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Abstract

Quasi-experimental research designs, such as regression discontinuity and interrupted time

series, allow for causal inference in the absence of a randomized controlled trial, at the cost

of additional assumptions. In this paper, we provide a framework for discontinuity-based

designs using Bayesian model averaging and Gaussian process regression, which we refer

to as ‘Bayesian nonparametric discontinuity design’, or BNDD for short. BNDD addresses

the two major shortcomings in most implementations of such designs: overconfidence due

to implicit conditioning on the alleged effect, and model misspecification due to reliance on

overly simplistic regression models. With the appropriate Gaussian process covariance

function, our approach can detect discontinuities of any order, and in spectral features. We

demonstrate the usage of BNDD in simulations, and apply the framework to determine the

effect of running for political positions on longevity, of the effect of an alleged historical phan-

tom border in the Netherlands on Dutch voting behaviour, and of Kundalini Yoga meditation

on heart rate.

Introduction

The bread and butter of scientific research is the randomized-controlled trial (RCT) [1]. In

this design, the sample population is randomly divided into two groups; one that is manipu-

lated (e.g. a drug is administered or a treatment is performed), while the other is left

unchanged. RCT allows one to perform causal inference, and learn about the causal effect of

the intervention [2, 3]. However, in practice there may be several insurmountable ethical or

pragmatic hurdles that deter one from using RCT, such as ethical or pragmatic concerns.

Luckily, all is not lost for experimental design. There exist several quasi-experimental designs

(QEDs) that replace random assignment with deterministic assignment, which still allow for

causal inferences, but at the cost of additional assumptions [4]. Prominent examples are

regression discontinuity (RD) and interrupted time series (ITS) designs, that assign a sample

to one of the two groups based on it passing a threshold on an assignment variable [5–7]. The

idea behind these approaches is that, around the assignment threshold, observations are dis-

tributed essentially randomly, so that locally the conditions of RCT are recreated [8, 9]. The

methodological pipeline of quasi-experimental designs like these generally consists of three

steps [10]. First, a regression (typically linear) is fit to each of the two groups individually.
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Next, the regressions are extrapolated to the threshold (RD), or to the entire post-intervention

range (ITS). Finally, the difference between the extrapolations of the two groups is taken as the

effect size of the intervention. A straightforward statistical test can be applied to check whether

the effect is present.

Here, we provide a novel framework for such approaches, which we call ‘Bayesian nonpara-

metric discontinuity design’ (BNDD). The main innovations of BNDD are: First, we frame the

problem of detecting an effect as Bayesian model comparison. Instead of comparing the pre-

and post-intervention regressions, we introduce a continuous model and a discontinuous

model. In the discontinuous model, observations before and after the intervention are

assumed to be independent, while in the continuous model this assumption is lifted. We quan-

tify the evidence in favor of either model, rather than only for the alternative model, via Bayes-

ian model comparison [11]. This enables the computation of the marginal effect size via

Bayesian model averaging, which provides a more nuanced estimate compared to implicitly

conditioning on the alternative model [12, 13]. Furthermore, the model comparison approach

automatically penalizes the discontinuous model for its additional flexibility [14]. Second, we

use Gaussian process (GP) regression to avoid strong parametric assumptions. The result is a

flexible model that can capture nonlinear interactions between the predictor and outcome var-

iables. Traditional assumptions, such as linearity, can still be implemented in our model by

using the appropriate covariance function. At the same time, much more expressive covariance

functions can be used, such as the spectral mixture kernel [15], that better capture long-range

correlations, and lead to more accurate inference. Lastly, in most discontinuity-based methods

for quasi-experimental design, a bandwidth parameter determines the trade-off between

estimation reliability and the local randomness assumptions that are needed to draw causal

inferences [16]. In BNDD, all observations are used to estimate both the continuous and dis-

continuous model, but by optimizing the length-scale parameter of the GP covariance func-

tions we control the sensitivity to different types of discontinuities and adherence to locality

assumptions.

Related work

While quasi-experimental designs have been around since the 1960s [5, 17], recently there has

been a renewed interest in this class of methods [9, 18], in particular in epidemiology [19] and

education [20]. Researchers from different domains are promoting the use of QED [21–23],

which has prompted several extensions of classical QEDs. For instance, several authors have

proposed to use Bayesian models for QED [16, 24]. By assuming a prior distribution for

alleged effect size and using Bayes’ theorem, these studies provide an explicit descriptions of

the estimation uncertainty. In contrast to our work, these methods focus on the estimation of

the treatment effect instead of model comparison, and typically assume restrictive parametric

forms. Other studies have considered nonparametric alternatives to linear models. For exam-

ple, [25] use locally linear nonparametric regression. Alternatively, one can use kernel methods

that compute a smoothly weighted average of the data points to create an interpolated regres-

sion that does not depend on a specific parametric form [20]. Other studies have considerd

using Gaussian process regression for regression discontinuity as well [10, 26]. Here, instead

of fitting a parametric form such as linear regression, the regression is modelled by a GP,

which results in a flexible, nonparametric model and more accurate effect size estimates com-

pared to when using linear regression. BNDD uses GP regression as well, but whereas [10, 26]

focus on the inference of the magnitude of the treatment effect, we first determine whether an

effect is present at all using Bayesian model comparison [11], and we use Bayesian model aver-

aging [12] to reduce the overconfidence that follows from conditioning on the alternative
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model or particular covariance functions. Consequently, BNDD is less prone to false positives,

is able to detect discontinuities in derivatives of the latent function rather than in the function

per sé, and using the spectral mixture kernel our approach is well-suited for detecting changes

in time series, which is crucial in ITS design.

Discontinuity-based causal inference

We provide a brief introduction of the background of causal inference using RD and ITS

designs, for a more in-depth discussion, we refer to e.g. [7, 27]. The detection of a causal effect

is naturally formulated using the potential outcomes framework [28], which assumes that for

each individual in the study both the outcome of the treatment and its alternative can poten-

tially be observed.

Consider an observation i (with or without temporal ordering) with independent variable

xi 2 Rp
and response yi 2 Rq

(we will assume p = q = 1, but multidimensional extensions are

straightforward). In addition, we observe an indicator variable zi, where zi = 1 denotes the

intervention of interest has been applied to case i, and zi = 0 indicates it has not. The outcome

depends on treatment, so

yi ¼

(
yið0Þ if zi ¼ 0;

yið1Þ if zi ¼ 1:
ð1Þ

The individual causal effect is defined as the difference between these two potential outcomes,

that is di = yi(1) − yi(0). Since we only ever observe one outcome, the individual causal effect is

out of reach, so in RD design we focus on the average causal effect (ACE) instead, defined by

the differences in the expectations:

dACE ¼ E½yð1Þ� � E½yð0Þ� : ð2Þ

In the randomized controlled trial, the assignment of treatment zi is random, so that all differ-

ences other than due to the treatment are integrated out in these expectations [20]. In QED

designs such as RD and ITS however, the allocation to intervention or control group is based

on a threshold x0 [29]:

zi ¼

(
1 if xi � x0 and

0 otherwise:
ð3Þ

This changes how the ACE is computed, which for RD design becomes [8, 30]:

dRD ¼ E½yið1Þ � yið0Þ j xi ¼ x0�

¼ lim
x#x0

E½yi j xi ¼ x0� � lim
x"x0

E½yi j xi ¼ x0� ;
ð4Þ

provided the distributions of yi given xi are continuous in x, and the conditional expectations

E½yið1Þ j xi� and E½yið0Þ j xi� exist.

For interrupted time series, there are no post-intervention control observations, as all post-

threshold observations xi� x0 are in the intervention group. Here, the causal estimand

becomes the average effect of the treatment on the treated (ATT) [31]:

dITSðxiÞ ¼ E½yið1Þ � yið0Þ j xi � x0�

¼ E½yi j xi;D� � E½yi j xi;D0� ;
ð5Þ

for xi� x0, D ¼ fðxi; yiÞg
n
i¼1

, and D0 ¼ fðxi; yiÞgxi<x0
. Intuitively, this measure of effect size is
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the difference between the extrapolation based on the pre-intervention data, and the actual

post-intervention observations. Due the the reliance on extrapolation, it is crucial that correct

assumptions are made on the functional form. For example, assuming linearity will lead to a

biased ATT estimate if this does not describe the functional form well.

Importantly, for both approaches we assume there are no confounding variables that affect

the relationship between x and y (for a more in-depth discussion of RD design, see e.g. [16]).

Bayesian nonparametric discontinuity design

In standard RD and ITS analyses, causal conclusions are drawn by estimating the effect d and

testing whether this differs from zero. Instead, we perform Bayesian model comparison to see

whether the data are better supported by the alternative model M1, that claims an effect is

present, than by the null model M0, in which such an effect is absent. The result of the model

comparison is quantified by the Bayes factor [32]:

BF10 ¼
pðD jM1Þ

pðD jM0Þ
: ð6Þ

Here, pðD jM1Þ and pðD jM0Þ are the marginal likelihoods of the two models with their

respective parameters integrated out. The Bayes factor indicates how much more likely the

data are given the discontinuous model, compared to the continuous model [33]. Unlike a p-

value, it can provide evidence for either model, so that it is possible to find evidence supporting

the absence of a discontinuity [11, 34]. Furthermore, this model comparison approach auto-

matically accounts for model complexity [14].

In the null model, all probability mass of pðd j D;M0Þ is concentrated at d = 0, while for

the alternative model we have an effect size distribution pðd j D;M1Þ. Existing regression dis-

continuity methods focus on inference of d, and hence implicitly condition on M1. This

approach ignores the uncertainty in the model posterior

pðM j DÞ ¼
pðD jMÞpðMÞ

P
ipðD jMiÞpðMiÞ

; ð7Þ

where pðMiÞ is the prior probability of model i. Ignoring the uncertainty in this distribution

results in an overconfident overestimate of the effect size, and consequently of too optimistic

conclusions of the efficacy of an intervention. This uncertainty can be accounted for via the

Bayesian model average (BMA) estimate of d:

pðd j DÞ ¼
X

j¼0;1

pðd j D;MjÞpðMj j DÞ : ð8Þ

The resulting distribution integrates over the uncertainty of the model, which has been shown

to lead to optimal predictive performance [12]. Since the effect size is by definition zero

according to M0, Eq (8) is a spike-and-slab distribution that combines a spike at d = 0 with a

Gaussian distribution determined by M1, where each component is weighted by the posterior

probability of the corresponding model. Compared to the overconfident estimation of d condi-

tioned only on M1, this has a regularizing effect [35], shrinking small effect size estimates

towards zero. Note that for now, we assume a uniform prior over the models, such that

pðM0Þ ¼ pðM1Þ ¼ 1=2, but this may be changed, for instance to account for multiple com-

parisons [36]. We proceed to explain the distributions implied by the two models in more

detail.
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The continuous model

The continuous (null) model M0 implies that the regression does not depend on the thresh-

old, which leaves us with a single regression for all data points. We assume Gaussian observa-

tion noise:

yi � N ðf0ðxiÞ; s
2
nÞ :

Here, s2
n is the observation noise variance, and f0(xi) captures the relationship between the pre-

dictor and the response. We do not impose a parametric form on f0, and instead assume f0 fol-

lows a Gaussian process (GP) [37]:

f0 jM0 � GPðmðx; y0Þ; kðx; x0; y0ÞÞ ;

with mean function μ(x;θ0) and covariance function k(x, x0;θ0)). We omit the dependence on

the hyperparameters θ when confusion is unlikely to arise.

The discontinuous model

In the alternative model we assume the latent processes before and after x0 are independent.

We write

f1 jM1 � GPðmðx; y1Þ; k1ðx; x0; y1Þ ; ð9Þ

where k1(x, x0;θ1) = k(x, x0;θ1) if x and x0 are on the same side of x0, and k1(x, x0;θ1) = 0 other-

wise. As a result, the Gram matrix with elements Kij = k1(xi, xj;θ1) is block-diagonal:

K ¼
A 0

0 B

" #

; ð10Þ

with the elements in the matrices A and B corresponding to the covariances between observa-

tions at the same side of the threshold x0. For computational efficiency, the inverse of K can be

computed by the separate inverses of these smaller sub-matrices.

Regression discontinuity effect size

Since f1 is continuous everywhere except at x0, we can determine the effect size given M1 by

taking the difference of its limits as in Eq (4). The result is a Gaussian distribution:

pðd j D;M1Þ ¼ N ðm; s2Þ ; ð11Þ

with

m ¼ lim
x#x0

f1ðxÞ � lim
x"x0

f1ðxÞ ð12Þ

and

s2 ¼ lim
x#x0

V½f1ðxÞ� þ lim
x"x0

V½f1ðxÞ� ¼ 2s2

n ; ð13Þ

for stationary covariance functions, where s2
n 2 y1 represents the observation noise hyperpara-

meter of the discontinuous model.

Interrupted time series effect size

In contrast to RD design, in ITS the discontinuity may induce a nonstationarity in the

latent process, such as a change in length-scale or frequency. To address this, we allow the
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hyperparameters pre- and post-intervention to differ, i.e. Aij ¼ kðxi; xj; y
A
1
Þ and

Bij ¼ kðxi; xj; y
B
1
Þ. The differences in design also imply a different notion of effect size, which is

now a function of x:

pðdðxÞ j D;M1Þ ¼ N ðmðxÞ; s2
nÞ ; ð14Þ

with mðxÞ ¼ f1ðx; y
B
1
Þ � f1ðx; y

A
1
Þ and s2

n ¼ ðs
A
n Þ

2
þ ðsB

nÞ
2
. Note that s2

n does not depend on x.

In practice, we summarize this dynamic effect by its maximum.

Of particular interest in ITS are covariance functions that capture long-range correlations,

because these have the potential to extrapolate better and hence provide more accurate effect

size estimates. The spectral mixture kernel was designed for this purpose [15]. It is defined as a

mixture of Gaussian components in the frequency domain:

SðoÞ ¼
XQ

q¼1

wq
1

sq

ffiffiffiffiffiffi
2p
p exp �

1

2

o � mq

sq

 !2" #

; ð15Þ

where μq and s2
q are the mean and variance of each component, respectively. This spectral

representation is then transformed into a regular stationary covariance function using the

inverse Fourier transform [38], which results in

kðtÞ ¼
XQ

q¼1

wqcosð2ptmqÞexpð� 2p2t2s2

qÞ ; ð16Þ

with τ = |x−x0|. The hyperparameters θ = (Q, μ, σ, w) have the following meaning: Q is the

number of mixture components, μq indicates the mean frequency of component q, the inverse

of the variance 1/σq can be interpreted as the length-scale of each component, reflecting how

quickly that frequency contribution changes with the input x, and the weights wq determine

the relative contribution of each component [15].

Model training

The marginal likelihood of Gaussian process regression with Gaussian observation noise is

available in closed form [37], but unfortunately this is not the case for the model marginal like-

lihood that integrates over the hyperparameters θ, which is needed to compute the Bayes fac-

tor. We therefore approximate these using the Bayesian Information Criterion (BIC) [39],

given by as

log pðD jMiÞ � log pðy j x; ŷ;MiÞ �
l
2
logn ; ð19Þ

with x = (x1, . . ., xn)T and y = (y1, . . ., yn)T, l the number of hyperparameters, and

ŷ ¼ arg max
y
pðy j x; y;MÞ the optimized hyperparameters, for i 2 {0, 1}.

BNDD is implemented in Python using GPflow 2.2 [40]. We set the prior function to the

empirical mean. The BMA distribution is approximated via Monte Carlo, and visualized with

kernel density estimation. Code and data are available at Github.

Training the spectral mixture kernel. The number of mixture components Q in the spec-

tral mixture kernel of our ITS approach is optimized in the same way as other covariance func-

tion parameters are optimized, that is, by optimizing the GP marginal likelihood. The

covariance function mixture parameters are initialized by fitting a Gaussian mixture model to

the empirical spectral using the Lomb-Scargle periodogram, which is applicable for detecting

spectral features in (potentially) unevenly sampled data [41].
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Covariance functions as design choices

The choice of the Gaussian process covariance functions plays two conceptually distinct roles

in BNDD. First, our choice of covariance function reflects our beliefs about the latent process

that generated the observations. In traditional RD designs, one assumes a parametrized model

such as (local) linear regression. In BNDD, this explicit parametric form is replaced by a GP

prior that assigns a probability distribution to the space of functions. For instance, we may

expect functions to be smooth in x, or assume functions are a superposition of sine waves [15,

37]. BNDD can replicate parametrized models by selecting degenerate covariance functions,

such as a linear covariance function.

These modeling choices are crucial in RD design as model misspecification can lead to

incorrect inference. When we do not have clear prior beliefs about a covariance function, we

may compute the Bayesian model average [12] across a set of candidate kernels K:

BFtotal
10
¼

pðD jM1Þ

pðD jM0Þ
¼

P
k2KpðD j kÞpðk jM1ÞP
k2KpðD j kÞpðk jM0Þ

: ð20Þ

Here, the quantity BFtotal
10

serves as a final decision metric to determine an effect in a quasi-

experimental design, while a detailed report is provided by inspecting the Bayes factors corre-

sponding to each considered covariance function. Similarly, we can compute a marginal effect

size across all considered kernels. In practice, the evidence of one covariance function can

dominate all others, in which case the BMA procedure converges to performing the analysis

with the best covariance function only.

The second role of the covariance function choice is that it determines to which types of dis-

continuities BNDD is sensitive. Importantly, different covariance functions can be used to test

fundamentally different hypotheses, as they determine which features of the latent function are

part of the alleged effect. For example, the simplest (degenerate) covariance function, the con-

stant function, is sensitive only to differences in the means of the two groups (resulting essen-

tially in a quasi-experimental Bayesian t-test), while the linear covariance function is sensitive

to both the difference in mean as well as in slope. In the non-degenerate case, the Matérn

covariance function with parameter ν = p + 1/2 can detect discontinuities in up to the p-th

derivative. It has two interesting special cases: one is the exponential covariance function

(Matérn with p = 1/2), which detects only discontinuities in the function itself (and not in its

derivatives). This is the nonparametric counterpart of traditional linear regression discontinu-

ity. On the other end is the exponentiated-quadratic covariance function which (Matérn kernel

with ν =1). This allows us to detect discontinuities of any order, although the amount of data

required to detect such subtle effects may become prohibitively large.

Simulations

We evaluate the performance of BNDD in regression discontinuity settings in simulations,

using polynomials up to the fifth order, which have been used in other RD design studies

as well [30]. We evaluate the performance of BNDD using the linear, exponential, Matérn

(ν = 3/2) and exponentiated-quadratic covariance functions and compare its results with two

baselines. The first is the Python RDD package, which uses linear regression together with the

Imbens-Kalyanaraman bandwidth selection method [30] to select only a subset of the data

around x0 to perform the analysis on. The second comparison is with another GP-based

approach [26], which first estimates the conditional effect size distribution pðd jM1;DÞ and

then tests the null hypothesis d = 0. We refer to this approach as the 2-stage GP as it combines

the GP regression from M1 with a frequentist test.
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The true data generating functions used are provided in [30], and are complemented by a

simple linear function to see the behaviour when the linearity assumption by the baseline is

actually correct. The function definitions are given by

fLinearðxÞ ¼ 0:23þ 0:89x

fQuadðxÞ ¼

(
3x2 if x < x0;

4x2 otherwise:

fCubicðxÞ ¼

(
3x3 if x < x0;

4x3 otherwise:

fLeeðxÞ ¼

(
0:48þ 1:27xþ 7:18x2 þ 20:21x3 þ 21:54x4 þ 7:33x5 if x < x0;

0:48þ 0:84x � 3:0x2 þ 7:99x3 � 9:01x4 þ 3:56x5 otherwise:

fCATE1ðxÞ ¼ 0:42þ 0:84x � 3:0x2 þ 7:99x3 � 9:01x4 þ 3:56x5

fCATE2ðxÞ ¼ 0:42þ 0:84xþ 7:99x3 � 9:01x4 þ 3:56x5

fLudwigðxÞ ¼

(
3:71þ 2:3xþ 3:28x2 þ 1:45x3 þ 0:23x4 þ 0:03x5 if x < x0;

3:71þ 18:49x � 54:81x2 þ 74:3x3 � 45:02x4 þ 9:83x5 otherwise:

fCurvatureðxÞ ¼

(
0:48þ 1:27x � 3:44x2 þ 14:147x3 þ 23:694x4 þ 10:995x5 if x < x0;

0:48þ 0:84x � 0:3x2 � 2:397x3 � 0; 901x4 þ 3:56x5 otherwise:

For each latent function f, we generate 100 data sets with n = 100 observations each (xi, yi)
according to the following procedure:

xi � Uð� 1; 1Þ

yi j xi; s; d; f � N f ðxiÞ þ d½xi � x0�; s
2ð Þ ;

where the threshold x0 = 0. We fix σ = 1.0 and vary d 2 {0, 0.5, . . ., 4.0}, effectively providing a

range of different signal-to-noise regimes.

Next, we subject the simulated data to analysis by BNDD, using a first-order polynomial, an

exponential, a Matérn (ν = 3/2) and a exponentiated-quadratic covariance function, as well as

the Bayesian model average of this set. Fig 1 shows an example run of BNDD on the functions

Fig 1. Regression discontinuity example. One simulation run for effect sizes d 2 {0.25, 1.0, 4.0} and σ = 1.0. The covariance functions used here are

linear, exponential, Matérn (ν = 3/2) and exponentiated-quadratic. The vertical bars indicate the estimated effect sizes by the discontinuous models for

the different covariance functions. As the figure shows, the linear covariance function tends to have the strongest bias, in particular in the low signal-to-

noise regime.

https://doi.org/10.1371/journal.pone.0270310.g001
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considered in our simulation. Here, the different functions are shown together with the regres-

sions by both the continuous and discontinuous models, for each of the four considered

covariance functions. The vertical bars in the figure show the expectation of the estimated

effect size pðd j D;M1Þ.

For each covariance function, we compute the Bayes factor for the presence of a discontinu-

ity, and we estimate both the conditional and marginal effect size (8). For the RDD baseline

with bandwidth optimization, and the 2-stage GP approach [26], we compute both the esti-

mated effect size as well as the p-value for the test of a present effect. The performance of the

different approaches is quantified by the absolute error between the estimated and true effect

size. In addition, we show the decision metric for each method.

Fig 2 shows the absolute difference between the true effect size and the posterior expecta-

tions, as well as these decision metrics. The discontinuous model overestimates d when the

true effect size is small, as is to be expected from the implicit conditioning on an effect. The

BMA does not have this bias, resulting in lower errors for small and absent effects. For

medium effects, this itself can result in a bias due to shrinkage (e.g. the Cubic function), while

for large effects the BMA converges to M1 and the bias disappears. Generally, BNDD performs

on par with the optimized-bandwidth baseline, with worse performance for the Ludwig func-

tion, and better for e.g. Curvature, as well as for most cases with an absent or small effect.

The decision metrics show that for small or absent effects, BNDD can report evidence in

favor of the null, while the corresponding p-values are inconclusive. The methods positively

identify effects at roughly the same true effect sizes. An interesting special case is observed for

the Lee and Ludwig functions, which both feature a discontinuity in their derivative [26],

which is correctly picked up by BNDD even when the magnitude of the effect is small, con-

firming the ability to detect discontinuities of higher orders.

Simulated ITS

We explore the ITS application of BNDD in another simulation. Here, we generate oscillating

data where for x� x0 a frequency shift is introduced. The latent function for the ITS

Fig 2. Simulation results. Top row: the error between the true and estimated effect size. The dashed line indicates the 2-stage GP approach (see text),

which is equivalent to M1. Middle row: The log Bayes factor. Final row: The p-values obtained by the RDD baseline (black) and the 2-stage approach.

The horizontal dashed lines indicates the common thresholds of |BF|<3 and p = 0.05. Error bars indicate standard errors over simulations runs.

https://doi.org/10.1371/journal.pone.0270310.g002

PLOS ONE Bayesian model averaging for nonparametric discontinuity design

PLOS ONE | https://doi.org/10.1371/journal.pone.0270310 June 30, 2022 9 / 17

https://doi.org/10.1371/journal.pone.0270310.g002
https://doi.org/10.1371/journal.pone.0270310


simulation is given by

f ðxÞ ¼

(
sinð12xÞ þ

2

3
cosð25xÞ for x < x0 and

sinðð12þ aÞxÞ þ
2

3
cosðð25þ aÞxÞ for x � x0;

with x0 = 0, and where α indicates the shift in frequency (set to α = 4 in the example figure).

We vary α across the range [0, . . ., 8] Hz. For observation noise, we once more assume

y � N ðf ðxÞ; s2Þ ;

and σ2 = 0.2. For each value of α, we generate 20 datasets containing n = 200 evenly spaced

observations.

We compare our extrapolations based on the spectral mixture covariance function with an

ARMA model, which is commonly used in ITS designs [42, 43]. The parameters of the ARMA

model are determined using a grid search and its BIC score. We then compare the root-mean-

squared-error between samples from the predictive distribution obtained by BNDD and the

true post-intervention signal, and similarly evaluate the performance of the ARMA extrapola-

tions and the true signal. An example simulation run and BNDD application is shown in Fig

3A, with a post-intervention frequency shift of α = 4Hz. The model correctly recovers the true

power spectrum, as well as the decreased amplitude of the second harmonic component post-

intervention, and finds barely worth mentioning evidence in favor of an effect (logBF = 0.15).

The estimated spectral mixture of the continuous model is centered between the true frequen-

cies of the control and intervention group (Fig 3B). This faithfully represents the null hypothe-

sis that the observations can be explained without any changes in spectral content. As the

discontinuity grows larger, the standard deviation of the components of the continuous model

increases as well, since it has to account for a larger difference. M1 instead correctly identifies

the true mixture components. Fig 3C shows the RMSE of samples from the posterior distribu-

tions of f1 and the true function, as well as the ARMA estimate. BNDD consistently outper-

forms the baseline.

Applications

The effects of winning an election and longevity

A recent study [44] investigated the effect of running for US gubernatorial office on longevity.

The authors use a regression discontinuity design, and conclude that politicians winning a

close election live 5 to 10 years longer than if they had lost. These findings have been heavily

criticized [45], and it is unclear whether a regression discontinuity analysis is actually

Fig 3. ITS simulation. A. ITS application. Model fit and extrapolation of M0 and M1. The data were generated with a post-intervention frequency

shift of α = 4. We find logBF = 0.15. The shaded interval represents two standard deviations around the mean. B. Estimated power spectra. The colors of

the power density spectrum correspond to the legend of the regression. C. The RMSE between the estimated and true dITS using posterior samples of

BNDD and an ARMA baseline (dashed line).

https://doi.org/10.1371/journal.pone.0270310.g003
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appropriate here, as there is no clear intervention at x = 0 (where x is the percentile difference

in election result). Despite these concerns, we analyze this data set here as it allows us to dem-

onstrate some of the functionality specific to BNDD. The data are available from the original

publication [44], and subsequently preprocessed following [45].

Using the linear RDD baseline we find an optimal bandwidth of 5.48 percentile points

using the Imbens-Kalyanaraman procedure [30]. When using this bandwidth and testing for

an effect, we find p = 0.019 and an estimated effect size of 9.4 years. With BNDD, using either

a linear, exponential, or Matérn (ν = 3/2) covariance function, we find a more parsimonious

explanation of these data by a constant function and a substantial noise term s2
n, as shown by

log Bayes factors of -0.12, 0.0, and 0.0, respectively, as shown in Fig 4. This indicates that from

these data, no clear conclusion can be drawn, and that such a scenario is clearly identified

using BNDD.

Phantom border effect on Dutch government elections

In 2017, the Dutch general elections were held. According to Dutch electorate geographer De

Voogd, the share of votes that go to populist parties (We refrain from an extensive discussion

of the definition of populism and refer to populist parties as those parties that emphasize ‘an

alleged chasm between the elite and the general population’. In the Dutch 2017 elections, par-

ties that fit this description were PVV, SP, 50Plus and FvD [46].) is different north and south

of a so-called ‘phantom border’, a line that historically divided the catholic south of the Nether-

lands from the protestant north [47, 48]. This border serves as a two-dimensional threshold

along which one can apply RD design. This special case of RD design where the assignment

threshold is a geographical boundary is also referred to as GeoRDD [10]. Here, we test the

hypothesis by De Voogd.

First, the vote distribution per Dutch municipality were collected from the Dutch govern-

ment website [49]. We then manually constructed an approximation of the phantom border

(see the dashed lines in Fig 5) and used this as a function to divide the available municipalities

in either above or below the border. For visualization of country and municipality borders,

data from the Dutch national georegister was used [50]. Next, we applied BNDD using the lin-

ear and first-order Matérn covariance functions. The results of the analysis are shown in Fig 5.

The figure shows the Netherlands with the fraction of populist votes per municipality

Fig 4. Election result effects on longevity. Discontinuity analysis of the effect of close gubernatorial elections on longevity [44]. Shown are regressions

by BNDD using a Matérn covariance function, and a linear RD baseline with an optimized bandwidth of 5.48 percentile points (shaded area). For

BNDD, the regressions for M0 and M1 are nearly identical. For the baseline, the bandwidth optimization leads to a poor linear fit, and hence a

spurious detection of an effect.

https://doi.org/10.1371/journal.pone.0270310.g004
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superimposed, together with the phantom border representing the supposed divide in voting

behaviour.

If we assume a linear underlying process, there is strong evidence for a discontinuity

(logBF = 24.4), confirming the hypothesis by De Voogd. Visually however, the data do not

appear to follow these linear trends. The nonparametric Matérn covariance function results in

evidence against an effect (logBF = −3.5). As the Matérn covariance function fits the data

much more accurately than the linear covariance function, the Bayesian model average is

completely dominated by the former, leading to the conclusion that the historical phantom

border does not create a geographic discontinuity in populist voting behaviour.

Kundalini meditation effect on heart rate

Earlier work [51] studied the hypothesis that Kundalini Yoga meditation techniques reduce

one’s heart rate. However, they find the opposite; the meditation instead brings about an

increase in heart rate. The experiment lends itself well for ITS design, but in practice may be

difficult to perform because the data are not evenly sampled. However, this is not a prerequi-

site for Gaussian process regression, which together with the spectral mixture kernel [15] is

well-suited to model these data. The observations are obtained from the PhysioNet database

and consists of heart rates of two women and two men, of ages 20–52 (mean 33) [52]. We

focus on one participant due to space constraints. Since we do not merely want to detect a

change in absolute heart rate, but in its fluctuations, use a changepoint mean function [53] for

M0 and two separate constant mean functions for M1 to capture the different means. Fig 6

shows the corresponding regression and extrapolation. The continuous model requires more

spectral mixture components; Q = 6 for f0 compared to Q = 2 for f ðx; y
A
1
Þ and Q = 3 for

f ðx; y
B
1
Þ. The analysis finds overwhelming evidence for an effect (logBF = 281.2).

Discussion

In order to infer causality from QED, one assumes that the alleged change occurs at the thresh-

old, but that the latent process is otherwise stationary. Consequently, the behaviour of the two

groups changes sharply around the intervention. In standard RD studies, this locality is con-

trolled via a bandwidth parameter that determines the sensitivity of the detection approach

[20]. This requires the availability of sufficient data around the threshold, and the analysis is

sensitive to this parameter. In BNDD with stationary nonparametric covariance functions, the

bandwidth is replaced by a length-scale hyperparameter, which we optimize using the model

Fig 5. Phantom-border effects on populist voting. Discontinuity analysis along a two-dimensional boundary (indicated by the dashed line). A. Circles

indicate the observed fraction of populist votes; municipalities are shaded according to the Gaussian process predictions. B. The distribution of effect

size conditioned on M1, pðd j D;M1Þ, along the phantom border. The shaded interval indicates one standard deviation around the mean. The country

and municipality border data are available at the website of the Dutch national georegister [50], and the superimposed populist voting fractions were

derived from the 2017 election results at https://data.overheid.nl [49].

https://doi.org/10.1371/journal.pone.0270310.g005
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marginal likelihood. The length-scale regulates how fast the correlations between consecutive

points decay with their distance, and thus how sensitive BNDD is around the threshold [54].

This implements a trade-off between estimation reliability and the locality assumption that is

needed to draw causal inferences [16]. The benefit of a length-scale instead of a fixed band-

width parameter is that the relative influence of observations decreases gradually as they are

further away from the intervention point, and that this distance is automatically adjusted.

With an exponential covariance function the most rigorous form of locality can be

enforced. Here, the Markov properties of the Gaussian process guarantee that only discontinu-

ities at the intervention threshold are detectable. On the other hand, non-local covariance

functions such as the periodic covariance function are vulnerable to false positives if the true

process is non-stationary. Here, the presence of change points away from the intervention

threshold can lead to false alarms, due to the flexibility of the regressions. In this case, or in

exploratory applications, BNDD can be performed in a sliding-window fashion to ensure that

the highest Bayes factor is at the intervention threshold.

The Bayesian model averaging procedure that we use in BNDD depends on the model

probabilities pðM0Þ and pðM1Þ. Here, we have assumed a uniform prior on these model prob-

abilities, as we have no reason to prefer either the continuous null model or the discontinuous

alternative. However, it should be noted that prior beliefs may be incorporated to reflect our

initial assumptions on the probability of an effect, as well as to adjust for multiplicity in case

many hypotheses are tested simultaneously [36] (for instance, in [55] a regression discontinu-

ity design is used to test the causal influence between neuronal populations).

BNDD can be extended in several ways. For instance, we do not currently account for

covariates that may serve as confounds for causal inference [19, 35]. However, such covariates

can be explicitly taken into account in the regression models, or even be learned from the

observations [56]. Covariate selection can be performed using automatic relevance determina-

tion [57], where we learn separate length-scales for each covariate. Furthermore, improvement

is expected from more accurate estimators of the model marginal likelihood than the BIC,

such as the ELBO or bridge sampling [58]. Throughout this paper, we have assumed a Gauss-

ian likelihood. This conveniently leads to an analytic solution of the GP posterior, because the

GP prior is conjugate to this likelihood. However, using variational inference or the Laplace

Fig 6. Kundalini meditation effect on heart rate. Analysis of meditation effect on heart rate. Shown is the participant’s heart rate, who starts

meditation at x0 = 00: 00. The extrapolation, indicated by the dashed (mean) and dotted (posterior samples) red lines, is poor in comparison to the

actual observations, which is corroborated by the large log Bayes factor. The panel on the right shows the (log) power spectra expressed by the

optimized covariance function hyperparameters.

https://doi.org/10.1371/journal.pone.0270310.g006
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approximation, BNDD can be used in combination with non-Gaussian observation models

[37]. For instance, one could use a Poisson likelihood to model observed count data [59], or a

Bernoulli likelihood for binary observations [60]. Furthermore, other nonparametric priors

over the latent functions may be used, such as the Student t- process [61]. Other extensions

include modelling nondeterministic application of the threshold assignment, delayed response

functions, multi-dimensional response variables [62]. BNDD extends naturally to the setting

of multiple assignment variables [18, 63–66].

Conclusion

In all, BNDD serves as a Bayesian nonparametric approach for causal inference in quasi-exper-

imental designs. By selecting the appropriate covariance function, one has precise control over

the type of discontinuity that can be detected, as well as a priori assumptions of the latent data

generating processes. Importantly, Bayesian model averaging allows us to marginalize over key

assumptions, such as the choice of covariance function, or the presence/absence of an effect.

The resulting method is a nuanced framework for discontinuity-based research designs.
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