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Abstract

Angiogenesis is regulated by highly coordinated action of various proteins with pro- and anti-

angiogenic functions. Among the many cytoplasmic signaling proteins that are activated by 

VEGFR-2, activation of PLCγ1 is considered to play a pivotal role in angiogenic signaling. In 

previous study we have identified c-Cbl as a negative regulator of PLCγ1 in endothelial cells, the 

biochemical and biological significance of c-Cbl, however, in angiogenesis in vivo and molecular 

mechanisms involved were remained elusive. Here we report that genetic inactivation of c-Cbl in 

mice results in enhanced tumor angiogenesis and retinal neovascularization. Endothelial cells 

derived from c-Cbl null mice displayed elevated cell proliferation and tube formation in response 

to VEGF stimulation. Loss of c-Cbl also resulted in robust activation of PLCγ1 and increased 

intracellular calcium release. c-Cbl-dependent ubiquitination selectively inhibited tyrosine 

phosphorylation of PLCγ1 and mostly refrain it from ubiquitin-mediated degradation. Hence, we 

propose c-Cbl as an angiogenic suppressor protein where upon activation it uniquely modulates 

PLCγ1 activation by ubiquitination and subsequently inhibits VEGF-driven angiogenesis.

Introduction

Angiogenesis, the growth of new blood vessels, is of key importance in a broad array of 

physiologic and pathologic conditions ranging from inflammation, and cancer to age-related 

macular degeneration. Regulation of angiogenesis is often viewed as a balance between pro-

angiogenic and anti-angiogenic factors, and when the balance shifts in favor of pro-

angiogenic factors, an angiogenic switch turns on the normally inactive endothelial cells to 

grow new blood vessels. Activation of VEGFR-2 is considered a pivotal signaling event that 

determines many aspects of endothelial cells function, including differentiation, proliferation 

and migration (reviewed in Olsson et al., 2006, Rahimi, 2006). While these outcomes are 

initially determined by the presence of the VEGF ligands, in the recent years, it has become 
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evident that protein ubiquitination involving c-Cbl ubiquitin E3 ligase also significantly 

amend the angiogenic signaling events, particularly by targeting PLCγ1 (phospholipase 

Cγ1), the major substrate of VEGFR-2 in endothelial cells (Singh et al., 2005; Singh et al., 

2007).

The Cbl family ubiquitin E3 ligase proteins consist of three closely related proteins, 

including c-Cbl, Cbl-b and Cbl-3. All of c-Cbl family gene products contain a highly 

conserved TKB (tyrosine kinase binding) domain and a RING finger domain in their N-

terminal region. The C-terminus of Cbl family proteins interacts with various SH2 and SH3 

domain-containing proteins (Thien et al., 2005). The c-Cbl protein primarily functions as an 

E3 ubiquitin ligase where its RING finger domain recruits ubiquitin-conjugating (E2) 

enzyme (Swaminathan and Tsygankov, 2006). The binding of c-Cbl to VEGFR-2 occurs 

directly via phospho-Tyr1052 and phospho-Tyr1057 of VEGFR-2, as well as indirectly 

through PLCγ1. Phospho-Tyr1057 along with phospho-Tyr1052 on VEGFR-2 recognizes 

the TKB (tyrosine kinase binding) domain of c-Cbl (Singh et al., 2007). Although c-Cbl is 

recruited to and phosphorylated by VEGFR-2, it is dispensable for ubiquitination and 

degradation VEGFR-2 (Singh et al., 2005, Singh et al., 2007). The C-terminus of c-Cbl on 

the other hand, binds to SH3 domain of PLCγ1 and mediates its ubiquitination (Singh et al., 

2007).

Activation of PLCγ1 in endothelial cells is identified as a key downstream mediator of the 

angiogenic signaling of VEGFR-2. Targeted deletion of PLCγ1 in mouse and zebrafish 

causes in early embryonic lethality due to impairment of vasculogenesis and erythrogenesis 

(Liao H-J et al., 2002; Lawson et al., 2003). Also, mutation of Y1173 on VEGFR-2, a major 

PLCγ1 binding site on VEGFR-2 impairs the ability of VEGFR-2 to stimulate angiogenesis 

in vitro (Takahashi et al., 2001; Meyer et al., 2003; Rahimi, 2006). Consistent with the cell 

in vitro culture system, the mice homozygous for the mutant VEGFR-2Y1173F knock-in 

allele dies with sever defect in vasculogenesis (Sakurai et al., 2005), further supporting the 

hypothesis that PLCγ1 activation plays central role in angiogenesis.

To date, the in vivo function of c-Cbl in angiogenesis, in particular in relation to PLCγ1 has 

not been fully established. In this study we aimed to determine the functional consequences 

of c-Cbl in angiogenesis and its role in PLCγ1 activation. Our present data demonstrate that 

genetic inactivation of c-Cbl in mice results in an increased in phosphorylation of PLCγ1 

leading to endothelial cell proliferation and angiogenesis. Taken together, our data identifies 

c-Cbl as an angiogenic suppressor protein, acting as an endogenous PLCγ1 inhibitor.

Methods

Cell culture and cell lines

Primary mouse dermal microvascular endothelial cells (MVE cells) were grown in HUVEC 

medium plus growth factor supplements and penicillin/ streptomycin (Enzo, Inc). HEK-293 

and Porcine aortic endothelial (PAE) cells were grown in 10% FBS. PAE cells lack 

endogenous expression of VEGFR-2, expression of VEGFR-2 in these cells was established 

by retroviral system (Rahimi et al., 2000).
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Plasmids, Growth factors and Antibodies

c-Cbl and 70Z-Cbl constructs were described previously (Singh et al., 2007). Chimeric 

VEGFR-2 (CKR) and its expression in PAE cells is described previously (Rahimi et al., 

2000). Anti-PLCγ1 antibody and anti-phospho-783-PLCγ1 were purchased from Biosource/

Invirogene), Anti-Ubiquitin (FK2) antibody was from Biomol (Plymouth Meeting, PA), 

anti-CD31 antibody was from Abcam. VEGF-A was purchased from R&D.

Immunoprecipitation and Western blot Analysis

Equal numbers of cells from the indicated cells were grown until 80–90% confluent. After 

serum starvation, cells were left either resting or stimulated with VEGF-A at 37°C as 

indicated in the figure legends. Cells were prepared and lysed and subjected to Western blot 

analysis as described (Singh et al., 2007; Meyer et al., 2008). In some occasions Western 

blot analyzes were quantified using NIH image J software.

Isolation of dermal microvascular endothelial cells

Mouse dermal microvascular endothelial cells (MVE) were isolated from the skin of 4 

weeks-old mice and further purified consecutively by anti-CD31, a maker for endothelial 

marker and hematopoietic cells and anti-CD146 (Millipore/Chemicon), a marker for 

endothelial cells using MACS LS separation column (Miltenyi Biotec Inc.).

Endothelial cell tube formation assay

Endothelial cells were seeded on Matrigel with endothelial cell growth medium (Clonetics 

Co.) in the absence or presence of VEGF and photographed after 16 h. Experiments were 

repeated three times.

Cell proliferation assay

Cell proliferation of Primary endothelial cells was evaluated by direct cell counting as 

described (Meyer et al., 2009). Briefly, endothelial cells were seeded at a density of 2×104 

cells/well in 24-well plates and cultured overnight; the cells were then incubated in serum-

free medium for 12 hours. Cells were stimulated with recombinant human VEGF-A at 

different concentrations as indicated in figure legends, and after48 hours they were washed 

with PBS, harvested by mild trypsinization, and counted with a hematocytometer. 

Experiments were performed in quadruplicate and values were presented as means of ±SD. 

Proliferation of PAE cells expressing c-Cbl and 70Z-Cbl was measured by 3H-thymidine 

incorporation assay as described before (Meyer et al., 2003). Comparison of the different 

parameters for the each group was determined by repeated measures analysis of variance 

(ANOVA). Significant differences were assigned using Kruskal-Wallis post hoc test. The 

criterion for significance for all the tests was set at p, 0.05. Analysis was done in 

GraphPadPrism v4.0b (GraphPad Software, San Diego, USA).

Tumor Angiogenesis

Mice (4 animals for each experiment) were injected with Matrigel (10 mg/ml), plus B16 

melanoma cells (1×107) or VEGF-A. Before injection, the animals were sedated with 

Avertin (0.3 mL/20g mouse). Using 25-gage needle 0.3 ml matrigel mixture was injected 
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sub-dermally into mice. After 12 days (or as outlined in the figure legends) animals were 

euthanized and the tumor injected tissues were removed and further analysis. In some 

experiments the growth of B16 melanoma cells were measured over the time of experiment. 

Tumor size measured using caliper as described (Woodman et al., 2003). All the statistical 

analyzes were done in GraphPadPrism v4.0b (GraphPad Software, San Diego, USA).

Calcium flux Assay

The assay is performed as described (Meyer et al., 2004). Briefly, cells were grown on 25 

mm round glass coverslips and serum-starved for 12–18 h. Cells were incubated in an 

HEPES-buffered saline solution with 4 µM fluo-3 AM, supplemented with 0.02% pluronic 

acid for 30 minutes at 37°C. The live cells were placed in an open chamber (Molecular 

Probes, Inc., Eugene, OR) and positioned on the stage of a Zeiss LSM 510 Axiovert 

confocal laser scanning microscope equipped with an Argon laser. For each experiment, 

cells were scanned for at least five to 10 seconds before the addition of VEGF-A to establish 

a base line fluorescence reading. All the readings were made while continuously scanning 

the cells every 789 milliseconds.

Laser-induced choroidal neovascularization (CNV) and Fluorescein Angiography

CNV was induced using the laser photocoagulation method as described (Funakoshi et al., 

2006). Green light at 532nm, 0.05 sec exposure, 200 mW power and 50 micron spot size 

was used from a coherent dye laser, CA. Both eyes of each mouse were treated and four 

spots were placed in the peripapillary area about 1–2 disc diameter from the optic nerve. 

Those spots that showed hemorrhagic complication were excluded from further evaluation 

in the follow-up study. Fourteen lesions were created in the knockout mice and eighteen 

lesions were created in the wild mice. Fluorescein angiography was performed on the TRC 

50VT camera and Imagenet system, Topcon, Paramus, NJ. A standard 20 D lens was placed 

in contact with the fundus camera lens to capture the mouse fundus photographs and 

angiograms. Intraperitoneal injection of 0.2 ml of 1% sodium fluorescein (Akorn, Decatur, 

IL) was in the mouse. Angiograms were done at 1,2,3 and 4 weeks after the laser induction. 

Two masked retina specialists graded all the angiograms. The angiograms were graded 

based on previously described grading scheme: 0 (no leakage), 1 (questionable leakage), 2A 

(hyperfluorescence increasing in intensity but not in size) 2B (hyperfluorescence increasing 

in intensity and size).

Results

Loss of c-Cbl in endothelial cells promotes enhanced cell proliferation and tubulogenesis 
in vitro

In previous study we have shown that interfering with c-Cbl activity in endothelial cells 

significantly increases VEGF-induced PLCγ1 phosphorylation and with it sprouting of 

endothelial cells in vitro (Singh et al., 2005; Singh et al., 2007). To further investigate the 

functional importance of c-Cbl in angiogenic signaling of VEGFR-2 we analyzed 

proliferation of PAE (porcine aortic endothelial cells) where we co-expressed wild type c-

Cbl or inactive mutant form of c-Cbl with VEGFR-2. Over-expression of wild type c-Cbl 

significantly inhibited VEGF-mediated cell proliferation. Conversely, inhibition of 
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endogenous c-Cbl activity by over-expressing a dominant negatively acting c-Cbl (70Z-c-

Cbl) notably increased proliferation of PAE cells in response to VEGF stimulation (Figure 

1A). The increased proliferation of PAE cells over-expressing c-Cbl-70Z was suppressed by 

treatment of cells with U-73122, a potent PLCγ1 inhibitor (Figure 1C). Moreover, silencing 

the expression of c-Cbl in PAE cells, also significantly enhanced VEGF-dependent 

proliferation (data not shown). Altogether, the data suggest that c-Cbl activity in endothelial 

cells negatively controls VEGF-dependent cell proliferation.

To further link c-Cbl activity to VEGF-dependent endothelial cell proliferation, dermal 

microvascular endothelial (MVE) cells were isolated from wild type and c-Cbl knockout 

mice and analyzed for their ability to undergo VEGF-dependent cell proliferation and tube 

formation. Our analysis showed that VEGF-induced cell proliferation in c-Cbl null cells was 

higher compared to endothelial cells derived from wild type mice (Figure 1E). To directly 

demonstrate whether the increased proliferation of endothelial cells derived from c-Cbl null 

mice is linked to increased PLCγ1 activation we silenced expression of PLCγ1 by siRNA 

and then measured their proliferation in response to VEGF. The PLCγ1 siRNA was 

specifically reduced expression of PLCγ1 (Figure 1F). Silencing the expression of PLCγ1 

also significantly reduced the VEGF-dependent proliferation of c-Cbl null cells (Figure 1G). 

Also, treatment of c-Cbl null cells with PLCγ1 inhibitor, U-73122, inhibited proliferation of 

these in response to VEGF (Figure 1H), further suggesting that increased proliferation of c-

Cbl null cells is linked to elevated activation of PLCγ1 in these cells. VEGF-dependent 

activation of PLCγ1 is known to regulate tube formation of endothelial cells (Meyer et al., 

2003; Husain et al., 2010). To test the tube formation potential of c-Cbl null cells we 

subjected these cells to Matrigel-based tube formation assay. The result showed that loss of 

c-Cbl increases the capillary tube formation of endothelial cells (Figure 1I). Taken together, 

the data demonstrates that c-Cbl activity negatively regulates VEGF-dependent angiogenic 

signaling by targeting PLCγ1.

Activation of PLCγ1 by growth factors leads to the opening of calcium channels of the 

endoplasmic reticulum leading to the release of calcium into the cell (Rebecchi and 

Pentyala, 2000). To establish whether loss of c-Cbl is associated with PLCγ1-dependent 

intracellular calcium release, we measured intracellular calcium release in endothelial cells 

derived from c-Cbl null mice versus wild type cells. Our analysis demonstrates that loss of 

c-Cbl in endothelial cells results in elevated VEGF-dependent intracellular calcium release 

compared to the wild-type endothelial cells (Figure 2). Taken together, the data suggest that 

c-Cbl exerts its effect through PLCγ1 to inhibit VEGF-dependent angiogenic events in 

endothelial.

Loss of c-Cbl promotes tumor growth and choroidal neovascularization

Angiogenesis is considered the hallmark of tumor growth and metastasis in vivo (Folkman 

2006). We hypothesized that loss of c-Cbl might augment tumor growth by increasing 

angiogenesis. To test this hypothesis we measured the growth of murine B16F melanoma 

cells (B16F cells are originated from C57B1/6 mice and thus are immunologically 

compatible with the C57BL/6 mice where the c-Cbl null mice was generated) in c-Cbl 

knockout versus wild type mice. The result showed that the growth of B16F melanoma cells 
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was significantly higher than the control, wild type mice (Figure 3A and 3B). Indeed, the 

overgrowth of tumor cells in c-Cbl knockout mice was also extensively accompanied with 

induction of angiogenesis as was apparent with the formation of large mother blood vessels 

(Figure 3B). To further establish the biological importance of c-Cbl in VEGF-mediated 

angiogenesis, we compared the VEGF-induced angiogenic responses in c-Cbl knockout 

versus the wild type mice using in vivo Matrigel plug angiogenesis assay. Our data showed 

that like tumor-induced angiogenesis, VEGF-induced angiogenesis was also elevated in c-

Cbl knockout mice compared to wild type mice (Figure 3D). Moreover, protein sample 

derived from the same tissue showed that phosphorylation of PLCγ1 was significantly 

increased in c-Cbl knockout mice where VEGF was injected (Figure 3D, 3E).

Choroidal neovascularization (CNV)/retinal angiogenesis is considered the major 

pathological characteristic of age-related macular degeneration and VEGF system is 

identified as a paramount player of its formation. To investigate role of c-Cbl in CNV 

formation we subjected c-Cbl knockout and wild type mice to laser-induced CNV formation. 

CNV was created using the laser photocoagulation method (Funakoshi et al., 2006). Lesions 

were induced and followed up to four weeks. Fundus photography and angiography was 

done to document size and leakage from the CNV in these lesions at each visit as describe in 

the methods and Materials. The follow-up fluorescein angiography of the lesions showed 

that they were lesions were progressively larger in size at the 4-week as compared to the 

earlier time points in the c-Cbl knockout mice (Figure 4A). Our analysis showed that leaking 

CNV were found in 10/14 (71%) lesions in the c-Cbl knockout mice as compared to 6/18 

lesions (33%) in the wild type mice (Figure 4B). Also, the confluences of lesions were 

significantly higher in c-Cbl knockout mice compared to the wild type mice. Indeed, the 

confluence was found in 6/14 (42%) lesions in c-Cbl knockout and 2/18 (11%) lesions in 

wild type mice. Altogether, the data strongly suggest that c-Cbl acts as a negative regulator 

of tumor-induced angiogenesis and Choroidal neovascularization.

Tyrosine phosphorylation of PLCγ1 is elevated in c-Cbl deficient microvascular 
endothelial cells

Activation of VEGFR-2 in porcine aortic endothelial (PAE) cells stimulates phosphorylation 

of c-Cbl at Y774 (Singh et al., 2007). To delineate activation of c-Cbl by VEGFR-2 in the 

context of primary endothelial cells, we initially analyzed phosphorylation of c-Cbl at Y700, 

Y731 and Y774 in response to VEGF stimulation in primary dermal microvascular 

endothelial cells. The data demonstrate that VEGF stimulates c-Cbl tyrosine 

phosphorylation at Y700, a site involved in the recruitment of VAV, GEF specific for Rho-

family GTPases (Miura-Shimura et al., 2003) and Y774, a site along with Y700, involved in 

the Crk binding to c-Cbl (Feshchenko et al..1998) (Figure 5A, 5C). Interestingly, Y731, a 

site involved in the recruitment of PI3-kinase to c-Cbl (Miyazaki et al., 2004;Teckchandani 

et al., 2005) is not phosphorylated in these primary endothelial cells in response to VEGF 

stimulation (Figure 5B). This suggests that Y700 and Y774 on c-Cbl but not Y731 are 

engaged in c-Cbl-dependent biological functions in endothelial cells.

Our previous study has identified PLCγ1 as a substrate for c-Cbl (Singh et al., 2007). To 

analyze the biological significance of c-Cbl in endothelial cells, dermal microvascular 
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endothelial cells derived from wild type and c-Cbl knockout mice were subjected to various 

biochemical assays in the context of PLCγ1 ubiquitination and degradation. To test the 

effect of loss of c-Cbl in the activation of PLCγ1 we analyzed phosphorylation status of 

PLCγ1. Consistent with previous observation (Singh et al., 2007), loss of c-Cbl significantly 

increased VEGF-dependent phosphorylation of PLCγ1 (Figure 5I). Loss of c-Cbl had no 

effect on the phosphorylation of VEGFR-2 or its protein levels (Figure 5L and 5M).

PLCγ1 is ubiquitinated by c-Cbl in endothelial cells

To examine the biochemical consequence of loss of c-Cbl on PLCγ1 in endothelial cells 

further, we measured ubiquitination of PLCγ1 in c-Cbl null endothelial cells. The data show 

that PLCγ1 is ubiquitinated in the wild type endothelial cells but not in the c-Cbl null cells. 

Indeed, it appears that PLCγ1undergoes both poly- and mono-ubiquitination based on its 

migration pattern as detected by anti-ubiquitin FK2 antibody which is known to recognize 

both polyubiquitination and monoubiquitination (Figure 6A). To further establish 

ubiquitination of PLCγ1, we over-expressed HA-tagged ubiquitin construct in HEK-293 

cells ectopically expressing VEGFR-2 and analyzed ubiquitination of PLCγ1 where we 

immunoprecipitated PLCγ1 and immunoblotted with anti-HA antibody. The result shows 

that PLCγ1 is ubiquitinated as detected by anti-HA antibody (Figure 6C). Interestingly, 

PLCγ1 was detected mainly in monoubiquitinated form where it appears that only a small 

fraction of PLCγ1 was polyubiquitinated (Figure 6C). Altogether, the data demonstrate that 

PLCγ1 is ubiquinated in c-Cbl-dependent manner.

Since in the absence of c-Cbl, PLCγ1 is not ubiquitinated, we decided to analyze its 

degradation rate in response to VEGF stimulation. The result showed that although its 

ubiquitination requires c-Cbl, degradation of PLCγ1 is not regulated by c-Cbl (Figure 6E). 

Indeed, PLCγ1 appears to be a long-lived and stable protein and stimulation of cells with 

VEGF up to 60 minutes had no apparent effect on its degradation (Figure 6E, 6F). As 

shown, VEGF stimulation of wild type and c-Cbl null cells induced time-dependent down 

regulation of VEGFR-2 (Figure 6G), suggesting that c-Cbl activity is not required for 

downregulation of VEGFR-2 as previously reported (Singh et al., 2005). Taken together, 

these results demonstrate that PLCγ1 undergoes c-Cbl-dependent mono-ubiquitination and 

ubiquitination attenuates its tyrosine phosphorylation without apparent effect on its 

degradation.

Discussion

The data presented in this manuscript identifies c-Cbl as an important protein whose activity 

critically regulates angiogenesis. Our findings demonstrate that loss of c-Cbl in mouse is 

associated with increased VEGF, tumor and laser-induced angiogenesis. Endothelial cells 

derived from c-Cbl null mice were also more sensitive to VEGF stimulated cell proliferation 

and their growth was elevated compared to endothelial cells derived from the wild type mice 

and silencing the expression of PLCγ1 or treatment of cells with PLCγ1 inhibitor reversed 

this effect. The data further indicates that elevated proliferation of endothelial cells in c-Cbl 

null cells is likely linked to the state of activation of PLCg1. In support of this possibility 

tyrosine phosphorylation of PLCg1 and its direct downstream cellular effector, intracellular 
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calcium release was elevated in c-Cbl null cells. Taken together, the data presented in this 

manuscript strongly implicates c-Cbl as a negative regulator of angiogenesis. The observed 

effect of c-Cbl on PLCg1 is consistent with the conventional and well recognized function 

of c-Cbl as a negative regulator of receptor tyrosine kinases signaling (Thien and Langdon, 

2005). However, unlike the c-Cbl-mediated degradation of RTKs, c-Cbl mediates 

ubiquitination of PLCγ1 but spares it from degradation.

What is the biological significance of c-Cbl in endothelial cells function and angiogenesis? 

The earlier studies have demonstrated that loss of c-Cbl alone is dispensable for normal 

embryonic development (Murphy et al., 1998) where loss of both c-Cbl and Cbl-b was 

embryonic lethal before E10.5 (Naramura et al., 2002). Hence, it is reasonable to speculate 

that c-Cbl activity is not stringently required during development and the function of Cbl 

family proteins may be compensatory in their ability to regulate the activity of target 

proteins. It has also well recognized that in pathological angiogenesis such as tumor-induced 

angiogenesis while tumors are known to co-opt normal physiological pathways to induce 

angiogenesis, tumor associated vessels however, are leaky, torturous and defective in their 

interaction with smooth muscle cells and pericytes (Folkman, 1992; Adams and Alitalo, 

2007). Recent anti-VEGF studies also revealed that these agents increase normalization of 

endothelial cells (Fukumura and Jain, 2007). Consistent with distinct phenotype of 

pathological angiogenesis there is a growing number of mouse models in which tumor-

mediated angiogenesis is defective while embryonic angiogenesis is not (Woodman et al., 

2003; Zeng et al., 2006; Zhang et al., 2008), suggesting that perhaps c-Cbl selectively plays 

role in pathological angiogenesis.

The c-Cbl protein is tyrosine phosphorylated at multiple sites including, Y700, Y774 and 

Y731 in response to growth factor stimulation (Thien and Langdon, 2005). Our analysis 

shows that VEGF stimulation of endothelial cells selectively induces phosphorylation of c-

Cbl at Y700 and Y774 but not Y731. Phosphorylation of c-Cbl at Y731 is linked to 

recruitment of PI3-kinase to c-Cbl, where in certain systems is suggested to provide growth 

stimulatory signal (Feng and Liu, 2006). Differential tyrosine phosphorylation of c-Cbl by 

VEGFR-2 or VEGFR-2 activated tyrosine kinases suggests that c-Cbl activity is uniquely 

regulated by this receptor system and it may play a distinct role in the integration of 

angiogenic signaling of VEGFR-2.

Conjugation of ubiquitin to target proteins is recognized to regulate a broad range of cellular 

functions beyond protein degradation including, kinase activation, endocytosis and protein 

trafficking (Ravid and Hochstrasser, 2008; Hochstrasser, 2009; Schwartz and Ciechanover, 

2009). Despite the clear importance of ubiquitination in protein degradation in other 

systems, ubiquitination of PLCγ1 plays no significant role in its degradation. Another 

interesting aspect of our finding is that PLCγ1 is mainly monoubiquitinated. This may 

explain why PLCγ1 is spared from degradation. Monoubiquitination is mainly linked to 

endocytosis where polyubiquitination is suggested to target proteins for proteasome-

mediated degradation (Ravid and Hochstrasser, 2008). Instead of degradation, ubiquitination 

of PLCγ1 suppresses its tyrosine phosphorylation. Although, from the current data presented 

in this manuscript it is not clear how ubiquitination achieves suppression of tyrosine 

phosphorylation of PLCγ1, however, conjugating a single ubiquitin onto one or more lysines 
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on PLCγ1, could influence dephosphorylation of Y783 by protein tyrosine phosphatases. 

Also conjugation of ubiquitin to PLCγ1 could alter its association with other proteins, 

though its ubiquitination does not alter its binding to VEGFR-2 (Singh et al., 2007).

In summary, our observation suggests that c-Cbl activity is required for angiogenesis by 

acting as a molecular switch to fine-tune angiogenic events during pathological conditions 

such as cancer and other angiogenesis-associated diseases. This work provides a better 

understanding of the molecular mechanism of pathological angiogenesis and key role of c-

Cbl signaling in these events. Our study further suggests that c-Cbl may be a novel target for 

the treatment for angiogenesis-associated diseases.
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Figure 1. Loss of c-Cbl increases endothelial cell proliferation and tube formation
Equal number of serum-starved PAE cells, PAE cells co-expressing VEGFR-2 with c-Cbl, 

PAE cells co-expressing VEGFR-2 with 70Z-c-Cbl were stimulated with different 

concentrations of VEGF and 3H-thymidine incorporation was measured. Cells were grown 

in 24-well plates in quadruplicate (A). Expression of c-Cbl and c-Cbl-70Z is shown (B). 

PAE cells expressing c-Cbl-70Z were subjected to proliferation assay with the increasing 

concentration of PLCγ1 inhibitor, U73122 (C). Cell lysates derived from the identical cells 

was subjected for Western blot analysis using anti-PLCγ1 antibody (D). Serum-starved c- c-

Cbl null microvascular endothelial (MVE) cells and wild type microvascular endothelial 

cells at density of 2×104 cells/well were stimulated with recombinant human VEGF-A at 

different concentrations as indicated in the figure legend, and after 48 hours they were 

washed with PBS, harvested by mild trypsinization, and counted with a hematocytometer. 

Experiments were performed in quadruplicate and 3 separate experiments were performed 

and values were presented as means of ± SD. *P<0.01 versus c-Cbl+/+ cells (E). c-Cbl null 

microvascular endothelial (MVE) cells were either transfected with control siRNA or PLCγ1 

and after 48 hours expression of PLCγ1 was evaluated (F). Expression of PKD (protein 

kinase D) was analyzed as a loading control. c-Cbl null microvascular endothelial (MVE) 

cells were either transfected with control siRNA or PLCγ1 siRNA were subjected to 
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proliferation assay as described above (G). c-Cbl null cells were subjected to proliferation 

assay as above but cells were also treated with increasing concentration of U73122 (H). c-

Cbl null cells and wild type MVE cells were prepared for tube formation/in vitro 

angiogenesis as described in Materials and Method. Cells were either unstimulated (−) or 

stimulated with VEGF (100ng/ml) and pictures were taken after 16 hours (I). *Statistically 

significant at P < 0.05, by ANOVA.

Meyer et al. Page 13

Oncogene. Author manuscript; available in PMC 2014 March 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. Loss of c-Cbl augments VEGF-induced intracellular calcium release
Serum-starved c-Cbl null microvascular endothelial cells and wild type microvascular 

endothelial cells either treated with VEGF-A or left unstimulated and intracellular calcium 

was measured with confocal microscopy using Fluo-3AM probe as described in the 

Materials and Methods section (A, B). Statistically significant (measurements at 80–160 

seconds) at P< 0.05 by ANOVA.
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Figure 3. Loss of c-Cbl augments tumor-induced angiogenesis
B16F melanoma cells (1 ×107/mice) were mixed with Matrigel and injected subcutaneously 

into c-Cbl−/− and c-Cbl+/+ mice (n=4). The growth of tumor cells was measured every four 

days. Error bars represent mean ± SEM (n=4) (A). Matrigel plug containing tumor cells was 

removed and pictures were taken (B). VEGF mixed with Matrigel and injected 

subcutaneously into c-Cbl−/− and c-Cbl+/+ mice and pictures was taken after six days (C). 

The tissue from panel C were removed, homogenized and equal amount of proteins were 

loaded and subjected to Western blot analysis using anti-pY783-PLCγ1 antibody(D). The 

same membrane was re-probed with anti-PLCγ1 (E). Western blot analysis of 

phosphorylation of PLCγ1 from of cell lysates derived from three mice that were subjected 

to VEGF-induced angiogenesis was quantified and presented (F).
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Figure 4. Enhanced choroidal neovascularization (CNV) in c-Cbl null mice
CNV was induced using the laser photocoagulation as described in Materials and Method 

section. Both eyes of each mouse were treated and four spots were placed in the 

peripapillary area about 1–2 disc diameter from the optic nerve. Angiograms were 

performed every week after the laser induction. The angiograms from week two and four is 

shown (A). The confluence of CNV in c-Cbl null mice versus wild type mice is shown. In 

the c-Cbl null mice CNV were found to be confluent in 6 of the 14 (42%) lesions, as 

compared to 2 lesions becoming confluent out of the 18 (11%) lesions in the wild mice (B).
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Figure 5. Loss of c-Cbl in endothelial cells increases tyrosine phosphorylation of PLCγ1 but has 
no effect on its proteolysis
Serum-starved primary microvascular endothelial (MVE) cells either unstimulated (−) or 

stimulated with VEGF-A for 10 minutes and cells lysed and whole cell lysates were blotted 

for phospho-Y700-Cbl (A), phospho-Y731-Cbl (B), phospho-Y774-Cbl (C) and total c-Cbl 

(D). Serum-starved c-Cbl+/+ and c-Cbl−/− microvascular endothelial cells were either 

unstimulated (−) or stimulated with VEGF for 10 minutes, and whole cell lysates were 

blotted with anti-phospho-Y783 PLCγ1 (I), anti-PLCγ1 (B), anti-phospho-Y1173-VEGFR-2 

(L), anti-VEGFR-2 (M), and anti-c-Cbl (N) antibodies. Quantification of phosphorylation of 

PLCγ1 from panel (I) in c-Cbl+/+ and c-Cbl−/− MVE cells is shown (J).
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Figure 6. Ubiquitination and downregulation of PLCγ1 in c-Cbl null cells
Serum-starved c-Cbl null and wild type microvascular endothelial (MVE) cells were either 

unstimulated (−) or stimulated with VEGF-A (+) for 10 minutes. Cell lysates were 

immunoprecipitated with anti- PLCγ1 antibody and blotted with anti-ubiquitin antibody (A). 

The same membrane was re-blotted for PLCγ1 (B). HEK-293 cells were transfected with 

empty vector or with wild type HA-tagged ubiquitin. Cells were stimulated with VEGF for 

10 minutes, lysed and endogenous PLCγ1 was immunoprecipitated with an anti-PLCγ1 

antibody and immunoblotted with an anti-HA antibody (C). The same membrane was re-

Meyer et al. Page 18

Oncogene. Author manuscript; available in PMC 2014 March 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



blotted for PLCγ1 (D). Serum-starved c-Cbl null microvascular endothelial (MVE) cells and 

wild type microvascular endothelial cells were treated with VEGF-A for different time 

points as indicated and blotted for PLCγ1(E), and VEGFR-2 (G).The same cell lysates was 

blotted for p38MAPK as a loading control (F). The quantification of PLCγ1 levels also is 

shown (F).
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