (12, 159), 
and human mantle cell lymphoma samples under-expressed 
PTEN (160). Reduced PTEN expression or predicted oncogenic 
PI3Kα mutations associated with poor survival in DLBCL (159) 
and a third of Burkitt’s lymphomas have inactivating PTEN muta-
tions (161). Although no significant changes in PI3K signaling 
in B  cells have been reported in Itpkb−/− mice, it is attractive 
to speculate that Itpkb or redundant IP3 3-kinases could have 
tumor-suppressor functions by dampening PI3K signaling 
through IP4/PIP3 antagonism. Consistent with this view, a large-
scale retroviral mutagenesis screen identified Itpkb as one of the 
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50 most important common insertion sites in murine lymphoma. 
Itpkb insertions were anti-correlated with insertions in Pik3cd 
encoding PI3Kδ (162, 163). But no blood cancer phenotypes 
have been reported in Itpkb−/− mice. As discussed before, this 
could reflect their premature death due to BM failure, anemia, 
or infections (26, 47), or partial Itpkb redundancy with Itpka, 
Itpkc, or IPMK. Conditional Itpkb disruption in the B cell lineage 
to avoid anemia and infections, or breeding Itpkb−/− mice into 
blood cancer models will be required to further explore possible 
Itpkb tumor-suppressor functions. Co-disruption of several IP3 
3-kinases can address possible redundancy.

Consistent with an ITPKB tumor-suppressor function in 
human blood cancers, large-scale whole exome sequencing has 
identified three different ITPKB somatic mutations as candidate 
CLL drivers in 2% of human patients (164). Two frameshift muta-
tions will remove the Itpkb catalytic domain and thus impair IP4 
production; the effects of a T626S mutation remain to be explored. 
Several other studies have found ITPKB locus deletions, copy 
number reductions, or missense mutations in patients with 
DLBCL, Burkitt’s lymphoma, or transformed FL, which often 
progresses to DLBCL (165–170). Their pathological relevance 
and underlying mechanisms are unknown. Finally, another ret-
roviral mutagenesis screen found insertions in Itpkb to synergize 
with a retrovirally expressed, AML-associated Runx1-mutant in 
promoting murine BM progenitor outgrowth (171). The same 
study found that ITPKB amplifications and mRNA upregulation 
associate with poor survival in human AML. However, retroviral 
insertion can activate or inactivate genes, Itpkb protein levels, 
function and causality were unassessed and in another study, 
Itpkb knockdown increased human AML cell expansion (172). 
Thus, the precise function of Itpkb in AML remains unclear.

itpkb Dampens SOCe in Neutrophils
IP4 limitation of SOCE may not be limited to lymphocytes. This 
is suggested by the decreased Ca2+ store release but enhanced 
SOCE in Itpkb−/− neutrophils (Figure 5) (23), discussed above. 
Its functional consequences remain to be elucidated.

DOeS itpkb iNHiBiTiON HAve 
THeRAPeUTiC POTeNTiAl iN HUMAN 
DiSeASeS?

The T and B  cell defects in germline Itpkb−/− mice sparked 
efforts to develop specific and selective Itpkb small-molecule 
inhibitors as potential therapeutics for autoimmune disorders 
or transplant rejection, reviewed in detail in Ref. (8, 149). 
Consistent with the distinct structural features and biochemical 
properties of IP3 3-kinases, several different inhibitors have been 
developed. However, many lack the required potency, isoform 
selectivity, specificity, and oral bioavailability. Some show high 
Itpk selectivity over IPMK, but none is exclusively selective for 
Itpkb (54, 59, 149, 173–175). A possible utility of Itpk inhibitors 
for immunosuppression is also supported by the T cell impaired 
phenotypes of Itpkb cKO mice and mice treated with the oral 
pan-Itpk inhibitor GNF362, and by the GNF362 efficacy in a 
rat antigen-induced arthritis model (59). Interestingly, induced 

Itpkb deletion in adult mice, or GNF362 treatment of adults 
unveiled no major defects in B cell function. Thus, the efficacy of 
any treatment of adults with Itpk inhibitors might primarily rely 
on T cell inhibition, limiting the utility of this approach to T cell-
mediated diseases. A therapeutic Itpk inhibitor would need to be 
exquisitely selective for Itpkb to avoid inhibition of Itpkc, whose 
lof hyperactivates T cells, B cells, and macrophages and has been 
implicated in human inflammatory KD, Hirschsprung disease, 
calcium nephrolithiasis, and cervical squamous cell carcinoma 
(150–152). GNF362 does inhibit Itpka and Itpkc (59), but the 
relevance of their co-inhibition for any phenotypes remains to 
be elucidated. Any therapeutic approach would also need to 
avoid the CVID, BM failure/anemia, and possibly neutrophil 
hyperactivity found in human patients or mice with persistent 
Itpkb lof (22, 23, 26, 57, 158), and the disruption of possible 
Itpkb tumor-suppressor functions discussed in the B  cell sec-
tion. Based on the common reversibility of drug-induced HSC 
mobilization (85–87) and the dependence of many neutrophil 
functions on B  cell-produced immunoglobulins (22, 23, 57), 
transient or intermittent Itpkb inhibition might mitigate some 
of these liabilities and might possibly even be able to expand 
HSC for therapeutic engraftment (26, 30). Finally, further 
elucidation of potential Itpkb roles in Alzheimer’s disease (176, 
177), multiple sclerosis (178), and malignant melanoma (179) 
might unveil additional therapeutic opportunities or liabilities 
for selective Itpkb inhibitors. It will be particularly interesting 
to study whether Itpkb-dependent immunological mechanisms 
contribute to these diseases.

CONClUSiON AND PeRSPeCTiveS

The data reviewed above have identified Itpkb, Itpkc, and IP4 
as critical regulators of the development and function of most 
hematopoietic and immune cell types (Figure 3). IP4 primarily 
acts through two mechanisms: non-canonical PIP3 antagonism 
to dampen PI3K signaling, and SOCE dampening to restrict 
Ca2+ mobilization. PIP3 antagonism has been relatively well 
established, but one remaining puzzle discussed above is why 
PI3K signaling appears normal in Itpkb−/− B  cells. The precise 
molecular mechanism through which Itpks and IP4 inhibit SOCE, 
however, remains to be determined, and a formal proof that 
elevated SOCE causes the associated B cell, T cell, and neutrophil 
phenotypes is lacking. SOCE dampening might possibly include 
IP4-blockade of the polybasic region in STIM1 which mediates 
plasma membrane recruitment, IP3-turnover by Itpks, other 
controversial IP3 3-kinase or IP4-roles in Ca2+-mobilization, or 
other functions of IP4 or its metabolites (8, 45, 119).

SOCE-modulation, additional unknown mechanisms of 
Itpkb/c and IP4 action, or partial redundancy of Itpka-c and IPMK 
could explain some of the phenotypic discrepancies between 
mice or humans lacking Itpkb, Itpkc, SHIP, or PTEN, reviewed 
above for each affected cell type. Discussed in detail elsewhere 
(8, 19, 38, 45), additional relevant mechanisms might involve 
other lymphocyte-expressed IP4-binding proteins beyond Tec 
kinases and Akt, including PDK1 (180), RASA2/GAP1m, RASA3/
GAP1IP4BP, centaurin-α1, cytohesins, or synaptotagmins. Indeed, 
impaired RASA3 sequestration from the plasma membrane by IP4 
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has been suggested to cause Ras/Erk hyperactivation in Itpkb−/−-
deficient thymocytes and B cells, although whether this occurs in 
lymphocytes and is physiologically relevant remains to be shown 
(28, 29). Identifying the entire complement of IP4-binding pro-
teins in hematopoietic cells, and delineating their functions, will 
be important for a more comprehensive elucidation of how this 
pivotal soluble messenger controls hematopoiesis. In particular, 
it will be interesting to explore why Itpkc may have distinct func-
tions in murine vs. human T cells, and what determines which 
mechanisms Itpks or IP4 engage in a given cell type, and whether 
they promote (as in DP thymocytes) or dampen (as in DN thy-
mocytes, peripheral T, B, and NK cells, HSC, GMP, monocytes/
macrophages, and neutrophils) immunoreceptor signaling and 
immune cell function.

Possible explanations could include the Orai-mediated SOCE 
requirement in mature immunocytes but not thymocytes (119), 
or differing Itpk or IP4 functions in different cellular or signaling 
contexts, or after different intensities of the input signal (8). Itpkb 
controls SOCE in T cells but not DP thymocytes, and Tec kinases 
in DP thymocytes but not B cells (8, 25, 26, 45). Moreover, thy-
mocyte positive selection is triggered by mild and/or transient 
TCR signals in DP thymocytes and requires IP4. Negative selec-
tion is mediated by strong and/or sustained TCR signals and 
might be less impaired in Itpkb−/− mice (20, 47, 181). Peripheral 
T cells also generate strong TCR signals that might be impacted 
differently by IP4 deficiency. Our mathematical modeling studies 
suggested that a combination of IP4 positive (at low concentra-
tions) and negative (at high concentrations) feedback would 
make TCR signaling most robust (21). Thus, a re-evaluation of 
Itpk functions in immunoreceptor signaling circuitries from a 
systems-perspective might prove informative. Alternatively, the 
effects of Itpks and IP4 might depend on their cellular concentra-
tion, subcellular localization, posttranslational modification, 
or on the specific IP4 effectors or metabolites present in a cell. 
Distinct roles of different Itpks could also involve IP4-unrelated 
noncatalytic functions of Itpka/b but not Itpkc in actin bundling 
(8, 45, 144, 182).

Possible contributions of IP4 metabolites are illustrated 
by the role of IP7 in dampening PIP3 function in neutrophils 
(24). Moreover, a recent study unveiled its precursor inositol-
hexakisphosphate (IP6) as a candidate regulator of the B  cell 
expressed Tec-kinase Btk (183). In vitro, physiological IP6 
concentrations activated Btk by binding to a specific site in its 
PH–Tec-homology (TH) domain unrelated to its PIP3-binding 
site. IP6 sandwiching between two PH–TH domains might enable 
transient Btk dimerization and activation. While the physiologi-
cal relevance of this mechanism remains to be shown, it might 
provide a second example beyond IP4 regulation of Itk for how 
soluble IPs could promote PH domain function. Interestingly, 
both examples involve PH domain oligomerization (20, 183). 
Among the ~234 mammalian PH domains, only ~10% bind 
phosphoinositides, and only those of Itk and perhaps dynamin 
have been shown to oligomerize in cells (1). If PH domain 
oligomerization is required for their positive regulation by IPs, 

this mode of regulation might thus be rare. But then, soluble 
IP4 might promote PIP3 binding of Tec and RASA3, whose PH 
domain oligomerization status remains unknown (20). Thus, 
elucidating what determines whether an IP promotes or inhibits 
the function of a given PH domain, or does not affect it at all, 
remains an important future direction.

Beyond acting as protein ligands, inositol-pyrophosphates 
inclu ding IP7 can also act as non-enzymatic protein-phospho-
rylating agents (113–115). Whether this controls hematopoietic 
cell functions remains to be elucidated. Clearly, deciphering the 
functions of unstudied “inositol code” members in hematopoi-
etic cells promises to open up exciting and unexpected novel  
biology (8, 56).

Given the paramount importance of PIP3 regulation through 
its turnover by SHIP and PTEN (10–12), one wonders whether 
IP4 and IP7 might also be controlled via turnover. In vitro, several 
phosphatases including SHIP-1/2 can dephosphorylate the 
5-positions of IP3 and IP4, and PTEN can convert IP4 into IP3 
(184–188). Whether this occurs in  vivo is unknown, although 
Jurkat T cells contain an unknown IP4 5-phosphatase unrelated 
to SHIP-1 (60, 189). In vivo studies of IP4 turnover appear 
worthwhile.

Except for one recent study focused on peripheral T and B cells 
(59), most of the published data about in vivo IP3 3-kinase func-
tions to date were obtained in germline knockout mice. The B cell 
tolerance in mice with constitutive but not acutely induced Itpkb 
inactivation (59) illustrates that some of the germline knockout 
phenotypes likely include secondary effects of earlier defects in 
hematopoiesis, or sustained extrinsic effects of Itpkb loss in other 
cell types. It will therefore be important to confirm developmental 
stage-specific cell-intrinsic Itpkb/c and IP4 functions in appropri-
ate conditional knockout mice. Concluding, Itpks and IP4 clearly 
play exciting and important roles in hematopoietic cells, but 
much work remains to be done to fully elucidate the roles of the 
“inositol code.” We can expect fascinating results.
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