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SHAPE-guided RNA structure homology search
and motif discovery
Edoardo Morandi1, Martijn J. van Hemert 2 & Danny Incarnato 1✉

The rapidly growing popularity of RNA structure probing methods is leading to increasingly

large amounts of available RNA structure information. This demands the development of

efficient tools for the identification of RNAs sharing regions of structural similarity by direct

comparison of their reactivity profiles, hence enabling the discovery of conserved structural

features. We here introduce SHAPEwarp, a largely sequence-agnostic SHAPE-guided algo-

rithm for the identification of structurally-similar regions in RNA molecules. Analysis of

Dengue, Zika and coronavirus genomes recapitulates known regulatory RNA structures and

identifies novel highly-conserved structural elements. This work represents a preliminary step

towards the model-free search and identification of shared and conserved RNA structural

features within transcriptomes.
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A key need in RNA biology is the ability to identify
structurally-homologous (or structurally-similar) RNAs.
One of the most widely used methods for RNA structure

homology search is Infernal1. Infernal relies on probabilistic
models, called covariance models2 (CMs), which describe both
the consensus sequence and secondary structure of a family of
related RNAs, and it uses a dynamic programming algorithm to
identify putative structurally-homologous RNAs that can be
optimally aligned to the CMs. While this method is extremely
accurate and powerful, it depends on the availability of both a
high-quality alignment of related RNA sequences and an accurate
secondary structure model for the RNA family of interest.
Although determining the structure of an RNA is a nontrivial
task, the introduction over the last decade of a wide range of
methods, mostly based on the coupling of RNA structure probing
and high-throughput sequencing, has significantly improved our
ability to interrogate the structure of thousands of RNA molecules
in a single experiment3. Among these, methods based on che-
mical probing are probably the most popular. Chemical probing
allows to rapidly query RNA structures in a variety of contexts,
including the complex cellular environment, by taking advantage
of specific chemical probes that can selectively react with RNA
nucleotides, in a way that is directly correlated with their struc-
tural context4. Dimethyl sulfate5 (DMS), a nucleobase-specific
probe for unpaired A and C bases, and Selective 2′-hydroxyl
acylation analyzed by primer extension (SHAPE) reagents6–8,
which react with the 2′-OH of the ribose moiety on structurally-
flexible residues, are widely employed probes as they can readily
permeate cell membranes, allowing to study RNA structures in
their physiological context. The readout of these experiments is a
reactivity profile that informs on the reactivity of each nucleotide
in the RNA to the employed chemical probe. Such reactivity
profiles can be used in conjunction with free energy minimization
algorithms to derive an experimentally-informed structure model
of the RNA of interest. This is typically done by converting the
experimentally-determined reactivities into pseudo-free-energy

contributions, that are used to adjust the thermodynamics para-
meters (known as nearest-neighbor model9) in order to constrain
the RNA structure prediction and yield a structure model that
better agrees with the observed reactivity profile10, although many
alternative approaches have been also proposed11–14. However,
the accuracy of the inferred structure models largely relies on a
multitude of factors, including the employed chemical probe, the
approach used to incorporate the experimentally-determined
reactivities into the structure prediction, and a number of
method-specific analysis parameters. As a consequence, deriving
high-quality RNA secondary structure models is a nontrivial task,
as minimal changes in the analysis protocol might significantly
affect the reliability of the inferred RNA structure model. Fur-
thermore, the growing interest in RNA as a target for small
molecule drugs underscores the importance of this challenge, as
well as the need for tools able to evaluate if a candidate RNA
structure can be selectively targeted, or, in other words, whether a
candidate target is sufficiently unique within the transcriptome15.
To fill this gap, we here introduce SHAPEwarp, a model-free and
sequence-agnostic method for the identification of structurally-
similar RNA regions in a database of chemical probing-derived
reactivity profiles. By applying SHAPEwarp to a number of
SHAPE datasets for viral RNA genomes we demonstrate that, not
only SHAPEwarp is able to recover known functional RNA
structures, but most importantly that it can be used to drive the
identification of previously unidentified conserved RNA structure
elements.

Results and discussion
The approach used by SHAPEwarp (see Supplementary Note 1) is
inspired by the BLAST algorithm16 and it builds on top of two
widely used methods for similarity search in time series data:
Mueen’s Algorithm for Similarity Search (MASS)17 and dynamic
time warping (DTW). In a first step (Fig. 1a), all the possible
query kmers of a user-defined length are enumerated, filtering out
those corresponding to low structure complexity regions. Regions
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Fig. 1 Schematic of the SHAPEwarp algorithm. a All the possible kmers along a query SHAPE reactivity profile are enumerated, discarding those having
low structure complexity. Retained kmers are looked up into the database via the MASS algorithm. b A matrix is built storing the coordinates of each query
kmer and its matches in the database, allowing the grouping of kmers lying on the same diagonal into high scoring groups (HSGs). c Each HSG is used as
the seed to begin the bidirectional extension of an alignment. Banding of the alignment restricts the search space to a maximum number of bases around
the diagonal. The alignment stops when the score (S) drops below a certain threshold for more than a certain number of bases. d In parallel, the same
query is searched against a database of shuffled SHAPE reactivity profiles. The scores of these alignments are used to build the null distribution, further
allowing to estimate the probability of obtaining an alignment score ≥S. From this the E-value of the alignment can be estimated. e Optionally, significant
alignments can be further analyzed for the presence of a conserved structure by exploiting the RNAalifold algorithm.
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of low structure complexity are defined as those showing little or
no disparity in the distribution of SHAPE reactivities, as it would
be expected for kmers entirely falling inside a base-paired or
unpaired region of the RNA. Filtering of these kmers is per-
formed by imposing a minimum cutoff on their Gini
coefficient18,19. Kmers passing the complexity cutoff are then
looked up in a database of reactivity profiles via MASS, a highly
optimized algorithm for time series subsequences all-pairs-
similarity search (TSAPSS) in just O(n2). Additionally, the per-
cent GC content of the kmer and its matches are evaluated and
matches having GC content deviating by more than a certain
percentage from that of the query kmer, are discarded. Indeed,
analysis of multiple sequence alignments for known RNA families
from RFAM suggests that the local percent GC content of
structurally-related RNAs tends to show only limited variation
(median GC% difference: 15.10%, 13.02%, 11.51%, and 9.98%
respectively for kmer lengths of 8, 10, 12 and 15 nucleotides)
(Supplementary Fig. 1). Kmer matches lying on the same diag-
onal, within a maximum distance from each other, are then
grouped into high scoring groups (HSGs) (Fig. 1b). HSGs are
essentially sub-segments of a query-database pair, that share a
high degree of similarity and can be aligned without gaps.
Ungapped HSGs are extended upstream and downstream by
using a banded semi-global alignment algorithm, that incorpo-
rates both features of the Gotoh’s Smith–Waterman algorithm
with affine gap penalties20 and of DTW. The extension process is
stopped when the score drops below a certain threshold for more
than a certain number of nucleotides (Fig. 1c). A null model is
then built by searching the same query in a database of randomly
shuffled reactivity profiles (Fig. 1d) and used to estimate the
E-value of each database match21. For those matches passing the
user-defined E-value threshold, the aligned reactivity profiles can
then be used to model the underlying structure by using the
RNAalifold algorithm22, a widely used method for inferring
consensus secondary structures from RNA alignments (Fig. 1e).
Kmer matching and alignment extension parameters (see Meth-
ods) were optimized by using in vivo SHAPE-MaP data for the
23S rRNA obtained by probing E. coli and B. subtilis with 2-
aminopyridine-3-carboxylic acid imidazolide7 (2A3), a powerful
SHAPE reagent we recently developed7, and validated on the 16S
rRNA. E. coli 16S rRNA was first split into 200 nucleotides-long

windows, with 100 nucleotides overlap, and used to query B.
subtilis rRNAs (Fig. 2a). With the selected parameter set and by
employing an E-value threshold of 0.01 for the SHAPE-only
search, or 0.005 when also accounting for sequence (SHAPE+
sequence), SHAPEwarp had a false discovery rate (FDR) of 0 and
sensitivity of ~87% (13/15 windows recovered). The distribution
of E-values for true matches (median SHAPE only: 3.4e−5;
median SHAPE+ sequence: 0) showed a clear separation (p value
SHAPE only: 6.1e−11; p value SHAPE+ sequence: 2.2e−11; two-
sided Wilcoxon Rank Sum test) with respect to the distribution of
E-values for false matches (median SHAPE only: 58.15; median
SHAPE+ sequence: 15.47) (Fig. 2b). We performed an additional
validation by using a previously published SHAPE-MaP dataset
for four Dengue virus (DENV) serotypes23, probed in virio with
NAI. Viral genomes present the advantage of having extremely
conserved architectures, hence allowing to estimate the FDR of
our method. We performed any of the six possible comparisons
of the four DENV serotypes (both SHAPE only and SHAPE+
sequence), each time by using one serotype as the query dataset
and the other serotype as the database. Once again, SHAPEwarp
showed a remarkably low FDR (SHAPE only: ~1.3%; SHAPE+
sequence: ~0.5%). In all comparisons but one (DENV-2 vs.
DENV-4, SHAPE only), SHAPEwarp matched, to different
extents, the 5′ and 3′ UTRs of the genomes, known to carry
several key RNA regulatory elements (Supplementary Fig. 2a).
The resulting alignments (along with the corresponding SHAPE
profiles) were further fed into RNAalifold. We then extracted the
individual structure elements and used them as input for cm-
builder, a method we recently developed to allow the automated
identification of conserved RNA structures supported by sig-
nificant covariation24,25. Our pipeline combining SHAPEwarp
and cm-builder recovered the most common Flavivirus regulatory
elements26 (SLA, cHP, xrRNA, DB, and CRE) (Extended Data
Fig. 1b). It further recovered another highly-conserved element
within the capsid coding region (DCS-PK), previously reported to
regulate genome cyclization27. CMs derived from this pipeline
performed comparably well to RFAM manually-curated CMs28.
Notably, the CM for the xrRNA element outperformed the one
from RFAM (RF03547), as it respectively matched ~75% and
~70.5% of the scanned ZIKV and DENV genomes, versus 0% and
~1.5% respectively matched by the RFAM model (Supplementary
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Fig. 2 Validation of SHAPEwarp. a Box-plot depicting the distribution of E-values for true (T) and false (F) matches for E. coli 16S rRNA searched against B.
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(SHAPE+ sequence) for true matches, and n= 1338 (SHAPE only) and n= 457 (SHAPE+ sequence) for false matches. b Sample alignments for two
matching regions between the 16S rRNAs of E. coli and B. subtilis, as identified by SHAPEwarp. SHAPE reactivities have been capped to 2. The high scoring
group (HSG), constituting the seed of the alignment, is shaded in gray. The insets show the same two regions in their structural context.
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Fig. 2b). Encouraged by the performances of SHAPEwarp, we
next sought to apply it to drive the discovery of novel RNA
structure elements in viral genomes. To this end we used a
recently published icSHAPE dataset29 (RT stop-based readout)
comparing the Asian and African lineages of Zika virus (ZIKV)
by in vivo probing with NAI6 and we further generated two new
datasets by probing the structure of both SARS and SARS-CoV-2
coronaviruses (CoVs) with 2A3. SHAPEwarp identified extensive
structural homology between the compared genomes for both
ZIKV (SHAPE only: ~61.8%; SHAPE+ seq: ~80.9%) and CoVs
(SHAPE only: ~41.9%; SHAPE+ seq: ~61.2%). The identified
structurally-homologous regions encompassed known structural
elements (i.e., 5′ and 3′ UTRs for both ZIKV and CoVs, as well as
the frame-shifting element for CoVs). Besides known structures
in the UTRs, application of our combined SHAPEwarp+cm-
builder pipeline resulted in the identification of eight novel
conserved RNA elements, of which five in ZIKV and three in
CoVs (Fig. 3 and Supplementary Figs. 3–12). It is worth noticing
that we only selected structures having extensive covariation
support, hence this analysis likely represents an underestimate of
the actual number of functionally-conserved RNA structures in
these genomes. Importantly, besides showing significant covar-
iation support (as determined by R-scape30), all eight structures
but one (ZIKV Motif #4) showed significant in vivo support by
direct RNA–RNA interaction capture via COMRADES31,32 in
infected host cells, further underscoring their functional

significance. Lack of significant support by COMRADES for
ZIKV Motif #4, is most likely the consequence of its limited size.
In a recent study we introduced DRACO25, a method for the
deconvolution RNA structure ensembles from DMS-MaPseq33

data, and used it to identify multiple regions within the SARS-
CoV-2 genome folding into two alternative structures. Compar-
ison of SARS-CoV-2 structurally-heterogeneous regions with the
three structurally-conserved structure elements here identified
showed that CoV Motif #3 partially overlaps with one of the
regions identified by DRACO to form two alternative con-
formations. The deconvolved reactivity profile for the major
conformation (59.0 ± 1.5%) well agrees with the structure here
identified by our SHAPEwarp+ cm-builder pipeline. Impor-
tantly, analysis of the minor conformation (41.0 ± 1.5%) with cm-
builder revealed that weaker but significant covariation and
COMRADES support exist also for this structure (Supplementary
Fig. 6), hence underscoring the potential relevance of this struc-
tural switch. Altogether, these results demonstrate the ability of
SHAPEwarp to drive the identification of structurally-
homologous RNA regions, in a model-free fashion. When con-
sidering all the SHAPE datasets here analyzed, SHAPEwarp
exhibited an overall FDR of ~1.6% and ~0.3% respectively for
SHAPE only and SHAPE+ sequence searches. SHAPEwarp
robustness is largely independent from which SHAPE reagent or
readout strategy is employed. For instance, the extensive simi-
larity detected for the ZIKV genomes underscores this point.
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Indeed, while optimal SHAPEwarp alignment parameters were
derived from MaP data, the icSHAPE data for ZIKV genomes was
generated using an RT-stop-based readout strategy. Furthermore,
we evaluated SHAPEwarp’s performances with both NAI and
2A3-derived profiles, generated by either RT-stop or mutational
profiling. Search for NAI-derived profiles in a database of 2A3-
derived profiles further supports this notion, showing a sensitivity
of ~95.5% and an FDR of ~2% (Supplementary Fig. 13).

We further evaluated the performances of SHAPEwarp with
queries of different lengths (100, 150, and 250 nt) and compared
the results to those previously obtained with 200 nucleotide-long
queries. To this end, we calculated the fraction of correctly
matched 200 nucleotide-long windows (passing the minimum
E-value cutoff), that overlapped with at least one correctly mat-
ched window at each of the evaluated query lengths, imposing a
minimum overlap of 25% (calculated with respect to the smaller
window). For SHAPE only, this resulted into overlaps of 54%,
86% and 97.2% respectively for 100, 150, and 250 nucleotide-long
queries. For SHAPE+ sequence, the overlap was way more
extensive, with 92.1%, 99.3%, and 99.5% respectively for 100, 150,
and 250 nucleotide-long queries. The marked difference in
overlap with shorter queries observed between SHAPE only and
SHAPE+ sequence searches can be easily explained by the very
low probability of finding by chance a match having both similar
SHAPE reactivity and nucleotide sequence. Thus, the difference
between the score of a true match and the distribution of align-
ment scores from the shuffled database tends to be way more
significant when sequence identity is rewarded as well. This dif-
ference can be mitigated by increasing the E-value cutoff for
shorter queries. Indeed, by simply increasing the E-value cutoff
from 0.01 to 0.05, the overlap for 100 nt-long queries increases
from 54% to 76%, while keeping the FDR below 5%.

In summary, we have here introduced SHAPEwarp, a SHAPE-
driven sequence-agnostic method for the identification of
structurally-similar RNA regions. We can anticipate that SHA-
PEwarp will greatly facilitate the discovery of shared and con-
served RNA structural features within transcriptomes.

Methods
SHAPEwarp algorithm. The SHAPEwarp algorithm is implemented in Perl and
Rust. SHAPEwarp comes with three components: SHAPEwarp, swKmerLookup
and swBuildDb. The SHAPEwarp module allows searching one or more queries in
a database of SHAPE reactivities (or base-pairing probabilities). The swKmer-
Lookup module (invoked by SHAPEwarp) is responsible of performing both the
kmer lookup and kmer grouping into HSGs. Finally, the swBuildDb module allows
generating SHAPEwarp-compliant databases of SHAPE reactivities (or base-
pairing probabilities). A complete description of the algorithm is provided in
Supplementary Note 1.

Data retrieval. SHAPE-MaP data for E. coli and B. subtilis rRNAs, DENV and
SARS-CoV-2 (probed with NAI) were obtained from the Gene Expression
Omnibus (GEO) database (GSE154563, GSE106483 and GSE151327). Pre-
normalized icSHAPE data for ZIKV was obtained from Li et al.29. COMRADES
datasets for ZIKV and SARS-CoV-2 virus in living infected host cells were
respectively obtained from ArrayExpress (E-MTAB-6427) and GEO (GSE154662).

Analysis of SHAPE-MaP data. All the analysis steps, from reads alignment to data
normalization, were performed using RNA Framework34. All tools referenced in
the following paragraphs are distributed as part of the RNA Framework suite
(https://github.com/dincarnato/RNAFramework). The following parameters were
used: rf-map (parameters: -b2 -cq5 20 -ctn -cmn 0 -mp ‘--very-sensitive-local’,
using Cutadapt v2.135, Bowtie v2.3.5.136 and SAMtools v1.937), rf-count (para-
meters: -m -rd), and rf-norm (parameters: -sm 3 -nm 3 -mm 1 -n 1000). For the
analysis of DENV SHAPE-MaP data, the -n parameter of rf-norm was lowered to
500, to ensure the inclusion of genome boundaries. Only replicate 1 of each
experiment was used, given the exceptionally high inter-sample correlation.

Selection and optimization of folding parameters. For base-pair probability
calculation and structure modeling, the following previously determined slope and
intercept pairs were used: 1.0 and −0.4 for 2A37 and 1.1 and 0.0 for NAI23. For

NAI-N3, a reference structure including the known 5′ and 3′ UTR elements of
ZIKV was built for the Asian strain (PRVABC59) and optimal values 2.4 and −0.6
were identified by grid search using the rf-jackknife tool (parameters: -rp “-md 600
-nlp” -x) and ViennaRNA v2.4.1438, and by selecting the prediction achieving the
highest sensitivity.

Cell culture and SARS-CoV/SARS-CoV-2 infection. Infection with SARS-CoV
and SARS-CoV-2 was conducted as previously described24,39. Briefly, Vero E6 cells
were cultured in DMEM (Lonza, cat. 12-604F), supplemented with 8% FCS
(Bodinco), 2 mM L-glutamine, 100 U/mL of penicillin and 100 µg/mL of strepto-
mycin (Sigma Aldrich, cat. P4333-20ML). Cells were infected with either SARS-
CoV or SARS-CoV-2 in EMEM (Lonza, cat. 12-611F) supplemented with 25 mM
HEPES, 2% FCS, 2 mM L-glutamine, and penicillin/streptomycin. 16 h after the
infection, infected cells were harvested by trypsinization, followed by resuspension
in EMEM supplemented with 2% FCS, washed with 50 mL 1X PBS, and then
resuspended in 1 mL of QIAzol Lysis Reagent (Qiagen, cat. 79306). All experiments
with infectious SARS-CoV/SARS-CoV-2 were performed in a biosafety level 3
facility at the LUMC.

Total RNA extraction and in vitro folding. To 1 mL of infected cells in QIAzol
Lysis Reagent, 200 μl of chloroform were added. The sample was vigorously vor-
texed for 15 sec and then incubated for 2 min at room temperature, after which it
was centrifuged for 15 min at 12,500 × g (4 °C). The upper aqueous phase was
collected in a clean 2 mL tube, supplemented with 1 mL (~2 volumes) of 100%
ethanol, and then loaded on a Monarch® RNA Cleanup Kit column (NEB, cat.
T2030L). In vitro folding was carried out as previously described24,40. Briefly, ~5 μg
of total RNA from infected cells were first depleted of ribosomal RNAs using the
RiboMinus™ Eukaryote System v2 (ThermoFisher Scientific, cat. A15026), as per
manufacturer instructions. rRNA-depled RNA in a volume of 39 μl was denatured
at 95 °C for 2 min, then transferred to ice for 1 min. 10 μl of ice-cold 5X RNA
Folding Buffer [500 mM HEPES pH 7.9; 500 mM NaCl] supplemented with 20 U
of SUPERase•In™ RNase Inhibitor (ThermoFisher Scientific, cat. AM2696) were
added. RNA was then incubated for 15 min at 37 °C to allow secondary structure
formation. Subsequently, 1 μl of 500 mM MgCl2 (pre-warmed at 37 °C) was added
and RNA was further incubated for 15 min at 37 °C to allow tertiary structure
formation.

Probing of SARS-CoV and SARS-CoV-2 RNA. For probing of RNA, 2A3 was
added to a final concentration of 100 mM (assuming a stock concentration of 1M).
An equal volume of DMSO was added to the control samples. Samples were then
incubated at 37 °C for 5 min. Reactions were quenched by the addition of 1 volume
DTT 1M and then purified on Monarch® RNA Cleanup Kit columns.

SHAPE-MaP analysis of SARS-CoV and SARS-CoV-2 RNA. SHAPE-MaP
library preparation was conducted as previously described24, with minor changes.
Probed RNA was first fragmented to a median size of 150 nt by incubation at 94 °C
for 8 min in RNA Fragmentation Buffer [65 mM Tris-HCl pH 8.0; 95 mM KCl;
4 mMMgCl2], then purified on Monarch® RNA Cleanup Kit columns and eluted in
8 μl NF H2O. Eluted RNA was end repaired by treatment with 1 U of rSAP (NEB,
cat. M0371L) at 37 °C for 30 min, plus 5 min at 70 °C to heat-inactivate the enzyme,
followed by treatment with 20 U of T4 PNK (NEB, cat. M0201L), in the presence of
1 mM ATP, at 37 °C for 1 h. 50 ng of end-repaired RNA were first ligated to 10
pmol of a pre-adenylated 3′ adapter (rApp-AGATCGGAAGAGCACACGTCT-
SpC3) using 200 U of T4 RNA Ligase 2 truncated KQ (NEB, cat. M0373L), in the
presence of 12.5% PEG-8000, for 1 h at 25 °C. 10 pmol of a 5′ RNA adapter
(CUACACGACGCUCUUCCGAUCU) were then ligated using 30 U of T4 RNA
Ligase 1 (NEB, cat. M0437M), in the presence of 1 mM ATP and 8% PEG-8000, at
25 °C for 1 h. The adapter-ligated RNA was then supplemented with 10 pmol of RT
primer (AGACGTGTGCTCTTCCGATCT), incubated at 70 °C for 5 min and
immediately transferred to ice for 1 min. Reverse transcription reactions were
conducted in a final volume of 10 μl. Reactions were supplemented with 2 μl 5X RT
Buffer [250 mM Tris-HCl pH 8.3; 375 mM KCl], 1 μl DTT 0.1M, 0.5 μl dNTPs
10 mM, 0.5 μl MnCl2 120 mM, 20 U SUPERase•In™ RNase Inhibitor and 100 U
SuperScript II (ThermoFisher Scientific, cat. 18064014). Reactions were incubated
at 42 °C for 2 h. RNA was degraded by addition of 1 μl NaOH 5N, followed by
incubation at 95 °C for 3 min. After purification, barcodes were introduced by PCR,
using NEBNext® High-Fidelity 2X PCR Master Mix (NEB, cat. M0541L) and
NEBNext® Multiplex Oligos for Illumina® Dual-Index primers (NEB, cat. E7780S).

Optimization of SHAPEwarp parameters. To optimize SHAPEwarp parameters,
we took advantage of in vivo 2A3 probing data for E. coli and B. subtilis 23S rRNAs
we previously generated7 and used a structurally-informed alignment of the 23S
rRNAs from the two species (generated using Infernal1) as a reference. For the
calibration of kmer lookup and kmer grouping parameters, a 200 nt-long window
was slid along the E. coli 23S rRNA, with an offset of 100 nt, and used to query the
B. subtilis 23S rRNA, using any possible combination of the following paramters:
maxKmerDist (10, 20, 30); kmerLen (8, 10, 12, 15); minKmers (1, 2, 3); kmer-
MinComplexity (0.2, 0.3, 0.4); maxReactivity (1, 1.5 for SHAPE reactivities; 1 for
base-pairing probabilities); kmerMaxMatchEveryNt (100, 200, 500). A query was
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considered to represent a true positive match if at least one HSG overlapped by at
least 1 nt the expected position in the reference alignment. Any other match was
regarded as false positive. The set of parameters having the highest ratio of true
positive matches to the average number of false positives per window, was picked.
For the calibration of alignment parameters, we proceeded in two steps. First, by
using a subset of 15 true positive HSGs to seed the alignment of 15 × 200 nt-long
queries, alignment extension was performed using any possible combination of the
following parameters: alignMatchScore (min: −2, −1.5, −1, −0.5, 0; max: 1, 1.5, 2,
2.5, 3, 3.5, 4, 4.5, 5, 6); alignMismatchScore (min: −8, −7.5, −7, −6.5, −6, −5.5,
−5, −4.5, −4; max: −2, −1.5, −1, −0.5, 0); maxReactivity (1, 1.5, 2 for SHAPE
reactivities; 1 for base-pairing probabilities). During the first step, the following
parameters were set to a fixed value: alignGapOpenPenal (−12); alignGapExtPenal
(−5); alignMaxDropOffRate (0.7); alignMaxDropOffBases (5). After having com-
puted the score of the true alignments, the reactivity values around each HSG in the
database were randomly shuffled 100 times and aligned to the original query. The
null distribution built by using the scores of the alignments to the shuffled database
was then used to calculate the p values of the true alignments, by using the extreme
value distribution (see Supplementary Note 1). The top ten sets, resulting into the
lowest average p value for the searched queries, were retained. In step 2, HSG
extension was repeated, by using the possible values for alignMatchScore, align-
MismatchScore and maxReactivity from the top ten selected sets, and any possible
combination of the following parameters: alignGapOpenPenal (−8, −12, −14,
−16); alignGapExtPenal (−5, −7, −9); alignMaxDropOffRate (0.5, 0.6, 0.7, 0.8);
alignMaxDropOffBases (5, 6, 7, 8, 9, 10). Once again, the p value of each alignment
was calculated using the aforementioned procedure, and the set of parameters
resulting in the lowest average p value for the searched queries was selected. This
procedure resulted in the following parameter sets: SHAPE reactivities [kmerLen:
15; minKmers: 2; maxKmerDist: 30; kmerMinComplexity: 0.3; kmerMaxMatch-
EveryNt: 200; alignMatchScore: −0.5, 2; alignMismatchScore: −6, −0.5; alignGa-
pOpenPenal: −14; alignGapExtPenal: −5; alignMaxDropOffRate: 0.8;
alignMaxDropOffBases: 8; maxReactivity: 1] and base-pairing probabilities
[kmerLen: 15; minKmers: 3; maxKmerDist: 10; kmerMinComplexity: 0.4; kmer-
MaxMatchEveryNt: 200; alignMatchScore: 0, 3; alignMismatchScore: −7, 0;
alignGapOpenPenal: −12; alignGapExtPenal: −9; alignMaxDropOffRate: 0.7;
alignMaxDropOffBases: 6; maxReactivity: 1].

Building the SHAPEwarp databases. Databases were generated using the
swBuildDb module (parameters: --chunkSize 1000), starting from RNA Frame-
work’s normalized SHAPE reactivity XML files. For bacterial rRNAs, a single
database was built including both the 16S and 23S rRNAs. For DENV, ZIKV and
SARS-CoV-2 genomes, a separate database was built for each strain. Database
shuffling was performed in 10 nt blocks. This approach allows generating more
realistic profiles, as it is likely that nearby bases will reside within a similar
structural context (i.e., a loop), hence preserving the structural features of the
profile. 100 shuffles were performed for each database entry and a chunk of a
maximum size of 1000 nt was extracted from each shuffled entry and used to build
the shuffled database. This random sampling step does not introduce any bias
(provided that the searched query is shorter than the chosen chunk size) while
reducing the computation time.

Searching for structurally-homologous regions with SHAPEwarp. Query
transcripts were first split into 200 nt-long windows, with 100 nt overlap. Each
query window was searched against the database using the previously optimized
search parameters. When accounting for sequence in the alignment (SHAPE+
sequence), the following additional parameters were set: --alignScoreSeq --align-
SeqMatchScore 0.5 --alignSeqMismatchScore −2. Consecutive matching windows
were then merged and alignments were evaluated for the presence of conserved
structure elements by analyzing the SHAPEwarp-generated alignment with
RNAalifold v2.4.14. SHAPEwarp-generated alignments were then randomly
shuffled 100 times, and the resulting alignments were analyzed with RNAalifold.
Shuffling was performed in 3 column blocks, followed by random shuffling of the
columns within each block. A null distribution was then built using the free energy
of the structures inferred from the shuffled alignments. The free energy of the true
alignment was then converted into a Z-score and the corresponding probability
was determined by using the normal distribution. The above-described analysis
steps are integrated into SHAPEwarp (parameters: --evalAlignFold --inBlock-
Shuffle). Structures having a p value < 0.05 and a base-pair support (measured as
the fraction of canonical base pairs supported by each sequence in the alignment)
of at least 0.75, were retained for covariation analysis. For FDR estimation, matches
falling at the same relative genomic position (with a tolerance of ±2%) in the query
and database genomes were considered to represent true matches, while any other
match was assumed to represent a false match. When searching NAI-derived
profiles in a database of 2A3-derived profiles, the exact genomic position was
required to match (0% tolerance).

Identification of RNA structure elements supported by significant covariation.
To evaluate the conservation of the predicted structure elements, we further
improved cm-builder (https://github.com/dincarnato/labtools), an automated
pipeline we have previously introduced24,25, built on top of Infernal v1.1.3. Briefly,

a first covariance model (CM) was built from the structure inferred by RNAalifold,
using the cmbuild module. For structures <100 nt, a 100 nt window centered on the
structure was extracted and used to build the CM. After calibrating the CMs using
the cmcalibrate module, it was used to search for RNA homologs in a database
composed of either all the non-redundant Orthocoronavirinae or Flaviviridae
complete genome sequences from the ViPR database41, using the cmsearch
module. Only matches from the sense strand were kept and a relaxed E-value
threshold of 10 was used at this stage to select potential homologs. Matches were
required to fall at the same relative position within their respective genomes, with a
tolerance of 3.5% for coronavirus genomes (roughly corresponding to a maximum
allowed shift of 1050 nt in a 30 kb genome) and 2% for flavivirus genomes (roughly
corresponding to a maximum allowed shift of 220 nt in a 11 kb genome). Fur-
thermore, matches retaining less than 55% of the canonical base pairs from the
original structure and truncated hits covering <50% of the structure were dis-
carded. The whole procedure was repeated a maximum of 3 times. As compared to
the original cm-builder approach, we further introduced an additional evaluation
step. Briefly, at each iteration of the algorithm, the resulting Stockholm alignment
was analyzed with R-scape v1.4.030 and APC-corrected G-test statistics to evaluate
the presence of significantly covarying base pairs, using a relaxed E-value of 0.1. If
the detected number of significant covariations was lower than that detected at the
previous iteration, the alignment from the previous iteration was reported. Fur-
thermore, the search was aborted if no significant covariation was detected after 2
iterations. Retained alignments were then manually inspected and only complex
structures (i.e., multiway junctions) having covariation support for multiple helices
were retained. The selected best alignment (the one with the most significant
covarying base pairs) was then refactored by removing non-structured regions at
either sides and used to build the final CM.

Search for conserved structures in related genomes. The CMs built by the cm-
builder pipeline were used to search for matches in the same non-redundant set of
viral genomes used to build the CMs, with the cmscan module. To further evaluate
the base-pair support of the identified matches, the alignment between the CM and
the match on the target genome returned by cmscan was analyzed to calculate the
fraction of canonical base pairs supporting the structure.

In vivo structure support by COMRADES. Each COMRADES dataset consisted
of two to three biological replicates, each one composed of a control (C) and the
actual COMRADES sample (S). A reference was built on all human transcripts
from refGene, plus the sequence of either the ZIKV or SARS-CoV-2 genomes,
using STAR v2.7.1a42 (parameters: --runMode genomeGenerate --genome-
SAindexNbases 12), and reads were aligned to the reference using the same
(parameters: --runMode alignReads --outFilterMultimapNmax 100 --out-
SAMattributes All --alignIntronMin 1 --scoreGapNoncan −4 --scoreGapATAC
−4 --chimSegmentMin 15 --chimJunctionOverhangMin 15). Prior to parsing,
replicates were merged. Chimera support for the base pairs inferred from RNAa-
lifold analysis of SHAPEwarp alignments was calculated using the rf-duplex tool
(parameters: -st -mh 5 -xr 1e9 -eo). Briefly, alignments were filtered to discard
reads having more than one gap, as well as ungapped reads and reads aligning to
the human transcriptome, and the total number of reads per experiment was
calculated (Ctot and Stot). To assess whether a candidate base-pair i–j was sig-
nificantly enriched in the COMRADES sample with respect to the control sample,
we calculated the number of chimeras for which one side of the chimera encom-
passed base i and the other side encompassed base j, for both samples (Ci–j and
Si–j). Significance of the enrichment was then assessed using a one-tailed binomial
test, with parameters k= Si–j, n= Stot, and p= Ci–j/Ctot. Base pairs having p
value < 0.05 were considered to have in vivo support.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Sequencing data used in this study have been deposited to the Gene Expression Omnibus
(GEO) database, under the accession number GSE189259. Additional processed files
(normalized SHAPE reactivity profiles, SHAPEwarp databases and queries needed to
reproduce the analyses detailed in the manuscript, Stockholm alignments and CMs for the
structure elements identified in this work) are available at http://www.incarnatolab.com/
datasets/SHAPEwarp_Morandi_2022.php.

Code availability
The source code of SHAPEwarp has been deposited in GitHub, https://github.com/
dincarnato/SHAPEwarp (https://doi.org/10.5281/zenodo.6327165). A user
documentation, along with explanation of the different parameters, is available on Read
the Docs, https://shapewarp-docs.readthedocs.io/.
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