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Multiclass Classifier based 
Cardiovascular Condition 
Detection Using Smartphone 
Mechanocardiography
Zuhair Iftikhar1, Olli Lahdenoja1, Mojtaba Jafari Tadi1,2, Tero Hurnanen1, Tuija Vasankari3, 
Tuomas Kiviniemi3, Juhani Airaksinen3, Tero Koivisto1 & Mikko Pänkäälä1

Cardiac translational and rotational vibrations induced by left ventricular motions are measurable 
using joint seismocardiography (SCG) and gyrocardiography (GCG) techniques. Multi-dimensional non-
invasive monitoring of the heart reveals relative information of cardiac wall motion. A single inertial 
measurement unit (IMU) allows capturing cardiac vibrations in sufficient details and enables us to 
perform patient screening for various heart conditions. We envision smartphone mechanocardiography 
(MCG) for the use of e-health or telemonitoring, which uses a multi-class classifier to detect various 
types of cardiovascular diseases (CVD) using only smartphone’s built-in internal sensors data. Such 
smartphone App/solution could be used by either a healthcare professional and/or the patient him/
herself to take recordings from their heart. We suggest that smartphone could be used to separate heart 
conditions such as normal sinus rhythm (SR), atrial fibrillation (AFib), coronary artery disease (CAD), and 
possibly ST-segment elevated myocardial infarction (STEMI) in multiclass settings. An application could 
run the disease screening and immediately inform the user about the results. Widespread availability 
of IMUs within smartphones could enable the screening of patients globally in the future, however, we 
also discuss the possible challenges raised by the utilization of such self-monitoring systems.

Cardiovascular diseases (CVD) are the leading cause of death globally, causing at least 17 million deaths in 2010, 
representing 30% of all global deaths. According to American heart association (AHA) statistics, almost 80% of 
these deaths are due to coronary heart disease (CAD) and cerebrovascular disease, leading to sudden heart attacks 
and brain strokes1. European society of cardiology (ESC) report in 2012 also estimates 4 million death in Europe 
due to CVD, causing 40% of all death in European Union (EU)2.

Self-monitoring is a new strategy enabled by employing the generally available smartphones for the screening 
of CVD. As such, the detection and prevention of CVD could be improved. Smartphones can also be used for the 
follow-up of patients after cardiac operations to reduce the risk of complications3–5. The traditional and existing 
tools to detect most common CVD such as atrial fibrillation (AFib), myocardial infarction (MI), heart failure etc. 
within hospitals are usually through electrocardiography (ECG), echocardiography, and other advanced medical 
procedures6–8, which require health professionals to interpret results and identify heart disorders.

New mobile/portable technologies have the potential to streamline detection and prediction of CVDs by ena-
bling individuals to monitor themselves via advanced devices such as mobile phones9, smart watches10, weighting 
scale11, etc. Several validated mobile/wearable devices are now available which are based on different measur-
ing technologies including: mobile ECGs such as AliveCore Kardia12, Zenicor EKG13, and Mydiagnostick14, Zio 
Patch15, Medtronic implantable loop recorders and wearable SEEQ™ mobile cardiac telemetry16; iPhone photop-
lethysmographs (PPG)9; and Microlife A200 and Omron M6 blood pressure monitors for AFib detection17. Other 
approaches have been recently introduced to utilize smartphones/wearables for detection of CVD conditions 
in a variety of ways as well4,18–25. Generally in such diagnosis systems external or internal sensors are used to 
detect haemodynamics and other physiological parameters of interest. This information is then transmitted to 
the smartphone using Bluetooth or other appropriate wireless technology23. More recent approaches use optical 
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signal–from a fingertip using the built-in camera lens–along with other wearable sensors for autodecetion of 
cardiac abnormalities9,24,26,27.

In this study, we present a smartphone mechanocardiography (MCG) based solution for autodetection of 
AFib and ischemic conditions by considering only mechanical signals through joint seismocardiography (SCG)28 
and gyrocardiography (GCG)29 signals obtained from built-in accelerometer and gyroscope sensors in smart-
phones. The use of external accelerometers and (internal) smartphone-based accelerometers in overall physical 
activity and specifically heart condition monitoring is already established in medical research30. A considerable 
amount of literature has been published on conventional ballistocardiography (BCG) and SCG methods address-
ing that the mechanical signals have great potential in allowing proactive and non-invasive cardiac performance 
assessment, e.g. heart arrhythmia, myocardial ischemia, cardiac resynchronization therapy, and heart failure31. 
Additionally, recent investigations report promising findings that support the feasibility of using prospective 
implantable devices–based on accelerometer and gyroscope sensors–to continuously monitor left ventricular 
function32–35. With the advances in microelectromechanical systems (MEMS) manufacturing, the incorpo-
ration of IMUs within wearables/smartphones devices became more common and feasible. This allows easier 
self-detection to which can potentially improve early diagnosis of heart disease leading to timely interventions 
and subsequently less medical complications. Our envisioned smartphone app is able to categorize normal con-
dition (regular cardiac motion with sinus rhythm), AFib (irregular motion patten with random rhythm), and 
ischemic heart disease (abnormal cardiac motion with possibly regular/irregular rhythm). The reason for pursu-
ing this research is that mechanical signals pose potentially valuable information related to the heart performance 
not obtainable by ECG. More precisely, our hypothesis is that cardiogenic mechanical alterations due to CVD 
conditions are recognizable using advanced machine learning techniques and thus our research may also provide 
new venues in self-monitoring for cardiovascular condition detection and care using smart devices. The presented 
work also facilitates adoption of smartphone cardiography for CVD detection. This paper is a continuation work 
to the previous investigations in which we considered potential feasibility of SCG-GCG methods for AFib and 
ischemia detection36–38.

Related Works with ECG and MCG for Cardiovascular Monitoring
Atrial fibrillation (AFib).  Atrial Fibrillation is a very common cardiac rhythm abnormality, where the atria 
fail to contract in a coordinated manner, instead vibrating approximately 400 to 600 times (atrial activity) per 
minute. In this case, contraction of the chambers is irregular and may vary from 40 to 180 times per minute39. 
ECG is the gold standard method for AFib detection. However, AFib can be detected with others techniques as 
well. A systematic review and meta-analysis on the accuracy of methods for diagnosing AFib using electrocar-
diography is available in7. Another recent review on advances in screening of AF using smartphones has been 
given in40. For instance, Lee et al.9 primarily used an iPhone 4S to measure a pulsatile photoplethysmogram 
(PPG) signal in order to detect AFib episodes by recording smartphone’s videocamera. The signal was obtained 
by a recording made with smartphones’s own videocamera. Recently, we presented a primary solution based on 
time-frequency analysis of seismocardiograms to detect AFib episodes36. The proposed method relies on linear 
classification of the spectral entropy and a heart rate variability index computed from the SCG signals. In contin-
uation of that study, we developed an extensive machine learning solution37 to detect AFib by extracting various 
features from GCG and SCG signals obtained by only smartphone inertial sensors. This smartphone-only solu-
tion for AFib detection showed an accuracy of 97.4%.

Coronary artery disease (CAD).  Coronary artery disease refers to accumulation and inflammation of 
plaque in coronary arteries that could lead to heart attack. With ischemic disease, the blood flow to the heart’s 
muscle is decreased as the coronary arteries are gradually narrowed due to plaque formation within the walls. The 
majority of myocardial infarctions and strokes result from sudden rupture of atherosclerotic plaques41.

The editorial6 has mentioned numerous approaches to CAD diagnosis by analysis of ECG depolarization. 
For example, Abboud et al.42 proposed high-frequency analysis of electrocardiogram to assess electrophysio-
logical changes due to CAD. As such, high-frequency changes in ECG QRS complex components, also known 
ans Hyper-QRS, has been considered a sensitive indicator of acute coronary artery occlusion43,44. Many other 
techniques have been also developed to detect acute ischemia using ECG8,18,19,21,22. ECG QT-wave dispersion 
was investigated as a measure of variability in ventricular recovery time and a possible measure for identifying 
patients at risk of arrhythmias and sudden death after infarction8. Myocardial dispersion, also known as strain 
rate variations, is measured by echocardiography and reflects the heterogeneity of myocardial systolic contraction 
and can be used as an indicator for susceptibility to arrhythmias in different heart disease groups such as heart 
failure, ischemia, and infarction45–47. In recent years, machine learning algorithms based on wavelet transform 
feature engineering, pattern recognition, and support vector machine classifier have also been suggested to diag-
nose CAD conditions24,48.

Ischemia can be classified into two major categories according to the presence of the ST segment elevation in 
ECG. If heart’s major arteries are completely obstructed, the amplitude of the observed elevation is directly linked 
to the severity of acute or threatening damage to the heart muscle. This type of heart attack is called ST-elevation 
myocardial infarction (STEMI). For patients with suspected myocardial infarction, but without ST-segment ele-
vation in ECG (only partially blocked coronary arteries), the ECG findings are non-specific and investigation of 
cardiac markers (e.g. troponin) is required to confirm the diagnosis49. In the other category so-called NSTEMI 
(Non-ST elevation myocardial infarction), the symptoms might be milder or often vague so that other advanced 
diagnostic methods are considered.

In this paper, we consider multi-class classification of various heart conditions using a smartphone-only solu-
tion based on SCG and GCG. We believe abnormal morphological changes in cardiogenic vibrations – possibly 
due to hypoxic myocardium tissue – are recognizable and therefore can improve detection of heart arrhythmia 
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and ischemic diseases. A potential impact of this research is efficient prevention and follow-up of patients with 
various heart conditions, enabled by mobile technology.

Figure 1 shows ECG-SCG-GCG cardiac waveform characteristics in normal, AFib, and CAD conditions. As 
shown, with normal condition both electrical and mechanical signals follow regular rhythm and monomorphic 
repeating patterns while in AFib condition cardiac signals appear irregular in terms of rhythm and morphology. 
More precisely, due to the atria failure in mechanical function left and right ventricles may response with abnor-
mal systolic-diastolic functioning. In CAD situation, although regular rhythm is visible in SCG-GCG, cardiac 
motion pattern has undergone considerable changes such as poor contractility (amplitude reduction), larger 
diastolic activity, and widened systolic complex (as shown in D multiple and wide wavelets are visible in the onset 
of systole), potentially due to the artery blockage.

Human Study Protocols and Demographics
Data Acquisition and Measurement Protocols.  Short recordings (up to 3 minutes) with Sony Xperia Z 
series smartphones were captured from 23 healthy individuals (all males), 40 AFib patients (22 males, 18 females) 
verified against simultaneous ECG, 21 non-acute CAD patients (13 males, 8 females) who underwent elective 
percutaneous coronary intervention (PCI), and 21 myocardial ischemia patients (12 males, 3 females, 6 without 
demographic information) with acute infarction and ECG changes such as ST-elevation which exclusively refers 
to these patients. The patient was asked to lie on supine position and either a trained nurse or doctor took care of 
the measurement by placing the smartphone on the chest (on sternum bone) of the patient. The measurements 
were conducted according to the Declaration of Helsinki guidelines at Heart Center, Turku University Hospital, 
Finland with the permission of Ethical Committee of the Hospital District of South-Western Finland. Written 
informed consent was obtained from all patients. The measurements were short to minimize potential discomfort 
to the patients. The measurements taken from healthy control individuals were captured from voluntary partici-
pants among the University of Turku campus.

Inclusion and exclusion criteria.  The inclusion criteria to the study was that the patient’s ages were at or 
above 18 years, and that he/she was willing to participate to the study and that they were legal representatives of 
themselves. Patients suffering from severe memory problems were excluded from the study. Another exclusion 
criteria was that whether in the investigator’s opinion they might suffer from some other condition that might 
jeopardize their optimal participation to the study. Due to the availability of suitable patients in the given time 
interval to conducting the data gathering, the AFib patients, for instance, may have suffered also from other con-
ditions (such as heart failure). Although it might somehow affect to the analysis, we consider that it will not bias 
the results towards other unknown factors.

Patient demographics.  The demographics of different CVD patient groups (registered) including AFib, 
coronary artery disease, and acute myocardial infarction are presented in Table 1. Demographics of unregistered 
patients with missing information are not reported in this table.

Feature Extraction and Classification
Pre-Processing.  Each measurement is first pre-processed with a brick-wall fast Fourier transform fil-
ter to remove baseline wandering and noise components of the signals within the frequency bands 1–40 Hz. 

Figure 1.  Overall waveform characteristics of normal (A), atrial fibrillation (B), and coronary artery disease 
with ischemic changes: T-wave inversion (C) and ST segment depression (D) conditions shown in ECG (lead I), 
GCG, and SCG signals.
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Furthermore, an additional bias and breathing removal step is applied to each measurement axis by subtracting a 
convolved version of the signal from the original signal as following:

Assuming that the mechanical signal segments s(t) consist of three additive components as

= + +s(t) s (t) s (t) n(t), (1)h b

where sh(t) is the precordial vibration signal segment of interest induced by the heart motion, sb(t) corresponds 
to the respiration component, and n(t) includes all the other residual inertial components and noise. The above 
described bandpass filtering process significantly eliminates the power of the third component n(t). Thus it can 
be presumed to be negligible in comparison to sh(t) and sb(t).

The effect of breathing component sb(t) was then reduced by subtracting an estimate of the breathing from the 
signal segment s(t). The estimated breathing signal was obtained by applying a mean filter to s(t) (uniform nor-
malized all-ones filter of length 50 samples in approximately 200 Hz sampling frequency). The final approximated 
cardiac signal segment is then given by

= − .ŝ (t) s(t) Mean (s(t)) (2)h 50

Candidate Features.  Next we explain the features used to detect AFib first, and then move onto other fea-
tures to recognize abnormal waveform of ischemic cases. A key step in the development of machine-learning 
system is the definition and extraction of the candidate features that highlight the best discrimination between 
different classes. For the characterization between AFib and sinus rhythm (SR), we define 5 main groups of fea-
tures based on heart rate (HR), heart rate variability (HRV), spectral entropy (SP-Ent), approximation entropy 
(AP-Ent), and turning-point ratios (TPR). Intuitively, we consider linear and non-linear behaviour of the 
measured signal and heart rate variations in both time and frequency domains. It is necessary to characterize 
beat-to-beat intervals by using a robust technique capable of estimating cycle lengths or correspondingly instan-
taneous heart rates (IHR) within an acceptable rate of accuracy. We obtain IHRs by using a previously introduced 
technique, called short-term autocorrelation36, to estimate the periodicity of the signals. Moreover, we employ 
energy features and 1-dimensional local binary pattern (LBP) features which are often used to represent texture 
or pattern structure found in a signal. Texture analysis resembles human vision and can be used to find abnormal 
pattern of cardiogenic waveforms in SCG-GCG signals.

Feature vector generation and majority voting.  As in our previous study37, we first divide each meas-
urement into shorter segments (of length 10 second), which are then used for the construction of the feature 
vector. In particular, a feature vector is calculated using data from each of the six axes (AccX, AccY, …, GyroZ). 
The final feature vector of a single segment is a concatenation of the feature vectors derived from each axis. This 
is used as input to two-class or multi-class Kernel Support Vector Machine (KSVM) and Random Forest (RF) 
classifiers. In particular, when using all classes (Normal, AFib, CAD, STEMI) in the multiclass classification set-
ting, all the presented features are selected to the feature vector. The final feature vector length is in that case 265 
* 6 i.e. 1590 - for a single 10 second segment. This constitutes of 18 AFib features (1 AP-Ent, 11 TPR, 1 RRI-TPR, 
1 SP-Ent, 1 HR, 3 HRV), 11 energy features and 4 uniform local binary patterns (LBP) histograms of length 59. 
The LBP histograms are formed by applying different spacing between the bits (of 3, 21) and using the same two 
spacing with Matlab’s cumtrapz integrated version of the input signal. In the case of three classes (Normal, AFib, 
CAD), all features except the energy features are used. In our classification considerations, Normal class means 
regular rhythm and pattern, AFib class delineates irregular rhythm and fully random patterns, and CAD class 
reflects regular rhythm with abnormal morphological patterns.

As in37 we report most of the results with majority voting, which means that all the 10 second segments of 
a particular measurement (person) are used to vote for the final class. In the multiclass framework, this simply 
means that the class which is the most common among the evaluated segments is chosen to be the final result. In 
the two-class case, the class which is more common is also chosen as the detection result. The confusion matrix 
reported without majority voting consists of all 10 s segments which have been evaluated. Figure 2 shows our 
machine learning pipeline for cardiac condition detection using smartphone MCG data.

Heart Rate Estimation.  We consider short-term autocorrelation (AC) algorithm36 which is able to analyse 
the periodicity of a signal in the segmented samples. We calculate the short-term AC by first segmenting the 
acquired signals–from each channel of accelerometer and gyroscope sensor–into 10 s episodes and subsequently 
divide each episode into sub-segments with the duration of 2.5 second. Since the smartphone sampling fre-
quency (Fs) is tuned to approximately 200 Hz, each episode and sub-segment will contain 2000 and 500 samples, 

Study Group
Age (years)  
(Min-Max, Mean ± STD)

Height (cm)  
(Min-Max, Mean ± STD)

Weight (kg)  
(Min-Max, Mean ± STD)

BMI (kg/m2)  
(min-max, Mean ± STD)

Control (*n = 23) 23–53, 31.4 ± 8 172–190, 180 ± 5 61–125, 82.4 ± 16 20.5–39, 25.5 ± 4

Atrial Fibrillation (n = 27/40) 44–89, 73.3 ± 10 150–193, 171.4 ± 11 45–127.5, 81.5 ± 18 20–39, 27.5 ± 4

Myocardial Ischemia (n = 11/21) 40–83, 65.6 ± 14 150–190, 174.5 ± 12 55–105, 72.3 ± 16 17–30, 24.7 ± 4

CAD (n = 11/21) 58–82, 71 ± 8 154–186, 173.3 ± 10 65–131, 86.5 ± 19 21–38, 29 ± 5

Table 1.  Demographic information of registered study subjects. *Number of patients with registered 
demographic information in each group.
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respectively. The segmentation is performed so that the consecutive sub-segments overlap by 1.5 seconds. 
Therefore, each 10 second episode consists of eight 2.5 second sub-segments, which are all unique but should 
share at least one heart beat with the neighbouring sub-segment.

Assume that a 2.5 second sub-segment u(t) is chosen within signal s(t). If u(t) encompasses only two heart-
beats, then the cardiac cycle length between the two heartbeats can be measured by calculating the period of u(t). 
To this end, the first 1.5 seconds of u(t) — denoted by u1.5(t) — is cross-correlated with u(t). This yields

∑= +.R(u(t), i) u(j)u (j i),
(3)j

1 5

where j is a discrete variable denoting the time indices, and only positive indices j + i up to the number of samples 
in u1.5(j) are taken into account. The inter-beat time intervals can be therefore estimated by locating the first side 
peak of R(i). This is accomplished by calculating the index of the first side peak

= | |>arg maxi (R(u(t), i), (4)first peak i i0

where i0 is a limit, which is set to be i0 = 1/3*sampling frequency. The limit io is chosen with respect to this fact 
that a period of at least 1/3 seconds in the signal is a sufficient threshold for heart rates below 180 bpm. Thus, the 
corresponding estimated interbeat duration RR is obtained as

= .RR i /F (5)first peak s

The algorithm can subsequently return eight cardiac cycles (either R – peak to R – peak or SCG-GCG domi-
nant Peak to Peak) from one signal segment (of length 10 seconds) which are denoted as RR k:1−8. Heart rate (HR) 
is estimated as MEDIAN(RRk:1−8).

Heart Rate Variability.  The first set of generated features consists of heart rate (HR) and HRV indexes in 
time-domain. We collect three HRV features (HRV1, HRV2, and HRV3) derived by applying certain operators 
directly on the series of successive cardiac time intervals. To compute these HRV features, we first define the k th 
RR-interval–obtained by short term AC–by

= −+RR R R , (6)k j 1 j

where Rj denotes timing of the jth heartbeat. HR is calculated as the median of the RRk:1−8 and HRV1 is calculated 
as median absolute difference(MEAD) of these successive cardiac intervals. Assuming that the derived RR inter-
vals are stored in the vector x, the MEAD(x) is obtained by

= = | |−RRHRV MEAD(x) median ( ) , (7)k1 :1 8

where operator median returns the median value of the first order differences37. We consider the median value 
instead of mean as it is tolerant to outliers. Furthermore, we calculate two higher order HRV indexes, denoted 
respectively as HRV2 and HRV3, by

= | |−Diff RRHRV median( ( ) ), (8)k2 :1 8

where HRV2 returns the median value of the second order differences between the consecutive elements, and

= | | | |−Diff RRHRV median( ( ) ), (9)k3 :1 8

returns the median value of the absolute value of the second order differences37.

Figure 2.  Overall diagram of the machine learning pipeline. Segmented SCG-GCG data are fed to the 
feature extraction function which forms a row-wise concatenation of features corresponding to each axis. In 
classification part, the final models are cross-validated by class prediction for each of the test cases is the dataset.
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Approximate Entropy.  Approximate entropy (AP-Ent) is a popular approach in analysing the complexity 
of the time series. Namely, AP-Ent is a self-similarity parameter that quantifies the unpredictability of fluctuations 
in a time series. AP-Ent considers the probability that particular patterns of observations will not be followed by 
extra similar observations50,51. With calculating AP-Ent, time series containing regular patterns such as sinus 
rhythm are expected to have a relatively small AP-Ent, while a less predictable or irregular pattern signal (e.g. 
AFib) should have a higher AP-Ent index50. The details of our calculation of AP-Ent can be found in37.

Spectral Entropy.  Spectral entropy (SP-Ent) has been known as a measure of uncertainty or in other words 
randomness of a time series. SP-Ent is a tool to quantify the spectral complexity of a signal52. SP-Ent relies on 
power spectral density (PSD) analyses P(f) which is commonly obtained by fast Fourier transform (FFT). The 
PSD P(f) is density function which aims to show the distribution of power as a function of frequency52. We limit 
the frequency band f to [1–11 Hz]. In order to minimize the effect of frequent low frequency components, an 
estimated noise floor is discarded from P(f) by filtering frequencies with energy amplitude < ×P f P f( ) max( ( ))1

6
. 

The resulting spectrum is then normalized to unit probability as

∑= .P (f) P(f)/ P(f)
(10)n

f

This normalization is necessary, as it essentially considers the frequency spectrum as a probability distribution 
prior to computing of spectral entropy. Finally, the spectral entropy of the signal Pn(f) is computed as

∑= − .‐SP Ent P (f)log(P (f))
(11)f

n n

The computed SP-Ent for samples containing more random frequency components, e.g. AFib, is greater than 
samples with less randomness, e.g. sinus rhythm. In other words, the larger the SP-Ent, the more random the 
signal frequency component, which implies that an aperiodic signal may have higher randomness level (SP-Ent) 
than a periodic. Therefore, the rate of randomness is used as an individual feature for distinguishing periodic or 
aperiodic segments in cardiac motion signals37.

Turning-point Ratios.  Turning point ratio (TPR) is a non-parametric statistical approach to determine the 
randomness in a time series. We define operator RD to derive the total number of consecutive increasing and 
decreasing runs in signal segment x. TPR of x is therefore defined as

=
−

TPR(x) RD(FIL (x))
N 2

, (12)
m

where N is the number of samples in FILm(x). We consider turning point ratios in both input signal denoted as 
TPR(x) and obtained RR time interval series from the same segment defined as RRITPR = TPR(RRk:1−8). In gen-
eral, we extract a total of 11 TPR-based features from the original input signal by means of passing it into different 
filtering (FIL) schemes, including various frequency bands, to retrieve waveform complexity information of the 
input signal (see the details in37).

Energy Features.  We use a total of 11 energy features derived from each signal segment specific to an axis. 
The features are derived by calculating the energy i.e. by summing the pre-processed and squared signal and by 
dividing it with the length of the signal segment. We consider 11 different filtering bands (FIL in the equation) as 
well as 10 s length signal (Fs = 200 Hz) segments (in total 2000 samples)

∑=
=

ENE FIL (signal(i) )/2000
(13)m

i 1

2000

m
2

The individual energy features m, (m = 1..11) contain the energy of the signal in different frequency sub-bands, 
each band corresponds to a certain frequency spectrum. Furthermore, some features are passed through an abso-
lute value operation and a long triangular shaped smoothing filter37.

Local Binary Patterns.  As new features we consider the Local Binary Patterns (LBPs), which have been 
successfully used in image processing applications such as texture analysis, segmentation and feature detection53. 
The idea behind 2 Dimensional-LBP is based on evaluating the (intensity, differences, etc… of) neighbourhood 
pixels found at certain angles when we rotate from 0–360 degrees in anti-clockwise direction. The neighbourhood 
pixel coordinates around a point gc are found by (−Rsin(2πp/P), Rcos(2πp/P))

∑= −
=

−
LBP s(g g )2 ,

(14)
P,R

p 0

P 1

p c
p

where gc and gP are respectively values of the central point C, and the surrounding point P in the circle neighbour-
hood with a radius R, and function s(x) is defined as:

=




≥
<

s(x) 1, x 0
0, x 0 (15)
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Those coordinates which do not exist are assigned a value using interpolation. Apart from being faster to 
calculate, rotation invariance is another well known property of the LBPs53. An effcient variant of 2D-LBP called 
uniform 2D-LBP which includes only those binary patterns which change only once, either from 0–1 or from 
1–0. Uniform patterns have minimum transitions and as such act as pattern templates for interesting features in 
an image. These uniform LBPs are thought to cover fundamental properties of most textures observed in a neigh-
bourhood around a center point53.

In our application we have used 1D-LBPs variant called 1-dimensional uniform LBP54. 1D-LBP is suitable for 
our input vector v data type. For any time index in the input vector the neighbourhood we consider is, d pixels 
(samples) before and after the index position being analyzed. An additional parameter called spacing is also used 
to speed up the computation and to extend the used local neighborhood. Given P neighbours (eight in our case), 
for all the elements in the input vector we calculate the LBP for the time index i using the formula:

∑= + − − + + + −
=

−
+LBP (v[i]) s[v[i r P/2] v[i]]2 s[v[i r 1] v[i]]2

(16)r
P

0

P/2 1
r r P/2

Each histogram bin of the LBP is updated as many times as there are time instants i (except at the borders 
of the segment where the neighbors do not exist). We consider only the 8-bit neighbourhood, which have been 
most commonly used in previous studies. All the possible uniform LBP patterns for 8-bits are found. A smaller 
subset of histogram for the uniform patterns is also created in which the values (of uniform patterns) from the 
above created histogram are assigned. We combine all the non-uniform LBPs histogram indices for an extra last 
bin in the uniform histogram. As the original 8-bit LBP histogram length is 256, it is reduced to 59 with using 
uniform patterns only. The resulting histogram vector with varying spacing parameter is taken as a feature for the 
classifier. Different spacing values can be selected to generate uniform LBP histograms covering different sized 
neighbourhoods.

Figure 3 shows waveform characteristics of the SCG-GCG and corresponding (selected) features generated 
for each sensor modality. It can be observed in this case that the magnitude of HRV is increased during AFib, but 
not during the other conditions. On the other hand, there are changes in the signal energy as well as in the overall 
number of uniform (and non-uniform) patterns during Pre-PCI and STEMI.

Experimental results
In our previous study37, we used a total of 18 features in a two-class classifier setting to distinguish between AFib 
and normal persons. Here we extend the previous study by adding two more classes - CAD and STEMI - to the 
classifier evaluation framework. Keeping these two new classes in mind, we introduced the LBP features in the 
previous section. The final multiclass classifier will use a combined feature vector of all the 18 AFib features used 
in37 and the LBP features. However, before going to the implementation and evaluation of the multiclass classifier, 
it is necessary to study the properties of each feature in two-class settings, keeping the two new classes in mind. 
In the following evaluations, only the features designed in particular to that setting are used. In all tests, we use a 
leave-one-person-out cross-validation (LOOCV) which is well suited to studies with small or limited amount of 

Figure 3.  SCG-GCG waveforms and corresponding selected features obtained in normal (A), AFib (B), STEMI 
(C), and Pre-PCI (D) conditions.
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samples. We report sensitivity (SE), specificity (SP), and accuracy (ACC) metrics to evaluate classification perfor-
mances according to the Eqs 1–3 in the supplementary information (SI).

AFib detection in two-class setting.  As an extension to our previous study37, where there were 16 AFib 
patients, we have collected data from up to 40 patients, including the previously collected data. The control group 
remains the same as in37, i.e. there are total of 23 heathy individuals. The overall two-class AFib classification rate 
with each set of features is shown in Fig. 4. Figure 4(A) shows that the combination of the axes provides the best 
classification rate with respect to each individual axis. From Fig. 4(B) it can be observed that HRV (heart rate 
variability) and TPR (turning-point ratio) are the best performing features.

Table 2 represents classification accuracy between AFib and normal sinus rhythm cases. As shown, the best 
result was obtained with specificity of 100% (Healthy classified as Healthy) and sensitivity of 97.5% (AFib clas-
sified as AFib) using KSVM. With RF classifier, same sensitivity but slightly poorer specificity (95.6%) were 
achieved. Thus, a total accuracy of 98.4% and 96.8% was obtained for KSVM and RF classifiers, respectively. In 
comparison with37, adding the new AFib samples/subjects improved the results.

Pre-PCI vs. Normal in two class setting.  Another group of patients are suspected for myocardial infarc-
tion and after clinical considerations were preferred for elective percutaneous coronary intervention (PCI) pro-
cedure. Smart phone measurements with these patients were conducted before the PCI and therefore, they are 
denoted as Pre-PCI cases. The reason to select Pre-PCI patients instead of normal CAD patients was to eval-
uate the distinction of hemodynamically significant stenosis without ST elevation in the ECG to ST elevation 
myocardial infarction. Also, as the control group used for evaluation contain quite different demographics in 
comparison with the other groups, the distinction between the Pre-PCI and STEMI group with regard to demo-
graphics should be smaller. In Fig. 5 LBP features are used in Normal vs. Pre-PCI classification. It can be observed 
that combining the LBP histograms with different granularities (dense and coarse spacings between samples) 
improves the classification rate, as well as using Matlab’s cumtrapz integration–to convert signals as indicators of 
cardiac angular displacement (GCG) and linear velocity (SCG). When considering different classifiers and feature 
vectore in Normal vs. Pre-PCI classification (Fig. 5), it appears that combination of all features improves the over-
all result with both KSVM (average accuracy 86%, sensitivity of 81%, and specificity of 91.5%) and RF (average 
accuracy 84%, sensitivity of 76.2%, and specificity of 91.3%). Table 3 reports performance metrics obtained by 
two separate classifiers in two different conditions.

Pre-PCI vs. STEMI in two class setting.  As mentioned, the most relevant individual pair of classes is 
Pre-PCI vs. STEMI, as it could be expected to be less affected to the differences in the demographics. The effect of 
different features on STEMI vs. Pre-PCI classification (again, two-class case) is shown in Fig. 6. It can be observed 
that dense spacing without cumtrapz function provides the best classification rate, while with the combining of 
axes the detection rate is slightly lower. The overall best sensitivity and specificity of this two-class experiment are 
63% and 79% with average accuracy of 71.6%.

Figure 4.  Effect of mechanical axes (A) and each feature (B) to the overall AFib classification performance.

AFib

RF KSVM

Without 
Majority 
Voting

With 
Majority 
Voting

Without 
Majority 
Voting

With 
Majority 
Voting

ACC (%) 92.0 96.8 94.8 98.4

SP (%) 87.6 95.6 94.3 100

SE (%) 94.5 97.5 95.0 97.5

Table 2.  AFib detection performance using KSVM and RF with and without majority voting.
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The purpose of examining the two-class performances of subsets of features is to evaluate the effect of individ-
ual sets of features to the overall classification performance in order to be able to perform multiclass classification 
effectively. The two-class performance results are summarized in Table 4 with and without majority voting.

Evaluation of the Two-class Classifiers.  Figure 7 shows classification accuracy using receiving operator 
characteristic (ROC) curves obtained for two-class setting using Kernel SVM and RF classification models. As 
shown, the area under the curve (AUC) obtained by KSVM shows slightly better performance rate as compared to 
RF in all cases. This implies that our features give robust representation of cardiovascular condition distinguished 

Figure 5.  Effect of each feature to the overall classification performance in Healthy vs. Pre-PCI with Kernel 
SVM (A) and random forest classifiers (B).

PrePCI

RF KSVM

Without 
Majority 
Voting

With 
Majority 
Voting

Without 
Majority 
Voting

With 
Majority 
Voting

ACC (%) 81.2 84.0 86.0 86.0

SP (%) 89.0 91.3 82.5 91.3

SE (%) 73.0 76.2 82.0 81

Table 3.  Pre-PCI identification performance in two class setting for KSVM and RF.

Figure 6.  Effect of each feature to the overall classification performance in STEMI vs. Pre-PCI with Kernel 
SVM (A) and random forest classifiers (B).

STEMI vs 
PrePCI

RF KSVM

Without 
Majority 
Voting

With 
Majority 
Voting

Without 
Majority 
Voting

With 
Majority 
Voting

ACC (%) 71.6 71.4 70.6 69.0

SP (%) 79 81 79.8 76.2

SE (%) 63 62 60.3 62

Table 4.  STEMI versus PrePCI detection performance with and without majority voting using RF and KSVM.
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by two different classifiers in this study. Comparing different CVD conditions, both classifiers were able to detect 
AFib and CAD conditions with high accuracy. However, they were not able to distinguish ischemic conditions, 
i.e. STEMI versus Pre-PCI, with diagnostic ability of more than 78%. This is expected as these two conditions are 
in principle originated from the same phenomena but one belongs to a relatively stable condition for instance 
NSTEMI, while the other case, STEMI, refers to a crucial and fatal condition. In all cases, classifiers were able to 
discriminate normal condition from abnormal conditions with high rate of certainty which supports our hypoth-
eses in this study. Tables 1 and 2 in the supplementary document present confusion matrices of two-class case 
settings with and without majority voting.

Evaluation of the Multi-class Classifiers.  The confusion matrices of multiclass classification cases are 
shown in Tables 4–6 in the SI document. In particular, we use two test cases for multiclass classifiers; (Normal, 
STEMI, Pre-PCI) and (Normal - AF- STEMI - Pre-PCI). The first one (3-class) is to test the case of CAD/STEMI 
detection mainly and the second one (4-class) is to test the overall performance of all data gathered in this study. 
The accuracy in multiclass settings is calculated as in two-class setting as the sum of the diagonal of the confusion 
matrix divided by the overall sum of elements within confusion matrix. The accuracy of the 3-class classifier 
(obtained from the confusion matrix) is 73% without majority voting, and 78.46% with majority voting. The 
accuracy of the 4-class classifier is 71.17% without majority voting and 75.24% with majority voting. In the mul-
ticlass settings using RF classifier the accuracy of 73.9% was obtained in 3-class case. With majority voting the 
same accuracy of 73.9% was obtained. In the 4-class case the performance of the RF classifier without majority 
voting was 70.2% and with majority voting 75.2%. Thus, both classifiers were able to separate the classes in each 
case with more than 70% accuracy.

Complementary to the above performance metrics for multiclass setting, we calculated another metric 
so-called F1 score which is an average F1 value from the classification types. Table. 7 (SI) indicates definition 
of parameters for scoring. The scoring was based on leave-one-person-out cross validation and the values were 
achieved according to Equations 1–6 as described in the SI. Accordingly, Tables 5 and 6 represent F1 scores calcu-
lated for 3- and 4-class setting with and without majority voting, respectively. As such, for the 3-class setting the 
best F1 score achieved by KSVM without majority voting (78%), while for the 4-class setting the best score was 
given by RF classifier (74%) again without majority voting.

Discussion
We presented an approach for classifying multiple heart conditions using well known principles of seismocar-
diography and gyrocardiography with full analysis of signals derived from a 6-axis smartphone built-in inertial 
sensor. We were able to show, that in multiclass settings the majority voting improved the detection rate, when we 
used person based LOOCV cross-validation in obtaining the results.

MCG-based cardiac monitoring has pivotal clinical implications as it reliably detects cardiac abnormalities 
without any additional hardware and provides a new easy-to-use and accessible concept for screening purposes. 

Figure 7.  ROC curve showing the classification performance of two-class setting with KSVM and RF.

F score

Without Majority Voting With Majority Voting

RF KSVM RF KSVM

F1n 0.88 0.91 0.84 0.86

F1m 0.74 0.75 0.75 0.72

F1p 0.56 0.67 0.57 0.56

F1 0.72 0.78 0.72 0.72

Table 5.  RF and KSVM F1 scores for 3-class setting.
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The findings of this study, while preliminary, suggests that measuring the mechanical movement of the heart mus-
cle offers an entirely new and innovative method to evaluate cardiovascular status. One issue which may affect 
the results is the fact that control group demographics are quite different from other groups. Although this is not 
expected to influence to CAD (Pre-PCI) vs. STEMI classification–which is perhaps the most relevant two-class 
case–it should be taken into account in interpreting the results. It is possible that interpreting the Pre-PCI group 
as a substitute to traditional healthy control group (with same demographics) can decrease the performance of 
the classification. On the other hand, it would not be realistic to consider healthy group without any indication of 
accumulation of atherosclerotic plaque as control group, since it is very unlikely that a healthy person belonging 
to this group would experience STEMI. Therefore, the only relevant control group are cardiac diseased patients 
who are at the real risk of having STEMI. Nevertheless, as the patients in the Pre-PCI (and STEMI) group may 
have suffered from other diseases (e.g. heart failure) as well, it is necessary to perform further studies to confirm 
our findings with larger sample sizes and more relevant control group settings.

Currently, standard method to establish cardiac disorders is a 12-lead ECG as it determines presence of 
arrhythmia, conduction defects, ischaemia, and signs of structural heart disease55. Our presented MCG mon-
itoring provides a novel way — based on solely measuring mechanical activity — for AFib detection inde-
pendent of 12-lead ECG and with a comparable diagnostic accuracy of 98%. Strikingly, there is no need to get 
electro-physiological signals (e.g. ECG) from the heart, but only the precordial vibrations. For STEMI diagno-
sis, clinical issue with ECG-based methods is the high frequency of false positive ECG findings such as early 
repolarization as well as ECG findings hindering ischemia detection such as the left bundle branch block, pace-
maker rhythm or significant left ventricular hypertrophy. Current computer-aided algorithms for STEMI diag-
nosis possess a limited sensitivity (of 30–70%) and specificity (of 70–100%)56. Although the presented measuring 
approach revealed inband sensitivity and specificity values, its diagnostic performance for STEMI detection must 
be analysed not only with ECG data, but when taking clinical symptoms and coronary angiography findings into 
account. Such a holistic contextual analysis is routine for diagnosing mechanical wall motion abnormalities found 
in STEMI patients and heart failure patients with reduced ejection fraction (HFrEF).

We discuss some of the main limitations of this work as well. Although we were able to separate the four 
classes, i.e. Normal, AFib, Pre-PCI and STEMI with a promising accuracy, the underlying physiological mecha-
nism for the separation between the last two classes is still unclear. For AFib and normal classes, it seems, that the 
separation could be justified by the different heart rate variability resulting from irregular ventricular rate of the 
AFib, against the Normal class. However, it is possible, that instead of capturing the true physiological meaning 
of ST-segment elevation in ECG (in the case of STEMI), for instance, the LBP features could just represent the 
distinction between a shapes of the heart signal for the cases of a stressful event such as STEMI (with acute chest 
pain), and non-stressful event such as in Pre-PCI in comparison with less “abnormal” cases of sinus rhythm and 
AFib. As another limitation of this study, although AFib classification was efficient, we did not consider the detec-
tion of other arrhythmias, such as atrial flutter (AFL), which should be done in the future. The features used for 
AFib detection might be, at least partially, usable for AFL detection also, by simply extending the multiclass clas-
sifier with AFL class data. The reason for not considering other arrhythmias and premature beats in this study was 
mainly because of the availability of suitable training data. As a summary, much more work is still needed before 
any clinically relevant smartphone application could be provided for true patient use. Still, this work is a primary 
example for demonstrating that in the future an AFib screening application (or equivalent) could be extended to 
cover a more versatile set of abnormal heart conditions to be detected.

This study illustrates that it is possible to implement a novel classification system possibly aiding in the diag-
nosis of multiple heart conditions. However, smartphones or their inertial sensors have not been traditionally 
targeted toward the heart measurements, and necessary further validation and risk assessment must be conducted 
in order to evaluate real end-use of final system, for example in the form of smartphone application or equivalent. 
The research conducted further raises some critical ethical issues. For instance, what if a smartphone application 
or equivalent - despite of possible precautions and instructions - would declare a patient suffering from STEMI 
as not being in need of instant medical care. Even the most recent smartphones with advanced IMUs are not 
intended to be used for critical diagnosis whose incorrect (or correct) result might threaten human lives. In fact, 
the conditions and terms of application stores (such as Google’s Play), explicitly deny using the Apps for critical 
purposes, whose incorrect operation could cause serious physical injury.

The reasons described above limit the possible commercialization and usage of a system like the one proposed 
in this paper. Despite this, there already exist multiple solutions in mobile marketplaces for AFib detection, which 
could perhaps be seen as “less” critical application, since the focus is rather in prevention by early detection, 
rather than on patients possibly in need of immediate medical care (and where the time-to-treatment critically 
affects to the outcome of the treatment that the patients receives). Also, there already exists ECG based solutions 

F score

Without Majority Voting With Majority Voting

RF KSVM RF KSVM

F1n 0.82 0.89 0.80 0.85

F1a 0.77 0.81 0.75 0.77

F1m 0.65 0.62 0.56 0.57

F1p 0.70 0.60 0.60 0.59

F1 0.74 0.73 0.68 0.70

Table 6.  RF and KSVM F1 scores for 4-class setting.
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for patient telemonitoring. However, even with using ECG, blood markers may be used to find further evidence 
of STEMI. Our future direction in cardiac motion signal processing is to expand our algorithm development with 
larger group of CVD patients having different cardiac disorders. A randomized clinical trial of CVD screening 
using smartphones should be carried out to assess reliability and credibility of m-health Apps aiming to detect 
heart diseases.

In conclusion, this paper addressed the globally important issues of detection of AFib, CAD, and acute STEMI 
non-invasively with smartphone mechanocardiography. We were able to show that it is be possible to use the 
built-in inertial sensors of the smartphones to detect some of these conditions, or even multiple conditions, 
without any external equipment such as ECG leads or wires. Due to global availability of smartphones, it could be 
possible to integrate a professional diagnosis system as a part of efficient global prevention and detection of heart 
diseases. However, there is an evident need for further studies such as controlled blinded tests as well as testing 
the usage of the application in limited distribution in the full supervision of trained medical staff, before any such 
application could be made available. Although the need for solution described in this paper is evident, there are 
many important ethical issues and precautions involved, before an actual system could even be tried to be used to 
reduce the time-to-treatment of real STEMI patients, for instance. In any case, either as a part of telemonitoring 
system or as a supplement to ECG, inertial smartphone/wearable sensors could potentially be a way to increase 
the detection performance of heart conditions covered in this paper.

Data availability.  The data that support the findings of this study are available from Turku University 
Central Hospital (TYKS) but restrictions apply to the availability of these data, which were used under clinical 
permissions for the current study, and so are not publicly available. Data are however available from the authors 
upon reasonable request and with permission of TYKS.
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