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Apical and tuft dendrites of pyramidal neurons support regenerative electrical potentials,
giving rise to long-lasting (approximately hundreds of milliseconds) and strong (∼50 mV
from rest) depolarizations. Such plateau events rely on clustered glutamatergic input, can
be mediated by calcium or by NMDA currents, and often generate somatic depolarizations
that last for the time course of the dendritic plateau event. We address the computational
significance of such single-neuron processing via reduced but biophysically realistic
modeling. We introduce a model based on two discrete integration zones, a somatic
and a dendritic one, that communicate from the dendritic to the somatic compartment
via a long plateau-conductance. We show principled differences in the way dendritic vs.
somatic inhibition controls spike timing, and demonstrate how this could implement spike
time control in the face of barrages of synaptic inputs.
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INTRODUCTION
It has been established that multiple non-linear mechanisms exist
in the dendrites of excitatory neurons, such as layer 5 cortical
pyramidal neurons. In particular, long-lasting plateau potentials
far from the soma in the apical, basal, and tuft dendrites, are
supported by voltage-gated calcium (Ca) and sodium channels,
as well as NMDA receptors (Magee et al., 1998; Larkum et al.,
1999, 2007). Importantly, glutamate uncaging experiments have
shown a strong correlation between non-linear dendritic events
and long-lasting somatic depolarizations on the order of hun-
dreds of milliseconds and 10–25 mV (Kamondi et al., 1998; Antic
et al., 2010). Furthermore, genetically distinct groups of interneu-
rons differentially target perisomatic and dendritic tuft regions of
single pyramidal cells in regions like the hippocampus (Freund
and Buzsáki, 1996; Royer et al., 2012) and neocortex (Ascoli
et al., 2008). Recent in vitro and in vivo work demonstrates that
dendritic inhibition can play strikingly different roles than peri-
somatic inhibition with respect to action potential spiking output
(Palmer et al., 2012; Royer et al., 2012). In addition, computa-
tional studies have shown that spatial distributions of inhibitory
input can independently affect somatic and dendritic regions
such that the effect of plateau potentials on the soma is reduced
without directly changing the properties of the dendritic plateau
potential itself (Gidon and Segev, 2012; Jadi et al., 2012).

How can single cells use such a biophysical setup support-
ing dendritic plateau potentials with spatial distributions of both
intrinsic conductances and synaptic inputs to control action
potential output? To study mechanisms of spike timing in pyra-
midal neurons we compare single neuron processing in a con-
ventional leaky integrate-and-fire (LIF) unit, a two compartment
biophysical model with 6 Hodgkin-Huxley-like currents, and a
novel abstracted two-stage LIF model taking into account the

relevant aspects of dendritic electrogenesis found in pyrami-
dal neurons. In particular, we study the impact of long-lasting
dendritic depolarization on somatic spiking with and without
somatic inhibition. We show that a simple 2-stage LIF model,
like the more complicated compartmental model it abstracts,
gives rise to precise spike timing in the presence of barrages of
excitatory and inhibitory inputs. Important to this mechanistic
hypothesis are the distinct effects inputs into the dendritic and
perisomatic regions produce. We further demonstrate how our
model explains recent experimental results in hippocampal place
cells where a decrease of dendritic inhibition causes a decrease in
phase precession and enforces spiking around a single phase.

MATERIALS AND METHODS
SYNAPTIC INPUTS INTO THE MODELS
This study features three different single cell models: leaky-
integrate-and-fire (1LIF), conventional two compartmental, and
a two-component leaky-integrate-and-fire (2LIF, see below,
model available for download at https://senselab.med.yale.edu/
modeldb/ upon publication). In all models excitatory and
inhibitory inputs are implemented as conductance increases
described via alpha functions with reversal potentials of
65 and −10 mV relative to rest, respectively. Both synaptic
types impinge on the membrane with conductance profiles
described by

g(t) = gmax

(
t − t0

τ

)
e−(t−t0−τ)/τ

where gmax is the maximum conductance of a single synapse,
t0 is the synapse onset time, and τ is the synapse time con-
stant. A barrage of postsynaptic events is defined as a group
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of n events sharing the same gmax, τ , Vrev (reversal potential),
and a vector of t0s of length n chosen from the same tempo-
ral probability distribution. A normal probability distribution
with mean time μin and standard deviation σin generates a t0

for each of the n synaptic events in each barrage (Figure 1A).
Because spike time is defined as the time at which the membrane
potential first crosses threshold relative to μexc (the mean time
μ of the excitatory barrage probability density function), voltage
resetting does not affect the analysis and is not included in the
simulations.

To compare synapse strengths between different models, the
effect of barrages on membrane voltage needs to be normalized.
To do so, we divide the synapse strengths (maximum conduc-
tance, given in nS) by the threshold synapse strength where an
excitatory barrage in the absence of an inhibitory barrage causes
a spike. In the 1LIF and 2LIF models this is at 0.97 nS, and in the
modified Mainen-Sejnowski 2-compartment model this is found
to be 0.078 nS [the original Mainen-Sejnowski model has a high
input resistance, eliciting spikes with a 10 pA DC current injection
into the somatic compartment (Mainen and Sejnowski, 1996),
about an order of magnitude lower than in experiment]. Hence,
for all simulations, the parameter space searched was from 1 to 2
times threshold strength for excitation, and from 0 to 5 times that
strength for inhibition.

Parameters for excitatory barrages are σin = 40 ms, number
of synaptic events per barrage n = 100, τ = 0.5 ms, and gmax

ranging from 1.0 to 2.0 nS. Parameters for inhibitory barrages
are σ = 40 ms, number of synaptic events per barrage = 200,
τ = 0.75 ms, and gmax ranging from 0 to 5 nS. These parameters
are comparable to a previous modeling study on the number of
synaptic inputs needed to elicit long-lasting regenerative poten-
tials in the tuft dendrites of L5 pyramidal neurons (Larkum et al.,
2009). Every simulation starts with neurons completely at rest.
The temporal input offset is defined as the temporal difference
μinh − μexc (Figure 1A). The input jitter, σin, is defined as the
standard deviation of the excitatory barrage probability distribu-
tion and has units of milliseconds. Since the standard deviation
of any input distribution, σ, is a defined constant unit of time
(in this study 40 ms), all time measurements can be expressed in
units of σin (so that 0.5 σin would be equivalent to 20 ms and 2.0
σin would be equivalent to 80 ms). The spike time is the time of the
first voltage threshold crossing relative to μexc, and is measured in
units of σin. The jitter, σout, is defined as the standard deviation of
the output spike times (Figure 1B) (Marsalek et al., 1997), and is
also reported in units of σin. Simulations in the 1LIF and 2LIF are
conducted through a range of 6 input offsets, from 0 to 2 σin, 50
excitatory synapse strengths, and 50 inhibitory synapse strengths,
and for 25 excitatory and inhibitory synapse strengths for the

FIGURE 1 | General protocol for simulations. (A) Excitatory (red) and
inhibitory (blue) synaptic barrages impinge on single neuron models
according to temporal probability distributions with standard deviation σin.
Excitatory and inhibitory input barrages are temporally offset by the temporal
input offset, �IE. After (1) choosing onset times and synaptic strengths for
the inputs, (2) simulations are conducted and the spike time (measured
relative to the mean of the excitatory probability distribution, and, here,
negative) is recorded. For each parameter triplet of excitatory and inhibitory
strengths and �IE, (3) replicates are run. (4) Parameter space is explored by

choosing new parameter triplets and running new simulations. (B) Analysis of
the simulations is performed on the output distribution of the spike times
over all replicates for a given parameter set. The jitter and mean spike time
are defined as the standard deviation and mean of the output spike times. To
measure the control of spike timing by �IE (ST�) and inhibition strength
(STinh), we find the absolute value of the slope of the best linear fit of the
mean spike time as a function of �IE or inhibition strength (ginh). These
values are thus measures of how much mean spike times shift as the
temporal input offset or inhibition strength changes.
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2-compartment model. For each parameter triplet, 1000 repli-
cates are conducted in the 1LIF and 2LIF cases (making a total of
15,000,000 simulations), and 20 replicates in the 2-compartment
model (due to the increased computational time), each with new
input times chosen from their temporal probability distributions.
Only those experiments where excitation is strong enough to
allow for at least half of the replicates to cross spiking threshold
are used.

To quantify the ability of the temporal input offset to influence
spike timing, we use a measure we term shift in spike time due
to temporal input offset (ST�). ST� is the rate at which changing
the temporal input offset changes the mean spike time for fixed
excitatory and inhibitory strengths. ST� is calculated by finding
the absolute value of the slope of the least squares fit line to the
mean spike times as a function of �IE for a given excitation and
inhibition strength. In other words, ST� reports how many σin

the spike time changes by changing the input offset by 1 σin, and
is thus measured in units of σin/σin. The absolute value is taken
in order to make ST� a direct measure of spike-time control (in
this study, all values of ST� would be negative if the absolute
value was not taken, see Figure 1B). Importantly, in all 1LIF sim-
ulations, the 0 σin input offset cases produce mean spike times
that do not follow the linear trend of the other input offsets (see
Supplemental Materials). Thus, including the 0 σin input offset
data in the ST� calculations would underestimate the ability of
input offset to influence spike timing, and so were not included.

To quantify the ability of inhibitory barrages to influence
spike timing, we use a measure we term the shift in spike time
due to inhibition strength (STinh). STinh is the rate at which the
mean spike time changes with changing inhibition strength, for
a given excitatory strength. In other words, STinh is a measure
of how many σin the spike time changes by changing the inhi-
bition strength by 1 nS, and is thus given in units of σ/nS. STinh

is calculated by finding the slope of the least squares linear fit to
mean spike time as a function of inhibition strength, for a given
excitation strength.

A SINGLE LEAKY-INTEGRATE-AND-FIRE UNIT (1LIF)
A single compartment leaky-integrate-and-fire neuron (1LIF)
is implemented in Matlab (The MathWorks Inc., Natick, MA)
using the method of finite differences on the dynamic equation
cm

dV(t)
dt = ∑

i
gi(t)

[
V(t) − Vi,rev

] − V(t)
rm

, where cm, gi, rm, Vi,rev,

and V are the membrane capacitance, conductance change of
synapse i, membrane resistance, reversal potential of synapse i,
and the membrane potential, respectively. Simulations exploring
how input offset between excitatory and inhibitory barrages affect
spike jitter and the dynamic range of spiking use 1LIF with the
following parameters, treating the 1LIF as an isopotential sphere
(Koch, 1999): rm = 80 M�, cm = 13 pF (assuming a radius of
10 μm this is equivalent to 1.035 μF·cm−2), Vthresh = 16 mV, and
Vrest = 0 mV.

A TWO-COMPARTMENT HODGKIN-HUXLEY MODEL SUPPORTING
DENDRITIC PLATEAU EVENTS
A two-compartment model of a pyramidal neuron previously cre-
ated (Mainen and Sejnowski, 1996) to study the effect of dendrites
on action potential output is modified to account for dendritic

spiking. The original model features a somatic compartment with
sodium (Na) and potassium (Kv) Hodgkin-Huxley style currents
to support action-potential spiking, and a dendritic compartment
with Na, muscarinic potassium (Km), calcium-dependent potas-
sium (KCa), and high-voltage activated calcium (CaHVA) currents
to support dendritic processing. The dendritic compartment
additionally contains a linear resistance and capacitance, and the
two compartments are joined with a linear resistance (Figure 3A).
In pyramidal neurons, dendritic calcium electrogenesis has been
shown to be dependent on both high and low-threshold calcium
currents (Markram and Sakmann, 1994; Perez-Garci et al.,
2013). A low-voltage activated calcium Hodgkin-Huxley cur-
rent is thus added to the dendritic compartment. The current
has the following parameters, based off the CaLVAmechanism
used in Hay et al. (2011): m∞ =1/(1+exp(−(V+40)/6));
h∞ = 1/(1 + exp((V+90)/6.4)); τm = 5 + 20/(1 + exp((V+35)/
5)); τh = 75 + 50/(1+exp((V+50)/7)); Nm = 2; Nh = 1.

This model is implemented in the NEURON programming
environment (Carnevale and Hines, 2006).

A TWO-COMPONENT LIF MODEL (2LIF)
A two-component leaky-integrate-and-fire (2LIF) model is
implemented using two coupled 1LIFs (Figure 3A). We refer to
one compartment as the dendritic and the other as the somatic
compartment. These compartments interact via a single conduc-
tance activated in the somatic-unit whenever the dendritic-unit
reaches threshold (here set to 16 mV above rest). This con-
ductance, referred to as the plateau-conductance, is a constant
conductance lasting 3σin (120 ms) of strength gplat which, in the
absence of any somatic input, gives rise to a Vthresh + 1 mV con-
stant depolarization in the somatic compartment. That is, in the
absence of inhibition, the dendritic plateau potential will trigger a
somatic spike, as seen with calcium events induced in the den-
drites of pyramidal neurons (Larkum et al., 2009; Antic et al.,
2010).

COMPARISONS OF TEMPORAL OFFSET SPIKE TIME CONTROL IN 1LIF
AND 2LIF MODELS
In the 2LIF model, barrages of input impinge onto the dendritic
and somatic compartments independently. Inhibitory barrages
impinging on the dendritic compartment are named direct bar-
rages, since they directly affect the timing of the plateau con-
ductance. Inhibitory barrages into the somatic compartment are
named gating barrages, since they gate the effect of the plateau
conductance on somatic spiking. Note that unlike a conventional
two-compartment model, the somatic membrane potential does
not influence the dendritic membrane potential.

Spike and dendritic plateau timing are defined as the time
of the first threshold crossing in the somatic and dendritic-
compartment, respectively, relative to the mean of the dendritic
excitatory barrage probability density function.

In the analysis of spike time control in the 2LIF model
(Figure 4), excitatory barrages impinge onto the dendritic com-
partment, and inhibitory barrages impinge on the somatic
one. The same parameters for the barrages in the 1LIF anal-
ysis (Figure 2) are used in this analysis. In the comparison
of gating and direct inhibition in the 2LIF model (Figure 5),
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FIGURE 2 | 1LIF simulations. (A) The leaky-integrate-and-fire unit (1LIF) is
a single compartment with a leak conductance and membrane
capacitance. (B) The shift in spike time due to the temporal input offset
is plotted as a function of excitatory and inhibitory synapse strength (gexc

and ginh). White areas occur due to the inability of the 1LIF to spike

when excitation is not strong enough to elicit a spike given a certain
amount of inhibition. (C) The shift in spike time due to the inhibitory
strength is plotted as a function of temporal input offset and excitatory
synapse strength. For each of 6 input offsets tested (columns in D)
mean spike time (E) and output jitter (F) are plotted.

excitatory barrages have gmax = 1.2 nS and inhibitory barrages
have gmax = 5 nS. 1000 permutations are carried out at each of
108 input offsets spanning linearly from 0 to 2.5 σin.

RESULTS
SIMULATIONS AND ANALYSIS EXPLORING MECHANISMS OF SPIKE
TIMING IN SINGLE CELLS
How might spatially distributed conductances such as those sup-
porting plateau potentials interact with spatio-temporally dis-
tributed inhibitory inputs to give rise to spike time control? In
order to establish a method for comparison, we first explain the
general simulation and analysis framework used in this work.

In a single cell model, excitatory, and inhibitory barrages arrive
following σin = 40 ms probability density functions (Figure 1A,
for details see Materials and Methods). We focus on a 40 ms input
jitter due to experimental measurement of the distribution of
presynaptic cell firing in entorhinal cortex that projects to the
hippocampus (Mizuseki et al., 2009). Excitatory and inhibitory
barrages arrive with a temporal input offset (�IE; Figure 1A). For
each simulation, excitatory and inhibitory synaptic strengths (ginh

in Figure 1B) and �IE are chosen. Synaptic strengths are given in
units of nano-Siemens normalized to the excitation threshold for
spiking (denoted nS, see Materials and Methods). The output of
the simulation is the spike time, measured relative to mean of the
excitatory barrage probability density function (Figure 1A2), and
is thus a negative number if the spike precedes or a positive num-
ber if the spike follows the mean time of the excitatory barrage.
In order to make the relation of spike output statistics to synaptic
input statistics explicit, we analyze spike times in units of σin (e.g.,
an output spike time of −0.5σin refers to a spike that occurs 20 ms
before the mean of the σin = 40 ms excitatory synaptic barrage).
Multiple simulation replicates are performed for each parame-
ter set, and the parameter space is explored (see Materials and
Methods). For a given parameter set, jitter (σout) and mean spike
time (μout) are defined as the standard deviation and mean of the
spike times over all replicates (Figure 1B, top).

Control of spike time is measured in two ways. First, the shift
in spike timing due to temporal input offset (ST�) is the slope of
the best-fit line of μout as a function of �IE, and thus estimates
the shift in mean spike time by a unit increase in �IE (Figure 1B,
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middle). Second, the shift in spike timing due to inhibition strength
(STInh), is the slope of the best-fit line of μout as a function of the
inhibitory barrage synapse strength (ginh), and thus estimates the
shift in spike timing by changes in the balance between excitation
and inhibition.

SPIKE TIME CONTROL IN A SINGLE LEAKY-INTEGRATE-AND-FIRE UNIT
To establish a baseline for comparison, we begin by quantifying
the relationship between barrages of synaptic events and spike
timing in a single leaky-integrate-and-fire unit (1LIF, Figure 2A)
with no spatial extent of membrane conductances or synapses.
In particular, we are interested in the control of spike timing by
changes in �IE and inhibition strength (Figures 2B,C).

For each of six values of �IE we test (Figure 2D), increasing
excitation strength shifts spiking to earlier times, while increasing
inhibition strength delays spiking (Figure 2E). In general, jitter
decreases as �IE increases (Figure 2F). Although spike timing is
generally earlier as �IE increases (however the 0 �IE case does not
follow this trend), the shift in spike timing due to �IE (ST�, i.e.,
how many σin later the spike occurs given an increase in input
offset of 1 σin) is weak, with only 30.6% of the parameter space
able to change spike timing by more than 0.25 σin with a 1 σin

increase in �IE (Figure 2B). In general, increasing the strength of
inhibition increases ST� (Figure 2B).

Spike time also varies as a function of the strengths of the
inhibitory inputs. When excitatory and inhibitory distributions
have no temporal input offset (i.e., �IE = 0 and their input distri-
butions are the same; Figures 2D–F, 1st column), the shift in spike
timing due to inhibition strength (STInh, how many σin later the
spike occurs given a 1 nS increase in inhibition strength) reaches a
peak of 0.1 σin/nS and an average jitter of 0.9 σin (Figure 2C). The
no offset condition thus represents an especially poor case of spike
time control compared to cases with barrages separated in time, as
it has both low STinh (Figure 2C) and high jitter (Figure 2F). For
every other �IE, STinh is higher, and decreases as �IE increases.

Importantly, the decrease in jitter induced by increasing �IE

(Figure 2F) comes with the tradeoff that STinh is reduced. For
example, we find that simulations with �IE of 2.0 σin have STInh

reaching 0.1 σin/nS, while simulations with �IE of 0.4 σin reach
0.3 σin/nS (Figure 2C). Although the latter simulations have rela-
tively high STInh, they also have higher jitter, reaching σout of 0.8
σin for 0.4 σin input offset, whereas cases with 2.0 σin input off-
set have a maximum σout of 0.5 σin (Figure 2C). Similarly, shifts
in mean spike time due to increasing �IE (Figure 2E, from left to
right) do not sustain constant levels of jitter (Figure 2F, from left
to right) over the range �IE where spike timing is shifted.

INCREASED SPIKE TIME CONTROL ACHIEVED WITH A PLATEAU
POTENTIAL MECHANISM
Recent experimental results implicate inhibition in the apical
and tuft dendrites of pyramidal neurons in the control of spike
timing (Royer et al., 2012). Interestingly, this spatially restricted
input corresponds to a region in pyramidal neurons known
to have a high density of L-type Ca2+ channels (Perez-Garci
et al., 2013). This “Ca-hotzone” supports a second spiking zone
where depolarizations can cause a long-lasting pleateau event
(Larkum et al., 2009). To address the potential role of the

Ca-hotzone and the associated plateau potentials, we adopt a two-
compartment Mainen-Sejnowski pyramidal neuron, originally
created to explore the role of the apical dendrites on neural output
(Mainen and Sejnowski, 1996). We add an additional Hodgkin-
Huxley type low-voltage activated Ca channel to the dendritic
compartment to support the regenerative Ca-spike known to
occur in the apical dendrites (Figure 3A).

The results of simulations with this two-compartment model
(Figure 3) show both increases in spike time control and
decreases in jitter compared to the 1LIF simulations (Figure 2).
Although the 1LIF also showed earlier spiking as �IE increased,
here the changes in mean spike time are greater and more sus-
tained across the range of �IE tested (Figure 3E, left to right),
thus ST� is greater in most of the parameter space (Figure 3B).
A similarity with the 1LIF is observed in the decreasing abil-
ity for inhibition strength to shift spike timing as �IE increases
(Figure 3C). However, in the two-compartment model greater
levels of STinh are found, marking a greater ability to control spike
timing by changing either �IE or the relative strengths of excita-
tory and inhibitory input. Importantly, spike time jitter decreases
in the entire parameter space compared to 1LIF simulations. This
suggests that separating excitatory and inhibitory inputs into sep-
arate electrophysiological regions can be a mechanism for single
neurons to control spike output and more effectively decrease
jitter.

CONTROL OF SPIKE TIMING IN A TWO-COMPONENT LIF MODEL
To study the essential components of the single-cell spike time
control mechanism explored in the 2-compartment model, we
use a 2-compartmental LIF abstraction for a single pyramidal cell
(2LIF, see Materials and Methods; Figure 4A). This model has the
additional advantage of a structure more closely related to the
1LIF, thus comparison with the 2LIF is more direct than with the
two-compartment model.

The 2LIF consists of two LIF units that act independently
except when the dendritic-unit reaches threshold, which activates
a long-lasting constant plateau-conductance in the somatic-unit
(Figure 4A, see Materials and Methods). As before, increasing
inhibition strength delays spiking (Figure 4E). Compared to the
1LIF case, increasing excitation has little effect on spike timing
(Figure 4E), due to the stereotyped amplitude of the plateau-
conductance. Importantly, across all �IE we observe a decrease
in jitter compared to the 1LIF case (Figure 4F). Additionally, as
�IE increases, mean spike time decreases rapidly compared to
the 1LIF case. ST� is thus greater than 0.6 σin/σin for the major-
ity of the parameter space tested (Figure 4B), and greater than
the 1LIF ST� values for 95.9% of parameter space tested (com-
paring Figure 4B to Figure 2B). Here, the ST� values are greater
than 0.25 σin/σin for 87.9% of the parameter space tested, com-
pared to 30.6% for the 1LIF simulations. Additionally, in all the
parameter space tested in which the somatic inhibitory strength
is less than or equal to 0.5 nS, 88.0% of the simulations had
an ST� less than 0.25 σin/σin (Figure 4B), whereas only 0.5%
of the rest of parameter space tested has such an ST�. Thus,
somatic inhibition is required for robust spike timing control,
and the weakening of somatic inhibition is detrimental for such
control.
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FIGURE 3 | 2-compartment model. (A) The 2-compartment model features 6
Hodgkin-Huxley conductances separated into a somatic and dendritic
compartment. The two compartments communicate via a linear resistance. (B)

The shift in spike time due to the temporal input offset is plotted as a function of

excitatory and inhibitory synapse strength (gexc and ginh). (C) The shift in spike
time due to the inhibitory strength is plotted as a function of temporal input
offset and excitatory synapse strength. For each of 6 input offsets tested
(columns in D) mean spike time (E) and output jitter (F) are plotted.

STinh decreases as �IE increases (Figure 4C). Unlike the 1LIF
case, this modulation of STinh by changing �IE is not generally
accompanied by large increases in jitter, except if there is no offset
between excitation and inhibition. For �IE of 0.4 σin or greater,
jitter averaged over a given excitation strength remain less than
0.5 σin in all cases (Figure 4F).

COMPARING MECHANISMS OF SPIKE TIME CONTROL
Finally, we compare the effect of dendritic (“direct,” Figure 5A)
and somatic (“gating,” Figure 5B) inhibitory barrages on ST�.
Importantly, the direct inhibition 2LIF case is equivalent to the
1LIF case with a short time lag (the rise time of the somatic
voltage due to the plateau-conductance). This is because there
is no synaptic barrage into the soma, so all synaptic integra-
tion occurs in the dendrite. The somatic voltage is thus guar-
anteed to reach threshold whenever the dendritic threshold is
crossed.

In Figure 5, we observe how �IE modulates the plateau time
(the time when the dendrite reaches threshold, blue curves) as
well as the spike time (red curves). In the direct case (Figure 5A),
a small spike time modulation in the plateau time becomes

increasingly noisy as inhibition becomes more in phase with
excitation. Here, the dendrite acts as a 1LIF, so that the results
are similar to those of Figure 2, where zero �IE has high jitter
(Figure 2F), and increasing �IE decreases the mean spike time,
although importantly at a slower rate (ST� in Figure 2B com-
pared to Figure 4B). Moreover, without somatic inhibition, the
plateau potential can only transform plateau time into spike time
by adding a fixed temporal offset (due to the fixed rise-time of
the plateau-conductance). Because of this, the direct case fea-
tures spike time modulation that is equivalent to plateau time
modulation with a fixed added time.

In the gating case (Figure 5B), somatic inhibition does not
influence the dendritic membrane potential because somato-
dendritic interaction only occurs in one direction in our model.
Therefore, the plateau time does not depend on �IE. The mono-
tonically changing spike timing is attributed to somatic inhibition
and spike timing can be modulated by more than 2.5 σin by tem-
poral input offsets in the gating case, compared to about 1 σin

spike time modulation in the direct case. Additionally, we find
that the jitter remains within 0.3 σin in the gating case, while
ranging from 0.3 to 0.6 σ in the direct case.
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FIGURE 4 | 2LIF model. (A) The 2LIF consist of 2 leaky-integrate-and-fire units
communicating via a long-lasting plateau-conductance. Whenever the
dendritic-unit reaches threshold, a plateau-conductance opens in the
somatic-unit. (B) The shift in spike time due to the temporal input offset is

plotted as a function of excitatory and inhibitory synapse strength (gexc and ginh).
(C) The shift in spike time due to the inhibitory strength is plotted as a function
of temporal input offset and excitatory synapse strength. For each of 6 input
offsets tested (columns in D) mean spike time (E) and output jitter (F) are plotted.

How well can a neuron simultaneously control mean spike
time and reduce jitter? To answer this question we plotted jitter
as a function of ST� for all simulations conducted in the 1LIF
(equivalent to direct inhibition) and 2LIF (equivalent to gating
inhibition) cases (Figure 5C). For direct inhibition, where the
postsynaptic potentials of both excitatory and inhibitory inputs
directly interact in a single compartment, jitter increases linearly
as ST� increases. Thus, finding a point in parameter space where
spike time is modulated with little noise is difficult. Alternatively,
for gating inhibition, where excitatory and inhibitory barrages
are separated into distinct spatial compartments, a large portion
of parameter space simultaneously modulates spike timing by
temporal input offset with attenuated noise.

DISCUSSION
In the first part of our study, we explore the response of conven-
tional LIF units to barrages of inputs. A previous study found
that barrages of inhibition increase jitter in LIF units due to an
increase in degrees of freedom (Marsalek et al., 1997). Since the
time of that computational work, experiments looking at the
temporal offset of different current sinks and sources have given

credence to the idea that different barrages of inputs can arrive
separated by certain intervals of time (Klausberger and Somogyi,
2008; Mizuseki et al., 2009). Thus, in this study we included tem-
poral input offsets and find that increases in jitter are tempered if
inhibitory barrages are sufficiently offset in time from excitatory
barrages (Figure 2). We further find a tradeoff between control of
spike timing by temporal input offset and the ability to decrease
spike jitter (Figure 5C, blue). In other words, although jitter can
be reduced by offsetting inhibition from excitation, the ability of
inhibition to shift spike timing is reduced the more temporally
offset synaptic barrages become, in the case where all synaptic
input occurs in a single compartment.

Significant synaptic and membrane noise is a relevant phe-
nomenon in vivo (Pare et al., 1998) rendering the possibility of
synaptic fine-tuning (e.g., to balance jitter and temporal con-
trol of spikes) remote. Additionally, pyramidal neurons do not
act as isopotential units. Experiments reveal the existence of a
Ca-hotzone in the apical dendrites, as well as voltage depen-
dent sodium channels and NMDA receptors that can induce
long-lasting plateau potentials and cause somatic depolarizations
(Schiller et al., 1997; Seamans et al., 1997; Larkum et al., 1999,
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FIGURE 5 | A mechanism for spike time control. (A) In the direct inhibition
case, excitation and inhibition both impinge on the dendritic-unit. This is
equivalent to a 1LIF with a short time lag between threshold crossing and
spiking. Here, 1000 replications were conducted at each of 108 different input
offsets. (right) Plot of the time of the plateau potential (relative to the mean of
the synaptic excitatory barrage) (red), and the somatic spike time (blue), as a
function of the temporal input offset between the mean timing of the excitatory
and the inhibitory barrages. Output jitter is shown by the shaded area. (B) In the
gating inhibition case, excitation impinges on the dendritic-unit while inhibition

impinges on the somatic-unit where it interacts with the plateau-conductance.
(Right) Same as (A) for the gating inhibition case. The timing of the plateau
event does not depend on the input offset, while the timing of the somatic
spike decreases with increasing offset between excitation and inhibition. Note
that the spatially separated inputs give rise to steady low-jitter spike time
modulation compared to the direct inhibition case. (C) Scatter plots of every
data point tested in the 1LIF (Figure 2) and 2LIF (Figure 4) showing how jitter
varies as a function of offset spike time control. Ellipses show center of mass
with height and width of ±1 standard deviation. Lines show linear best fits.

2009; Milojkovic et al., 2007; Antic et al., 2010). We modeled
the effects of these dendritic spikes on spike time control first
in a biophysical two-compartment (Figure 3) model and, then,
in an abstracted two-component LIF model (2LIF, Figure 4),
and found that a spatial separation of inhibitory and excitatory
barrages into a single neuron that supports dendritic plateau
potentials can manipulate spike timing while reducing jitter
(Figure 5).

The 2LIF model proposed herein lies between simple 1LIF
models and more biophysically realistic multicompartmental

models (Koch, 1999; Poirazi et al., 2003a; Hay et al., 2011) by
keeping the parameter space limited while preserving impor-
tant biophysical realities such as plateau potentials and spa-
tially segregated synaptic input. In the somatic-unit of the 2LIF,
a depolarizing plateau-conductance is activated whenever the
dendritic-unit reaches threshold. Dendritic excitation activates
the plateau-conductance in the soma, which, in turn, can be
gated by somatic inhibition leading to precise spike timing
(Figures 4, 5). Such a mechanism depends on the spatial separa-
tion of synaptic inputs (Pouille and Scanziani, 2001; Palmer et al.,
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2012) as well as their communication via the plateau-conductance
(Figure 5). Here we argue that dendritic non-linearities con-
fer distinct functionalities to dendritic and somatic input with
respect to the somatic action potential. Because this causes the
input-output function of neurons to be a mapping from an (at
least) two-dimensional input space to a one-dimensional output
space, it would be difficult to reproduce the results shown here
in a 1LIF model that lacks additional degrees of freedom for the
input.

Several multi-component models have been proposed as
abstractions of pyramidal neurons to account for properties of
dendrites. The sigma-pi unit features groups of inputs that multi-
ply before being summed by weight and have been used to model
spatio-temporal clustering needed for local NMDA-spike genera-
tion in dendrites (Mel, 1992b). The clusteron model (Mel, 1992a)
features a spatial window of supralinearity, allowing for continu-
ous spatio-temporal clustering effects in the dendrites. Similarly,
single-neuron computation has been represented by two-layer
neural networks (Poirazi et al., 2003b) allowing individual den-
dritic branches to act as a first layer of independent computation
whose outputs are fed into the threshold operation at the soma.
Here we aim to model the effect of dendritic plateau poten-
tials, and the effect of the resultant plateau potentials on somatic
spiking.

It has been proposed that multiple and independent com-
putations (often NMDA-mediated) can provide input to the
Ca-hotzone (Polsky et al., 2004). Extensions to the 2LIF might
be needed to capture more detailed or complicated single-neuron
functionalities. For instance, extra “NMDA-compartments” can
be added which feed into the dendritic compartment. These
extensions, as well as other details like morphology, spines, plas-
ticity, adaptation, backpropagation, etc. could be added at will to
increase the level of detail [for a review on how active dendritic
conductance relate to these concepts see (Papoutsi et al., 2014)].
Here we provide a simple conceptual model that accounts for the
basic non-linear layout of ion channels in a cell.

There are a number of two-compartment models with several
ionic conductances that focus on interactions between soma and
dendrites (Pinsky and Rinzel, 1994; Mainen and Sejnowski, 1996;
Larkum et al., 2004; Murayama et al., 2009; Jadi et al., 2012). Here,
we feature a non-traditional two-compartment model (2LIF),
since the somatic and dendritic compartments are not “coupled”
by a linear resistance but instead by a rectifying diode (the plateau
conductance). Our 2LIF model has no explicitly simulated ionic
conductances except a passive leak and the plateau-conductance,
greatly decreasing the number of parameters needed to define our
cell. Additionally, the plateau-event in our model is abstracted
as a stereotyped, voltage-independent conductance change in the
soma, as opposed to a voltage-dependent conductance change in
the dendrites. Thus, our model is designed to be as simple as pos-
sible while still allowing for the range of behaviors relevant to
spike timing control.

In particular, we compared two types of spike timing control
mechanisms, one by changing the temporal input offset (ST�),
and the other by changing the inhibitory strength (STinh). We
found that STinh was associated with a tradeoff between control-
ling spike time and reducing jitter. Though this tradeoff existed

in both the 1LIF and 2LIF cases, it was largely tempered in the
2LIF case (compare Figure 2C to Figure 4C and Figure 2F to
Figure 4F). In both cases, the no temporal input offset cases were
especially poor at controlling spike timing and reducing output
jitter simultaneously. The difference between the 1LIF and 2LIF
case was especially stark in ST�. In 95.9% of the parameter space
tested, ST�values were higher in the 2LIF than in the 1LIF, and in
the majority of parameter space the 2LIF ST� values were at least
3 times higher than in the 1LIF.

We focused on the timing of the first action potential, neglect-
ing other aspects of neural coding such as frequency modulation.
We did so chiefly because such spike timing is particularly relevant
to areas of the brain like the hippocampus, where robust relation-
ships between spatial location and spike timing exist (O’Keefe and
Recce, 1993). Additionally, despite in vitro evidence that dendritic
electrogenesis contributes to frequency control in pyramidal neu-
rons, our model lacks the complexity to capture such effects.
These are highly non-linear, resulting from a number of non-
linear voltage dependant currents acting in concert (Williams and
Stuart, 1999; Su et al., 2001; Metz et al., 2007). Instead of instan-
tiating these complexities, we focused on making the model as
simple as possible and relegated ourselves to studying only spike
timing.

Our findings have important ramifications for the tempo-
ral encoding of neurons in the presence of barrage-like synap-
tic input. For example, the “dual-oscillator interference model”
(Burgess et al., 2007) used to explain phase precession in entorhi-
nal cortex grid cells features spatial segregation of inputs into the
dendrites and soma. The inputs are of slightly different frequen-
cies, causing an interference pattern and a modulation of spike
phase. We likewise observe monotonically increasing spike tim-
ing modulation in our 2LIF model by changing the input offset
(phase) of the inhibitory barrage relative to the excitatory barrage
(Figure 5B).

Of particular note is a study looking at the relationship
between local dendritic and global neuronal processing in dual-
oscillator interference models, considering the realistic electro-
genic structure of stellate cells (Remme et al., 2010). In that
study, an important tradeoff was found between local and global
processing as a function of the coupling between the different
compartments of the cell. Any dual-oscillator interference model
needs both independent oscillations to exist in each compartment
(local processing) as well as their interaction in order to create
interference (global processing). If, instead, the electrotonic struc-
ture is such that multiple compartments can phase lock, then
local oscillations cannot independently exist and phase preces-
sion cannot be realized. While stellate cells have a soma with
a single group of dendrites radiating outward from it, pyrami-
dal neurons have an elongated apical trunk that bifurcates into
a second group of thin dendritic tufts. The apical trunk hosts
a number of non-linear channels. Relevant to this discussion
are the voltage-dependent sodium channels that only turn on
for propagating suprathreshold signals, and the HCN channels,
which act to lengthen the electrotonic distance of the neuron,
especially with respect to subthreshold events. Finally, pyrami-
dal neurons uniquely possess the calcium “hot-zone” at the apical
bifurcation that supports the long-lasting calcium spike. Taken
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together, these facts point to a compartmentalization of the neu-
ron into independent compartments that can interact exclusively
with suprathreshold events. Thus, in our study, both local and
global processing can coexist in the same neuron. Our result is
wholly dependent on the subthreshold independence of the two
compartments that only interact via suprathreshold signaling.

In our model we considered exclusively the dendrite-to-soma
propagation of the calcium spike, and not the back propagation
of action potentials. This assumption is valid in regimes where
somatic spiking is largely induced by apical dendrite input, and
not basal dendrite input. Indeed, axons from Schaffer collaterals
and the perforant pathway both send strong inputs into the apical
dendrites of pyramidal neurons in the hippocampus (Jarsky et al.,
2005). In more recent in vivo work, it has been shown that apical
dendritic signals correlate much better to action potential output
than do signals in the closer basal dendrites in pyramidal neurons
(Palmer et al., 2014).

Moreover, it is known that theta-locked entorhinal cortex spik-
ing co-exists in time with a current sink in their targets, stratum
lacunosum moleculare in CA1, where the apical tuft of CA1 pyra-
midal neurons lie. These cells spike between 90◦ and 180◦ of theta
(i.e., 50–150 ms) later (Mizuseki et al., 2009). Such a lag, hypoth-
esized to provide temporal windows for local circuit computation
(Buzsaki, 2010), is inconsistent with passive integration of synap-
tic inputs. Our results support the notion that in addition to
the possibility of local circuit computation, the spatiotemporal
distribution of spiking, and current sources/sinks during navi-
gation in the entorhinal/hippocampal circuit (in particular the
lag between synaptic input and postsynaptic firing in CA1 cells)
and the distribution of membrane channels that support plateau
potentials in pyramidal neurons can be explained by a mechanism
where dendritic inputs cause a sustained depolarization in the
soma that can be manipulated via somatic inhibition over longer
timespans.

Computational network models and some theoretical work
have suggested that perisomatic and dendritic inhibition have
distinct roles in the generation of spikes during sharp wave rip-
ples in the hippocampus (Cutsuridis and Taxidis, 2013; Taxidis
et al., 2013). Experimental work by Royer et al. (2012) has
explored these distinct effects in the CA1 pyramidal neurons
during navigation. Upon suppression of soma-targeting, but
not dendrite-targeting, interneurons, the range of phase pre-
cession was reduced during navigation by more than a factor
of 2 (Royer et al., 2012 their Figure 6). Similarly, in the 2LIF
model, a decrease in somatic inhibitory strength has a detri-
mental effect on spike timing control, since the ability to gate
the plateau-conductance decreases (Figures 4, 5). Importantly,
manipulating dendritic inhibition in our model does not drasti-
cally curtail the cell’s phase modulation, since the majority of the
spike timing control is due to gating of the plateau-conductance
by somatic inhibition, in agreement with findings of Royer and
colleagues.

In our study, input distributions were fixed at an input jit-
ter of 40 ms, and thus the results may only be relevant for brain
states supporting inputs with similar temporal characteristics.
The 40 ms input jitter used here is comparable to the distribu-
tion of presynaptic cell firing in entorhinal cortex that project to

the hippocampus (Mizuseki et al., 2009). In general, the param-
eter space of the input is large and multidimensional, involving
the numbers of synaptic events, their strengths, temporal distri-
bution shape and frequency, and the relative amount of excitation
and inhibition. We neglected to search this space exhaustively
and instead chose parameters with physiological relevance to sus-
tained depolarizations in the cortex. However, due to the ubiquity
of the dual integration zone feature in neurons throughout the
brain, a model such as ours presented here may describe com-
putation in other brain areas, with synaptic noise of different
temporal characteristics, or where temporal coding is not the
predominant mode of computation.
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