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ABSTRACT
Background: The human oral microbiome influences initiation or progression of diseases like
caries or periodontitis. Metaproteomics approaches enable the simultaneous investigation of
microbial and host proteins and their interactions to improve understanding of oral diseases.
Objective: In this study, we provide a detailed metaproteomics perspective of the composi-
tion of salivary and tongue microbial communities of young healthy subjects.
Design: Stimulated saliva and tongue samples were collected from 24 healthy volunteers,
subjected to shotgun nLC-MS/MS and analyzed by the Trans-Proteomic Pipeline and the
Prophane tool.
Results: 3,969 bacterial and 1,857 human proteins could be identified from saliva and tongue,
respectively. In total, 1,971 bacterial metaproteins and 1,154 human proteins were shared in
both sample types. Twice the amount of bacterial metaproteins were uniquely identified for
the tongue dorsum compared to saliva. Overall, 107 bacterial genera of seven phyla formed
the microbiome. Comparative analysis identified significant functional differences between
the microbial biofilm on the tongue and the microbiome of saliva.
Conclusion: Even if the microbial communities of saliva and tongue dorsum showed a strong
similarity based on identified protein functions and deduced bacterial composition, certain
specific characteristics were observed. Both microbiomes exhibit a great diversity with seven
genera being most abundant.
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Introduction

The human oral cavity with its various hard (teeth
with supragingival and subgingival plaque) and soft
tissues (tongue, throat, tonsils, cheeks) forms
a complex ecosystem for more than 700 different
species and phylotypes [1–6]. Current estimations
indicate that saliva and dental plaque contain up to
109 and 1011 bacteria per ml [7], respectively. Thus,
the oral cavity is the second largest microbial ecosys-
tem in humans after the intestine [4,8].

Saliva is the most interesting biofluid in the oral
cavity, as it comes into contact with all surfaces and
thus represents a fingerprint of the general composition
of the oral microbiome [5]. However, other microenvir-
onments also need to be investigated in a comparative
way to obtain a comprehensive view of the oral micro-
biome [9–11]. Therefore, it is not surprising that the
analysis of the tongue microbiome is also gaining more
and more attention, since tongue diagnostics has been
used in traditional Chinese medicine since more than
3,000 years to assess the patient’s state of health [12,13].

Traditional knowledge and current scientific stu-
dies have shown that a shift in the balance of the oral
bacterial composition can indicate pathological
changes [13]. This includes diseases such as halitosis
[14,15], dental caries [16] and periodontitis [17,18] as
well as systemic diseases like diabetes [19], respira-
tory diseases [20], cardiovascular diseases [21] and
even cancer [9,22] due to the production of pro-
inflammatory mediators [23].

However, initially the healthy microbiome [1,24–27]
has to be defined before disease-related or disease-
causing alterations can be described, which might ulti-
mately lead to the development of diagnostic tools for
better treatment or prevention of disease [2,28,29].
Many studies have already been initiated for this pur-
pose using next generation sequencing [9,25,30–34].
Metagenomics provides an impression of the diversity
of organisms on the tongue but also of the metabolic
potential which might be present [29,35]. As
a complementary approach, metaproteomics offers
a possibility to measure protein intensities to
capture active protein functions and taxonomic units
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within the microbiome. Furthermore, simultaneous
analysis of the microbial and human proteome can
also provide insights into interactions between
microbes and their host [35].

For our community proteomics study, we collected
saliva and tongue samples from24oral healthy volunteers
[36]. Our primary goal was to describe and compare the
microbial composition of saliva and tongue dorsum
based on metaproteome data of young healthy indivi-
duals. We combined different open-source software
applications, which were mainly developed for the ana-
lysis of metaproteome data. At the same time, we com-
pared our pipeline to other salivary metaproteomic
studies [37–40] to gain information on effectiveness and
accuracy.

Material and methods

Study population

Saliva and tongue samples were collected from 9 male
and 15 female dental students from the dental school
of the University Medicine Greifswald. The range of
ages was 20–30 years with an average age of 25 years.
They were non-smokers, no alcohol or drug addicts
and had no systemic disease or antibiotic treatment
within the last six months. Further, the subjects were
not taking medication permanently. Women during
pregnancy or breastfeeding were not considered. The
oral health of the volunteers was ensured by the fact
that the students examined each other under the
guidance of an experienced dentist fulfilling the
inclusion criteria: no cavitated teeth, maximal two
fillings, probing depth (≤ 3 mm) and bleeding on
probing value of less than 10%. The subjects included
did not eat, drink or brush their teeth during 5 h
before sampling, which was done during the students’
university course in the late morning and early after-
noon. The ethics council of the University Medicine
of Greifswald approved our study and it was carried
out in compliance with the recommendations of the
Helsinki Declaration as amended by Somerset West
in 1996.

Sampling

Saliva
Stimulated saliva was collected with a commercially
available paraffin chewing gum (Ivoclar Vivadent
GmbH, Ellwangen, Germany) based upon a modified
protocol published previously [41]. Volunteers chewed
the paraffin gum for 1min to stimulate natural salivation.
During the chewing process, the subjects collected saliva
in the oral cavity and spat into a sterile 50 ml Falcon tube
for several times. Twenty µl of a protease inhibitor
(Sigma Aldrich, St. Louis, MO,; v/v 1:20) per 1 ml col-
lected saliva was added to prevent protein degradation by

proteases. For transportation the collected saliva was
stored on dry ice and finally at −80°C until use [36].

Tongue samples
Tongue samples were taken from the middle third of
the outstretched tongue dorsum with a sterile wooden
spatula (NOBA Verbandmittel Danz GmbH and
Co KG, Wetter, Germany), 18 mm x 150 mm. The
sterile wooden spatula was pressed onto the tongue
for 5 swith light and even pressure and then turned
over to repeat the process on the other side. After this
procedure, the spatula was transferred into a 50 ml
Falcon tube containing 2 ml sterile 1 x PBS (gibco®,
Thermo Fisher Scientific, Waltham, MA; pH = 7.4)
and 40 µl of a protease inhibitor and vortexed for 30 s.
The spatula was discarded. For transportation the sam-
ple was stored on dry ice and then stored at −80°C until
further processing.

Sample preparation

Cell disruption
Saliva preparation were performed using a published
protocol [40], which was slightly modified [36]. The
collected saliva was first thawed on ice and centrifuged
for 15 min at 4°C at 11,500 g. The supernatant was
discarded, and the remaining pellet was resuspended in
700 µl TE buffer (10 mM Tris; 1 mM EDTA; pH 8.0).
An ultrasound treatment (Labsonic U – B. Braun
Melsungen AG, Melsungen, Germany) was carried
out for 3 × 30 s on ice (50% power of the device) to
disrupt the cells in the pellet followed by another cen-
trifugation step (30 min, 4°C, 16,200 g). The super-
natant was stored on ice for further preparation.

For the tongue samples, our preliminary tests
showed that the prior vortexing of the sample in con-
nection with the Freeze-and-Thaw process in sterile 1
x PBS (gibco ®, pH 7.4 – CaCl2 –MgCl2) is a well-suited
cell disruption method for this sample type.

MS sample preparation
After thawing on ice, 1 ml of the respective super-
natant of the tongue samples and 700 µl of the pre-
pared saliva were used for protein precipitation by
TCA. DTT was added to the samples (0.02 g/100 µl),
samples were vortexed for 10 s and incubated at 37°C
for 30 min. For the subsequent precipitation of the
proteins, TCA (100%) was added up to a final con-
centration of 15% and samples were stored on ice for
60 min. The precipitated samples were centrifuged
for 45 min (17,000 g, 4°C). To remove the TCA,
supernatants were discarded, 500 µl of 100% cold
acetone was added and centrifuged for another
15 min (17,000 g, 4°C). The washing step was
repeated once again. Samples were vacuum dried for
1 min. The remaining pellets were diluted in 50 µl
(saliva) and 35 µl (tongue) 1 x UT solution (8 M
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urea/2 M thiourea). To define the technical variance
and the reproducibility of our study, all samples were
prepared in triplicates. A Bradford assay [42] was
performed to determine the protein concentration
of saliva (Ø 6.4 µg/µl ± 2.3 µg/µl) and tongue samples
(Ø 1.7 µg/µl ± 1.6 µg/µl). Four µg protein were
reduced with DTT (2.5 mM final concentration, incu-
bation for 60 min at 60°C) and alkylated with IAA
(10 mM final concentration, incubation for 30 min at
37°C in the dark). After a 1:10 dilution of the 1 x UT
solutions, protein digestion was conducted with tryp-
sin in a ratio of 25:1 (w/w) over a period of 17 h.
Peptide mixtures were purified with ZipTipC18

material.

NLC MS/MS measurement

Proteolytic digestion of the proteins with trypsin was
followed by analyzing the 144 samples using nano-LC
-MS/MS (Supplemental Table 1). The complex pep-
tide mixtures were separated according to their phy-
sicochemical properties by means of a reverse phase
nano HPLC on an Ultimate® 3000 Nano HPLC
(Thermo Scientific). The peptide mixtures were

loaded onto a precolumn (Acclaim PepMap100,
Thermo Scientific: 75 µm inner diameter, 3 µm C18-
particles), subsequent separation of the tryptic pep-
tides took place on a 25 µm analytical column
(Accucore PepMap RSLC, Thermo Scientific: 25 cm
x 75 µm, 2.6 µm C18 particles) via a linear gradient
(120 min, 2–25% buffer B) using a binary buffer
system consisting of 2% acetonitrile in 0.1% acetic
acid (buffer B). The mass spectrometric data were
acquired by means of a data-dependent acquisition
procedure on a QExactive™ Plus as described before
[36] and revealed 5,749,982 spectra. To assure a high
quality of our MS data, only spectra with a mFDR ≤
0.06% were accepted, resulting in 1,933,390 spectra.
A complete overview of the laboratory workflow is
given in Figure 1(a). All metaproteomic data sets
were uploaded to the publicly accessible MassIVE
database with the dataset link ftp://massive.ucsd.
edu/MSV000084137 and doi:10.25345/C53H2C.

Data analyses

To evaluate our metaproteomic data we used a two-
step data analyzing pipeline (Figure 1(b)). We

Figure 1. Laboratory workflow for saliva and tongue microbiome analysis (a). Tongue samples were collected with a sterile
wooden spatula and transferred into sterile PBS. Salivation was stimulated by chewing a paraffin gum and the subjects spit into
a Falcon tube®. Saliva was centrifuged and the resulting pellet was solved in TE-buffer and treated with ultrasonication. Proteins
from saliva and tongue samples were precipitated with TCA and digested with trypsin. Peptide mixtures were measured with
a Q Exactive™ Plus (LC-MS/MS). Bioinformatic workflow for metaproteomic data analysis (b). The Trans-Proteomic Pipeline was
used for the following four steps: (1) Raw-data conversion to mzML-data format. (2) MS/MS database search by the Comet
project for peptide identification based on a combined database (Human Swissprot + Human Oral Microbiome Database). (3)
Validation of identified peptides. (4) Protein assignment and data filtering by stabilizing false discovery rates (mFDR, pepFDR)
with a protFDR of 5.0 %. Finally, the online web-tool Prophane was applied to conduct taxonomic and functional prediction and
the statistical analyses were performed in R.
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identified spectra, peptides and proteins with strin-
gent criteria using the Trans-Proteomic Pipeline
(http://tools.proteomecenter.org/software.php),
which was developed at the Seattle Proteome Centre.
The annotation of the proteins regarding their tax-
onomy and cellular function was performed by
Prophane (www.prophane.de), developed at the
Institute for Microbiology at the University of
Greifswald.

In detail,msconvert (version: 3.0; peak picking based
on Vendor algorithm –MS Levels: 1–2) converted the .
raw-files into readable .mzML-format [43]. Peptides
were identified using the Comet algorithm (http://
comet-ms.sourceforge.net/, version: 2016.01 rev. 2)
[44,45]. The sequence database (size: 964MB) consisted
of 1,079,744 sequences from the human oral micro-
biome database (HOMD, www.homd.org, 12/08/2016)
[1,46], 20,154 human sequences from UniProt
(UniProtKB/Swissprot, www.uniprot.org, 01/06/2016)
[47] and their reverse sequences for decoy searches to
calculate the false discovery rate. The search algorithm
considered trypsinated proteins with a maximum of
two missed cleavages. Peptide masses were not allowed
to exceed the tolerance range of ± 10 ppm and only
monoisotopic masses were included into the analyses.
Variable oxidations of methionine [+15.9949] and fixed
carbamidomethylation of cysteine [+57.021464] were
also considered. Peptides identified by Comet [44,45]
were weighted and the probability for their existence
was calculated with the modules iProphet [48], Peptide
Prophet and filtered using Mayu (version: 1.08) [49].
The ProteinProphet assigned the peptides to their cor-
responding proteins and were accepted with a false
discovery rate < 0.05. All proteins, which were covered
with at least one unique peptide, were extracted from
the data set by an R script (version: 3.4.1) [50] and
finally uploaded into the tool Prophane (www.pro
phane.de). To determine the taxonomic origin of the
proteins, Prophane used the Lowest-Common-
Ancestor algorithm [51] based on the results of
BLASTP (e-value: < 0.01) [52,53] and the database
described above. Proteins of bacterial origin are referred
as metaproteins, because proteins of one protein group
can be assigned to one ormore species [54,55]. Thereby,
the term ‘meta’ indicates that a different taxonomic
distribution could form the basis of a protein group
[56]. Metaproteins are referred to as ‘heterogeneous’,
if an assignment was not successful on the correspond-
ing taxonomic level (www.prophane.de). (Meta-)
Protein functions were classified according to COG/
KOG classification (RPS-BLAST 2.2.28+ algorithm;
e-value: < 0.01) [57]. The relative quantification of the
proteins was performed by spectral counting [58]. The
MS/MS spectra obtained were counted and then nor-
malized by prophane using the normalized spectral
abundance factor (NSAF-values) [59–62].

Statistical analyses

The evaluation and statistical analyses were per-
formed in R (version 3.4.1) [50]. In general, a global
median normalization was performed for the raw
NSAF values. The mean value was calculated for the
three measured replicates per sample. Depending on
the respective analysis, the sums of the mean NSAF
values were calculated to sum up subject-specific
spectra per metaprotein, protein, genus or functional
subrole.

The factomineR package (version: 1.36) [63] was
used for PCA analyses. We did not include missing
values and subtracted the column means from their
corresponding columns. The centered columns were
divided by their standard deviation to unify variance
scaling of the data. The data were log2 transformed.

We used the metacoder package (version: 0.1.3) to
create heat trees for taxonomic analyses [64]. For
Figure 3 A/B, the sum of the log2 transformed col-
umn means (color intensity) was plotted against the
sum of the spectral counts (thickness of the indivi-
dual branches) per taxonomy. For Figure 5, the ratios
of the column mean between saliva and tongue were
calculated and plotted against the sum of the spectral
counts. Resulting missing values were removed.

Our statistical analyses were based on a paired
two-sided Wilcoxon signed rank test. The confidence
interval was set at 0.95 and the p-value was adjusted
for multiple testing using the Benjamini-Hochberg
method. A fold-change cutoff = 1.5 and a p-value
cutoff = 0.05 were set for the volcano plots.

Results

General metaproteome data

We collected one saliva and one tongue sample from
each of the 24 subjects and prepared them in three
technical replicates. Based on our quality criteria and
the combined database of human and bacterial pro-
tein sequences, 31,386 distinct peptides for saliva and
31,215 distinct peptides for tongue samples were
identified (pepFDR ≤ 1.43%) and assigned to proteins
(Supplemental Table 2).

To decrease the number of shared peptides and
thus the likelihood of incorrect assignments, only
proteins containing at least one unique peptide and
a protFDR ≤ 5.0 % were considered resulting in 4,280
saliva proteins of which 1,647 proteins were of
human origin and 2,633 bacterial metaproteins. In
tongue samples 4,644 proteins were identified of
which 1,337 were human proteins and 3,307 bacterial
metaproteins.

To quantify our identified proteins, we used a relative
quantification approach. For this purpose, Prophane was
used to calculate the normalized spectral abundance
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factor (NSAF-values) based on spectral counts [60] using
the longest sequence in each protein group. Our data
showed variations regarding the proportions of human
and bacterial abundances in our samples. While human
proteins accounted for 78.2% and bacterial metaproteins
for 21.7% in saliva, the ratio was different for the tongue.
Human proteins accounted for only 59.1% whereas the

proportion for bacteria was almost twice as high (40.8%).
These differences were also reflected regarding the num-
ber of identified proteins. At least 50%of the bacterial and
human proteins (Bacteria: 1,971 metaproteins and
Humans: 1,154 proteins) could be identified in both the
saliva and on the tongue (Figure 2(a,c)). However, more
than twice as many specific bacterial metaproteins could

Figure 2. Venn diagrams displaying the number of identified metaproteins in the studied saliva and tongue samples for bacteria
(a) and human species (c). Histograms of relative metaprotein abundances based on log2 normalized spectral abundance factors
(NSAF-values) [60] for bacterial (b) and human proteins (d). The figure emphasizes the distribution of metaproteins for saliva
(blue), tongue (red) or shared between both (grey).

Figure 3. Heat trees of taxonomic composition of the healthy saliva (a) and tongue (b) microbiome. Coloration is defined by
log2 sum normalized spectral abundance factors (NSAF-values) [60]. The number of spectral counts for each branch determines
its thickness.
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be identified for the tongue (1,336 metaproteins) com-
pared to saliva (662 metaproteins), which was also asso-
ciated with the above mentioned higher relative
abundance (Figure 2(a,b)). For the human salivary pro-
teins, we observed the opposite. 520 proteins were only
found in saliva, almost three times as many specific
proteins (Figure 2(c,d)) as on the tongue (183 proteins).

A principal component analysis (PCA), which was
performed with the relative protein intensity data
revealed that the interindividual variance was by far
greater than the technical variance (Supplemental
Figure 1 and 2). We assessed the inter-subject variability
(biological CV) and nLC-MS/MSmeasurement accuracy
between the triplicates for each saliva and tongue sample
(technical CV) based on the calculation of the coefficient
of variance on NSAF values [60]. Our calculations
showed an averaged biological CV of 32% for saliva and
tongue. The technical CV for those samples was clearly
lower for the tongue (18%) and the saliva (16%) samples.

Furthermore, we were interested in the degree of
increase for protein identification by measuring the
samples in triplicates. We found that the identifica-
tion rate of proteins increased after two measure-
ments by an average of 17.3% and after the third
measurement by additionally 9.3%. Thus, including
the results of three technical replicates increased the
number of covered proteins by 28.2%.

Taxonomic profile of saliva and tongue

The taxonomic composition of the oral microbiome
has been shown to have an impact on human health
[8]. For each protein the taxonomic assignment of the
best hit of BLAST [52,53] against the NCBI nr data-
base was used to get a first impression of the diversity
and quantity of bacteria in saliva and on the tongue.

In total, we identified seven phyla (Supplemental
Figure 3), of which Actinobacteria, Bacteriodetes,
Firmicutes, Fusobacteria, and Proteobacteria were

most common and have been detected in all subjects.
A comparison of the two sample types revealed that
Proteobacteria and Firmicutes appeared almost in an
equal abundance, while Actinobacteria emerged as
more abundant on the tongue. Bacteriodetes and
Fusobacteria showed a contrary trend and were iden-
tified in smaller abundances on the tongue. The two
other phyla Spirochaetes and Synergistetes contributed
with only a small proportion to the bacterial commu-
nity. Furthermore, we could identify Chlamydiae, but
only for five subjects in saliva and therefore they were
excluded from further analysis. At the genus level we
could assign 93.9 % of all 3,969 bacterial metaproteins
to 107 different genera and we found a high similarity
between saliva and tongue with an overlap of 89
genera (83.0%). To gain insight into the distribution
at the genus level, we created heat trees where
summed relative abundances of spectral counts were
plotted (Figure 3(a,b)). In general, we identified
higher bacterial abundances on the tongue in com-
parison to saliva. For saliva and the tongue, we recog-
nized a high bacterial diversity but only the seven
genera Rothia, Prevotella, Streptococcus, Veillonella,
Fusobacterium, Neisseria, and Haemophilus mainly
determined the composition of both microbiomes.
In summary, we could observe a great diversity in
saliva and tongue dominated by seven phyla and
genera, but we could only observe small and non-
significant differences when the two sample types
were compared to each other (Supplemental
Table 3). Likely more subtle differences were masked
by the large interindividual differences in the micro-
biomes observed in this and other studies.

To increase the sensitivity of our analyses, we per-
formed a pairwise analysis (paired Wilcoxon signed
rank test, p-value: < 0.05) at genus level. Figure 4(a,b)
illustrates ten genera with significant differences.
Fusobacterium, Selenomonas, Bifidobacterium and
Treponema were found to be significantly increased in

Figure 4. Significant taxonomic profile differences on the genus level between saliva and tongue are displayed in the volcano
plot (a) by depicting the results of a two-paired Wilcoxon signed rank test. The comparison plots (b) show the sum of the NSAF
values for those genera identified as significantly higher abundant in saliva or on the tongue. Metaproteins in the group
‘heterogeneous’ could not be assigned unambiguously to a genus.
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saliva compared to the tongue. The opposite was the
case for Rothia, Gemella, Granulicatella, Peptoniphilus,
Veillonella and Neisseria. Furthermore, we identified
significant changes in the category ‘heterogeneous’,
which cannot be further described, since an assignment
on genus level was not feasible.

Figure 5 provides a more detailed picture of the dif-
ferences in taxonomic profiles of saliva and tongue sam-
ples by representing the complete calculated ratios in
a phylogenetic tree. In combination with the results of
the Wilcoxon signed rank test, it highlights the differ-
ences regarding the taxonomic composition of the two
microbiomes. Even though Rothia, Veillonella,
Fusobacterium and Neisseria belonged to the dominant
genera, they also showed great differences between saliva
and tongue, which was not the case for the genera
Prevotella, Streptococcus, Haemophilus and Actinomyces.
Genera such as Granulicatella, Gemella, Peptoniphilus or
Bifidobacterium, which do not dominate the two micro-
biomes and would thus not to be noticed at first glimpse,
also showed relevant and significant differences.

We also analyzed, whether we could identify any
gender differences in the microbiome composition,
but our results did not indicate any significant and
specific microbiomes for males or females (paired
t-test, p-value: < 0.05; fold-change > 2).

Functional profiling of bacterial metaproteins

Metaproteome analyses enable simultaneous assessment
of expressed human and bacterial metabolic pathways.
From a global point of view, we covered 18 biological
processes based on the COG classification [57] for bac-
terial metaproteins (Supplemental Figure 4) in saliva and
on the tongue. The most common functions were trans-
lation, energy production, carbohydrate metabolism and
amino acid metabolism (Supplemental Table 4). Again,
there was a strong similarity between saliva and tongue
regarding functional composition at this global perspec-
tive. As expected, due to their high abundance the func-
tional profile was dominated bymetaproteins involved in
translation with an averaged portion of 40.2% and 29.8%
for the tongue and saliva, respectively. Processes like cell
cycle, secondary metabolites, intracellular transport, sig-
nal transduction, defense mechanism and cell motility
made up less than 1%, but again in a pairwise analysis
(paired Wilcoxon signed rank test, p-value: < 0.05) all
these functions with the exception of cell motility were
found significantly increased on the tongue compared to
saliva (Figure 6). A similar conclusion could be reached
for metaproteins that are involved in bacterial cell wall
biogenesis, coenzyme and nucleotide metabolism as well
as in replication, transcription and translation processes.
Thus, only metaproteins of cell motility displayed

Figure 5. Illustration of taxonomic differences between saliva and tongue based on median over pairwise NSAF ratios
(coloration) and the sum of spectral count (branch size). Genera marked with an * showed significant differences between
both microbiomes according to a Wilcoxon signed rank test (Benjamini-Hochberg corrected p-value < 0.05).
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increased levels in saliva. We were not able to determine
the exact functions of all metaproteins, and thus the
remining proteins were summarized in the category
‘general function prediction only’, which was also signif-
icantly different in saliva and tongue.

Functional profiling of human proteins

As already shown in Figure 2(a,c), there was a great
overlap between human proteins in saliva and on the
tongue, which remains observable by ranking proteins
based on their relative abundance and considering the
top highest and lowest abundant proteins (Figure 7(a)).
Some of the highest proteins identified in saliva and on
the tongue were alpha-amylase (AMY1), which catalyses
the digestion of starch and glycogen [65], glyceralde-
hyde-3-phosphate dehydrogenase (GAPDH) for the
reversible oxidative phosphorylation of glyceraldehyde-

3-phosphate [66] or the phospholipase A2 inhibiting
protein annexin A1 (ANXA1) [67]. However, proteins
such as the laminin subunit alpha 3 (LAMA3) belonging
to the laminin family, the glycoprotein mucin 2 (MUC2)
[68] or the F-actin-binding species repeat containing
nuclear envelope protein 2 (SYNE2) [69] could only be
found at low abundance.

Pairwise analysis of human proteins revealed that 75
proteins occur in saliva in significantly lower abun-
dance than on the tongue, while 232 proteins were
significantly higher in saliva compared to the tongue
surface (Figure 7(b)). Many proteins with increased
abundance in saliva (Figure 8) play a role in the innate
or adaptive immune system (Lypmhocyte cytosolic pro-
tein 1 – LCP1 [70]; BPI fold containing family
B member 1 – BPIFB1 [71]; Elastase – ELANE [72];
Annexin A3 – ANXA3 [67]). Proteins with a higher
abundance on the tongue could be assigned to the

Figure 6. Comparison plots show the different relative abundances of bacterial metaprotein functions with significant
differences, which were determined by a two-sided pairwise Wilcoxon signed rank test (p-value < 0.05) with a fold change
of > 1.5. The calculated p-value has been corrected according to the Benjamini-Hochberg method.

Figure 7. The coverage of the dynamic range of human proteins is shown by plotting the mean relative abundance for saliva
and tongue (a). The human proteins are named according to their gene names and show for saliva and tongue a selection of
proteins with highest and lowest abundances (grey). Data points in red and blue display proteins with a fold change > 1.5 and
a p-value < 0.5 (paired Wilcoxon signed rank test) comparing saliva and tongue (a). Proteins with the largest changes are
highlighted with their gene names (A/B).
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cytoskeleton (Figure 8), e.g. Junction plakoglobin (JUP)
and Desmoplakin (DSP), playing a role in the regula-
tion of innate immunity (Tripartite motif containing
29 – TRIM29) [73] or prevent possible irreversible
protein aggregations as chaperones (Crystallin alpha
B – CRYAB).

Discussion

The primary goal of this study was to describe and
compare the human saliva and tongue microbiome
of healthy young individuals. Initially, we wanted to
explore whether we were able to achieve comparable
results in protein identification with the pipeline
described in this report compared to other metapro-
teome studies [37–40]. For the tongue analyses we
identified 4,644 proteins of which more than 70%
originated from bacterial species. To the best of our
knowledge, this is the first study providing metapro-
teome data for the tongue. Regarding salivary pro-
teins, we profiled slightly less human proteins
compared to Grassl et al. and BelstrØm et al.
[39,40]. At the same time, the number of bacterial
proteins covered was slightly higher in the current
study. Possible reasons include the use of different
or modified protocols for sample collection, prepara-
tion and measurement [37–40]. The same applies to
the different data analysis strategies, which have an
impact on the peptide-protein assignment
[44,45,74,75], especially for bacterial proteins due
to the high number of different taxa [76], which
results in many shared peptides on the protein
level [55]. Furthermore, the number of subjects
and particularly the cohorts differed. Whereas for-
mer studies included diseased subjects [38,40], in
whom large interindividual differences must be
expected, especially in the case of bacteria [22,24],
our study was confined to young healthy partici-
pants to define baseline-microbiomes of the healthy
population.

For future studies, we also wanted to clarify
whether it is necessary to analyze technical replicates
to obtain reliable metaproteome results and whether
the related significant increase in measurement time
is associated with a relevant increase in protein iden-
tifications. It became apparent that in saliva with
a technical variance of 16%, we achieved similar
results as previous (meta-) proteome studies [36,77].
Additionally, measuring three replicates, we achieved
an increase in protein identification of around 28.2%.
However, considering the good technical reproduci-
bility of the data and the threefold increase in mea-
surement time, we do not consider replicate
measurements to be the preferred solution. Rather,
we propose to cover the diversity of the metapro-
teome and thus of the microbiome by measuring
more samples from different individuals, since our
data and other microbiome studies point to large
interindividual differences [5,8,9,24,27].

As another aspect of this study, we investigated the
relative abundance of human and bacterial proteins,
where we expected a higher proportion of human
proteins in saliva than on tongue. We can confirm
these expectations with our data for several reasons.
Bacteria in saliva are planktonic whereas on the ton-
gue bacteria are likely organized in a biofilm [38]. In
addition, saliva consists to 99% of water [78], which
may lead to a dilution of the bacteria. Furthermore,
human proteins are two orders of magnitude more
abundant than those of bacteria [39], which leads to
the suppression of less abundant proteins during the
measurement [37]. In particular, alpha-amylase
(AMY1A), or S100 calcium binding protein A9
(S100A9) have to be mentioned, both displaying
high abundances in our saliva and tongue data, an
observation also made for saliva before [79]. We also
detected alpha-amylase (AMY1A) [65], glyceralde-
hyde-3-phosphate dehydrogenase (GAPDH) [66],
annexin A1 (ANXA1) [67] and 62% of all saliva
human proteins on the tongue, which indicate that
the human part of the tongue surface proteome is, as

Figure 8. Representation of the top five proteins with the highest increase or decrease regarding to their relative abundance in
saliva or on the tongue based on paired Wilcoxon signed rank test (p-value < 0.05).
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expected, partially shaped by the surrounding sal-
iva [5,9].

The assignment of proteins to specific bacterial
species is a challenge for metaproteomic studies due
to protein homologies [55,74]. We could also confirm
the observations made by BelstrØm et al. [40] and
Rudney et al. [38], which showed that the assignment
of proteins to certain taxa decreases when approach-
ing the species level.

To the best of our knowledge, this is not only the first
study providing a metaproteomic description for the
tongue but also its comparison with saliva. Saliva and
tonguemicrobiome both revealed a high diversity, domi-
nated by the seven genera Rothia, Prevotella,
Streptococcus, Veillonella, Fusobacterium, Neisseria, and
Haemophilus. For saliva we confirmed the results of pre-
vious metaproteome studies at the phylum and genus
level [37–40]. Thus, Actinobacteria, Proteobacteria,
Firmicutes, Bacteriodetes and Fusobacteria were also the
five most abundant phyla [80]. The observed high diver-
sity is probably caused by a large interindividual micro-
bial variation especially at the lower taxonomic levels
[22,81]. Additionally, our data indicated that saliva and
tongue microbiomes display a strong taxonomic similar-
ity, which is in agreement with a comparative 16S RNA
study of saliva and tongue microbiomes conducted by
Hall et al. [24] as well as a study from Papaioannou et al.
[25]. At the phylum level, we initially foundno significant
differences between saliva and tongue in a general com-
parison of both sample types. Increasing sensitivity by
pairwise analysis of the samples from the same indivi-
duals, the impact of interindividual differences could be
reduced and significant differences at genus level between
both microbiomes were revealed [80,82]. Our data indi-
cate, that even genera, which do not dominate themicro-
biome do clearly contribute to the differences between
the two microbiomes.

Most genera were also present in higher abun-
dances on the tongue, which could provide a further
hint that the tongue might be a reservoir contributing
to the composition of the saliva microbiome [24].
This may suggest that more attention might need to
be paid to the tongue in oral hygiene, since patho-
genic bacteria seem to be present even in a healthy
microbiome [11,38] and could be distributed from
the tongue throughout the oral cavity by saliva [24].

Although metaproteome studies are not as sensi-
tive for the determination of bacterial diversity as
metagenome studies, they provide the decisive advan-
tage of analyzing expressed metabolic pathways and
thus metabolic activity [35].

Analysis of protein functions demonstrated
besides taxonomic also functional similarity with
relevant characteristics between saliva and tongue.
Our findings are in line with previous observations
that despite an interindividual diversity between dif-
ferent habitats a functional conservation exists [83].

At least 30% of the identified proteins play a role in
translation and especially different ribosomal proteins
have been found, which supports the hypothesis that
these proteins are essential for (growing) microbes
[84] and are therefore highly conserved and abundant
in metaproteomic samples [38]. Bacteria in saliva are
in a planktonic state, which might be an explanation
that we identified a significantly increased number of
metaproteins especially with functions in cell motility
[38]. On the other hand, the tongue microbiome
exists as a biofilm with significantly different envir-
onmental conditions [2]. Biofilms are continuously
exposed to the human immune system, which might
explain the increased abundance of defense mechan-
isms metaproteins [85]. The increased occurrence of
metaprotein functions like signal transduction and
secondary metabolites may suggest increased intra-
and inter-bacterial communication [86]. Reasons for
this could include competitive or mutualistic beha-
vior [87]. Metaproteins with functions in replication,
transcription and translation might indicate a still
growing biofilm [88].

For some of the metaproteins it was not possible to
determine their functions. The same applied to the
taxonomic classification of metaproteins, which were
classified as ‘heterogeneous’. Here, currently existing
databases as well as analysis tools reached their limits.
In this case, future metaproteome analyses will ben-
efit enormously from improved databases and analy-
sis tools, which will enable a better assignment of
metaproteins on a taxonomic as well as functional
level [37,89].

Besides the digestion of glycogen by alpha-
amylase, another important function of saliva is the
maintenance of the balance of the microbiome and
the defense against pathogens by the immune system
[90]. This could be an explanation for the signifi-
cantly increased number of human proteins, whose
functions were mainly involved in the immune
response system.

The tongue is a muscular organ with a keratinized
stratified squamous epithelium and mostly cytoskeletal
proteins or the repetin (RPTN) involved in the cornified
cell envelope formation have been identified [91], which
we attribute to the fact that the sample material was
scraped off directly from the tongue, whereas saliva is
a mixture from the salivary glands [92].

Limitations of our study include the unequal distri-
bution of male and female subjects as well as the rather
small number of 24 subjects. Therefore, like Grassl et al.
[35] we could not detect sex specific differences in the
microbiome. Nevertheless, we consider the question
about the microgenderome [93] to be important and
worth studying [94]. So far, besides anti-microbial
effects of saliva [79], also significant differences in the
salivary microbiome of male and female children [95],
possibly due to the endocrine system, have been
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described. Women have about twice the chance of get-
ting caries than men [78] and thus Lukacs and
Largaespada hypothesized that possible reasons could
be factors like a reduced salivary flow rate and hormone
fluctuations [78], which likely influence the micro-
biome. Gender differences in the microbiome are also
further supported by current studies of the gut micro-
biome, which were able to detect differences between
men and women [96–98].

For this ‘proof of principle’ study a selected cohort
of dentistry students with a defined small age range
was selected. Future metaproteome studies addres-
sing the healthy oral microbiome in a larger cohort
should provide a better demographic [99] and geo-
graphical diversity [100,101]. In addition, it must be
clarified under which criteria a microbiome can be
considered as ‘healthy’ [28]. This definition is not
a trivial task as previous discussions have shown
[102–104]. In addition to the recording of clinical
parameters, the personal oral hygiene of the subjects
[105], their diet [106], genetic background [107],
socio-economic status [108] as well as other aspects
must be considered, which will increase the effort and
complexity of a study significantly. It must e.g. also
be clarified, which influence the circadian change of
the flow rate of saliva has on the time of sample
collection [109,110], even if previous studies have
shown temporal stability of the oral microbiome
over a longer period [5,111,112].

Therefore, we conclude that several basic issues
still need to be addressed in future studies of oral
microbiomes. Nevertheless, providing many different
parameters for a cohort increases the quality of
a study, which is particularly important for clinical
studies that want to distinguish between healthy and
diseased microbiomes [23,29].

Conclusions

Our metaproteome study aimed to provide a detailed
insight into the taxonomic composition and func-
tional diversity of saliva and tongue in 24 healthy
young adult volunteers. This is the first study,
which described the healthy tongue microbiome of
young subjects and compared it to saliva based on
metaproteome data. Therefore, we have developed
a strategy to evaluate large metaproteome data sets
by combining TPP and Prophane. Essentially, we
found a high bacterial diversity for saliva and tongue,
which was mainly determined by seven genera.
Globally, we identified high taxonomic similarity
and functional consistency between both micro-
biomes, although we must emphasize that interindi-
vidual differences strongly influence the taxonomic
composition. However, using comparison of paired
samples from the same individuals, we were also able
to show decisive functional differences of bacterial

metaproteins between the biofluid saliva and the ton-
gue biofilm. The good agreement of our results with
those of already performed metagenome and meta-
proteome studies demonstrated that our workflow
can provide consistent metaproteomic results.

To ensure an even better description of the differ-
ent human microbiomes, future studies should focus
on multi-OMICs approaches. Furthermore, the size
of cohorts needs to be increased to enable a more
precise identification of interindividual differences,
which should allow a more accurate description of
the microbial profile of a healthy microbiome and the
distinctive features from dysbiotic states in patholo-
gical situations.
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