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Project IDentif.AI: Harnessing Artificial Intelligence to
Rapidly Optimize Combination Therapy Development for
Infectious Disease Intervention

Aynur Abdulla, Boqian Wang, Feng Qian, Theodore Kee, Agata Blasiak, Yoong Hun Ong,
Lissa Hooi, Falgunee Parekh, Rafael Soriano, Gene G. Olinger, Jussi Keppo,
Chris L. Hardesty, Edward K. Chow, Dean Ho,* and Xianting Ding*

In 2019/2020, the emergence of coronavirus disease 2019 (COVID-19) resulted in rapid increases in infection rates as
well as patient mortality. Treatment options addressing COVID-19 included drug repurposing, investigational therapies
such as remdesivir, and vaccine development. Combination therapy based on drug repurposing is among themost widely
pursued of these efforts. Multi-drug regimens are traditionally designed by selecting drugs based on their mechanism
of action. This is followed by dose-finding to achieve drug synergy. This approach is widely-used for drug development
and repurposing. Realizing synergistic combinations, however, is a substantially different outcome compared to globally
optimizing combination therapy, which realizes the best possible treatment outcome by a set of candidate therapies and
doses toward a disease indication. To address this challenge, the results of Project IDentif.AI (Identifying Infectious Dis-
ease Combination Therapy with Artificial Intelligence) are reported. An AI-based platform is used to interrogate a massive
12 drug/dose parameter space, rapidly identifying actionable combination therapies that optimally inhibit A549 lung cell
infection by vesicular stomatitis virus within three days of project start. Importantly, a sevenfold difference in efficacy
is observed between the top-ranked combination being optimally and sub-optimally dosed, demonstrating the critical
importance of ideal drug and dose identification. This platform is disease indication and disease mechanism-agnostic,
and potentially applicable to the systematic N-of-1 and population-wide design of highly efficacious and tolerable clinical
regimens. This work also discusses key factors ranging from healthcare economics to global health policy that may serve
to drive the broader deployment of this platform to address COVID-19 and future pandemics.
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1. Introduction

The discovery of COVID-19 has led to global panic and sub-
stantial challenges in rapidly and systematically identifying suit-
able interventions for this unpredictable disease.[1] Similar chal-
lenges have been associated with severe acute respiratory syn-
drome (SARS),[2] H1N1,[3] H7N9,[4] Middle East Respiratory Syn-
drome (MERS),[5] and Ebola Virus Disease (EVD),[6] among oth-
ers. When addressing infectious diseases that are not well under-
stood, and capable of exhibiting aggressive clinical courses with
subsequent patient mortality, rapid intervention that is optimally
suited to target the pathogen is critical. Due to the unpredictabil-
ity and severity of these pathogens, combination therapy based
on drug repurposing is often indicated due to the urgency of in-
tervention and the requirement of previously established drug
safety in humans. Unfortunately, these drug combinations are
often designed using trial-and-error strategies. Specifically, drugs
are selected based on their targets or mechanism of action, and
they are administered using clinical standard dosing guidelines.
Dose adjustments are made when toxicity is observed. Unfortu-
nately, these approaches likely preclude optimal treatment out-
comes.
Previously, a broad spectrum ofmethodologies have been used

as part of multiple important studies to develop combination
therapies to address multiple disease indications.[7] Substantial
efforts have also been directed toward new drug development.
When confronted with a novel pathogen strain with high viru-
lence, a potential capacity for rapid and continuous mutation,
and poor patient outcomes, the global community often requires
rapidly actionable responses due to patient mortality that may
quickly follow initial diagnosis. To address the COVID-19 crisis,
a substantial number of clinical trials have been initiated.[8]

Treatment options explored to address COVID-19 have in-
cluded repurposed human immunodeficiency virus (HIV) and
influenza-related monotherapies and drug cocktails, trials of
investigational therapies such as remdesivir (Gilead Sciences),
and has sparked a worldwide effort to develop a vaccine. Among
large sets of candidate therapies for drug repurposing in com-
bination therapy, standard approaches involve drug selection

Dr. G. G. Olinger
Global Health Surveillance and Diagnostic Division
MRIGlobal
Gaithersburg, MD 20878, USA
Dr. G. G. Olinger
Boston University School of Medicine
Division of Infectious Diseases
Boston, MA 02118, USA
Prof. J. Keppo
NUS Business School and Institute of Operations Research and Analytics
National University of Singapore
Singapore 119245, Singapore
C. L. Hardesty
KPMG Global Health and Life Sciences Centre of Excellence
Singapore 048581, Singapore
Prof. E. K. Chow, Prof. D. Ho
Department of Pharmacology
Yong Loo Lin School of Medicine
National University of Singapore
Singapore 117600, Singapore

based on mechanism of action. Drug dosing is subsequently
determined by established clinical guidelines. Traditional design
approaches are based on trial-and-error, and barriers include
sub-optimal efficacy and dose-limiting toxicities. In sum, the
lack of a systematic way to interrogate the massive drug-dose
parameter space created by these pools of candidate therapies
preclude the ability to optimize treatment outcomes.
To address this challenge, this work reports the outcomes of

Project IDentif.AI, which harnesses an AI-based platform to
interrogate drug and dose parameter spaces that are insurmount-
ably large for brute-force testing of all possible combinations.
Project IDentif.AI sought to determine the duration of time
required to simultaneously identify the best drugs and doses
from a pool of 12 candidate therapies that optimally inhib-
ited the infection of the A549 lung cell line by VSV (efficacy)
while maintaining A549 (efficacy). These therapies included
amantadine HCl, dexamethasone, azithromycin, chloroquine
diphosphate, naproxen sodium, fluoxetine HCl, loratadine,
omeprazole sodium, ritonavir, lopinavir, doxycycline and rib-
avirin. The 12 candidate therapies were selected based on multi-
ple factors that may be considered during pandemics, including
prior studies examining their role as repurposed monotherapies
in addressing a diverse range of viral pathogens, global adoption
and availability of the therapies, as well as tolerability by broad
classes of patients, among others. Specifically, Amantadine
HCl is an organic compound that was developed to address
influenza infections.[9] It has been repurposed for treatment of
motor impairment in Parkinson’s disease,[10] and explored for
improvement of fatigue in patients with multiple sclerosis.[11]

Dexamethasone is a potent anti-inflammatory and immuno-
suppressant glucocorticoid. It is used in therapies against a
wide range of indications, including oncology and bacterial
infections.[12] It has been successfully used to treat dengue-
related hemophagocytic syndrome.[13] Azithromycin is an
antibiotic given to patients with bacterial infections of lower res-
piratory tract,[14] including community-acquired pneumonia.[15]

It has been explored as a novel antimalarial agent.[16] Chloro-
quine disphosphate is themost widely used drug againstmalaria.
In recent years it has been found to target other infectious dis-
eases, includingHIV and fungal infections.[17] Naproxen sodium
is an established nonselective, nonsteroidal anti-inflammatory
drug (NSAID) commonly used for treating mild and moderate
pain and inflammation.[18] Recently, It has been shown to act
against influenza A and B viruses.[19] Fluoxetine HCL, widely
known as Prozac, is an antidepressant used to treat a range
of depressive disorders.[20] Its antiviral properties have been
explored for treating coxsackievirus.[21] Loratadine is a second-
generation nonsedating antihistamine used for allergies.[22]

Recent clinical trials have evaluated its use as abortive therapy
in pegfilgrastim-associated bone pain.[23] Omeprazole sodium
is a proton pump inhibitor (PPI) used to treat gastrointestinal
reflux disease and in Helicobacter pylori eradication therapy for
gastritis and peptic ulcers.[24] Omeprazole and other PPIs have
recently been investigated for and demonstrated antitumor activ-
ity and anti-inflammatory effects.[25] Ritonavir and lopinavir are
antiretroviral medications commonly used in combination treat-
ment for patients infected with (HIV), with ritonavir used as a
booster with other protease inhibitors like lopinavir.[26] Lopinavir
and ritonavir combination has demonstrated in vitro antiviral
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activity against SARS and favorable clinical response in patients
with SARS.[27] Ritonavir has also been explored and shown to be
highly effective as a booster in fixed-dose combinations for pa-
tients with Hepatitis C.[27] Doxycycline is a tetracycline antibiotic
with a broad antimicrobial spectrum of activity.[28] In recent clin-
ical trials, doxycycline has been shown to treat nasal polyps and
rosacea, as an anti-inflammatory.[29] Ribavirin is an antiviralmed-
ication often administered in combination with interferon-based
therapies for patients with chronic Hepatitis C.[30] Additionally,
Ribavirin has been shown to be an effective treatment for
respiratory syncytial virus and hemorrhagic fevers.[31]

Within 3 days, our studies successfully identified and repeat-
edly validated multiple drug combinations that simultaneously
reduced VSV infection to 1.5% with no apparent adverse im-
pact on A549 viability. In addition, this platform identified mul-
tiple highly efficacious and tolerable regimens, presenting the
potential of multiple options for treatment. This study demon-
strated that Project IDentif.AI can potentially be used for patient-
specific or population-wide development of actionable combina-
tion therapy. It’s implementation also does not require complex
disease mechanism or drug target information for imple-
mentation. This may enable its immediate application toward
dynamically-optimized drug repurposing and novel combination
therapy development against high priority pathogens such as
COVID-19 and others.
In addition to reporting rapid experimentally identified and

validated combination therapies against VSV infection of A549,
this work also discusses key further studies needed, and provides
global health and healthcare economics policy perspectives that
may provide a roadmap toward the broader clinical deployment of
Project IDentif.AI. Collectively, these analyses demonstrate that
technology and innovative policy considerations are needed to
drive advances in clinical practice in addressing pre-pandemic
and pandemic challenges.

2. Results

2.1. Optimization of Cell Density, VSV Incubation Time
and Multiplicity of Infection (MOI)

The VSVmodel used for this study was encoded with green fluo-
rescent protein (GFP) to monitor cell infection, with GFP inten-
sity corresponding to viral infection efficiency. The GFP inten-
sity of VSV-infected cells under differentMOI parameters (0.125,
0.25, 0.5, 1) were assessed. Cell densities for each well of 96 well
plate varied between 4000 (4k), 8000 (8k) and 12 000 (12k) per
well. Infection was allowed for 24 and 30 h (Figure 1A,B). As
indicated in the figure and microscopic images, MOI as low as
0.125 was sufficient to mediate nearly 100% cell infection after
24 h for 12k per well initial cell density. We therefore utilized 12k
per well as the initial cell density throughout the study. We then
further reduced the MOI and incubation time. Microscope im-
ages of bright field and fluorescence are merged for visualization
under different MOI parameters (0.001, 0.01, 0.1) after VSV in-
fection occurred for 12 h (Figure 1C) and 24 h (Figure 1D). Of
note, as indicated in the Figure 1C and ImageJ cell counting re-
sults, only 9.56 ± 2.55% (n = 3) cells were infected under MOI =
0.001 during 12 h. A MOI = 0.01 infected a majority of the cells
after a 12 h incubation and the overall GFP intensity continued to

increase at the 24 h checkpoint, indicating that the virus contin-
ued its reproduction inside the cells during this period of time.

2.2. Single Drug Dose Response Curves for Cell Viability
and Viral Infection

In order to assess single drug toxicity and antiviral efficacy, sin-
gle drug-dose response curves were acquired. Cell viability was
assessed at 24 h and VSV infection was recorded at 12 and 24
h at an initial cell density of 12k per well. The MOI was main-
tained at 0.01. The VSV and drugs were simultaneously added
to the host cells for co-incubation. Dose response curves for
Amantadine HCl (AMT); Dexamethasone (DEX); Azithromycin
(AZT); ChloroquineDiphosphate (CLR); NPX,Naproxen Sodium
(NPX); Fluoxetine HCl (FLX); LRT, Loratadine (LRT); Omepra-
zole Sodium (OMP); Ritonavir (RTN); Lopinavir (LPN); Doxy-
cycline (DOX); Ribavirin (RBV) (Figure 2). NPX and RBV were
tested at concentrations of 0.5, 5, 50, and 500 × 10−6 m while
all the remaining drugs were tested at concentrations of 0.1, 1,
10, and 100 × 10−6 m (Table S1, Supporting Information). As
monotherapies, none of the drugs were able to mediate viral in-
fection levels below 5%. With the exception of AZT, FLX, LRT,
LPN and DOX, which mediated observable toxicity at high con-
centrations, the candidate monotherapies and their studied con-
centration ranges appeared tolerable (over 75% cell viability). Of
note, the final DMSO concentration for all the tests did not ex-
ceed 0.3% to ensure the cell viability can be attributed to drug
treatments.

2.3. Artificial Intelligence-Based Optimization of Combination
Therapy from a 12-Drug Pool

The core aim of Project IDentif.AI was to simultaneously iden-
tify the combinatorial drugs and doses that optimally inhibited
VSV infection of A549 while maximizing A549 viability. In lieu
of using prior information pertaining to the synergistic affects
among the 12 candidate drugs to identify suitable drug combina-
tions, Project IDentif.AI harnessed a quadratic relationship be-
tween drug/dose inputs and efficacy/safety outputs to effectively
identify the drug-dose parameter space from which the optimal
drug combinations could be pinpointed, and drug synergy was
identified after the optimization process was completed. There-
fore, this process was agnostic to disease mechanism, as well
as drug target information. The viral infection outcomes from
each drug treatment were recorded at 12 and 24 h. For the pur-
poses of evaluating the speed of optimization that would also
yield experimentally validated VSV inhibition from a 12-drug set,
a minimum threshold of 72 drug combinations with a broad
range of corresponding dose levels were initially assessed (MOI=
0.1, Table S2, Supporting Information). Viral infection and drug
treatment was simultaneously applied to host cells. The efficacy
and corresponding accumulative equivalent dose of the 72 drug
combinations revealed a broad spectrum of VSV infection rates
(Figure 3A). The capacity for infection inhibition of each drug,
as well as the quantitative interaction with the other drugs in
the 12-drug pool were evaluated with the STRICT algorithm at
12 h (Figure 3B) and 24 h (Figure 3C). Of note, the key thera-
pies that were shown to contribute toward viral inhibition when
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Figure 1. Optimization of cell density, VSV incubation time and multiplicity of infection (MOI). A) GFP intensity of VSV infected cells under different
MOI (0.125, 0.25, 0.5, 1) for 24 h. Cell densities varied between 4k, 8k, and 12k per well of 96 well plate. Error bars show standard deviations (n = 3). B)
GFP intensity of VSV infected cells under different MOI (0.125, 0.25, 0.5, 1) for 30 h. Cell densities varied between 4k, 8k, and 12k per well of 96 well plate.
Error bars show standard deviations (n = 3). C) Microscope images of bright field and fluorescence are merged for visualization under different MOI
(0.001, 0.01, and 0.1) after VSV infection occurred for 12 h for cells plated at 12k per well. Error bars show standard deviations (n = 3). D) Microscope
images of bright field and fluorescence are merged for visualization under different MOI (0.001, 0.01, and 0.1) after VSV infection occurred for 24 h for
cells plated at 12k per well. Error bars show standard deviations (n = 3).

delivered in combination with other candidates, and merit
further optimization included amantadine HCl, azithromycin,
chloroquine diphosphate, omeprazole sodium, and ribavirin.
Of note, some of the candidate drugs performed well as

monotherapies. However, this is a common observation in in
vitro platforms, and there is a subsequent need to ultimately in-
corporate these drugs into clinically actionable combination ther-
apy regimens in order to optimize their use against a pathogen
in question, despite their promising single drug activity. Impor-
tantly, sufficient testing of the drug-dose parameter space may
also reveal that drugs with promising monotherapy activity do
not belong in the optimal combination therapy regimens, which
has been commonly observed using our platform.[32]

2.3.1. Systematic Validation of Optimized Combination Regimens
from a 5-Drug Pool

To validate the combination regimens of the 5 candidate drugs
that were advanced for further consideration, we conducted a

subsequent round of experiments with 30 combinations con-
sisting of these 5 drugs (MOI = 0.1, Table S3, Supporting In-
formation). Viral infection and drug treatment was simultane-
ously applied to host cells. The viral infection from each drug
treatment was recorded at 12 h (Figure 4A). A parabolic poly-
nomial model was built with stepwise regression following the
combinatorial optimization studies. When assessing the drug in-
teraction coefficients as well as the parabolic response surfaces,
broad synergy was subsequently observed (Figure 4B–D; Equa-
tion S1, Supporting Information). The optimal combination (Op-
timal Combo 1) mediated a 1.5% VSV infection rate compared
to no drug treatment and was comprised of Amantadine HCl
(5 × 10−6 m), Azithromycin (5 × 10−6 m), Chloroquine Diphos-
phate (0.5 × 10−6 m), and Ribavirin (2.5 × 10−6 m). Optimal
Combo 2mediated an infection rate of 1.6% compared to no drug
treatment and was comprised of Amantadine HCl (5 × 10−6 m),
Azithromycin (5 × 10−6 m), Chloroquine Diphosphate (0.5 ×
10−6 m), and Omeprazole Sodium (0.5 × 10−6 m) (Table 1).
Of note, both of these combinations were based on individ-
ual drug doses that were lower than the high doses needed to
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Figure 2. A–L) Single drug dose response curves for cell viability and viral infection. Cell viability is accessed at 24 h and normalized to the untreated
control without being treated with drugs or virus. VSV infection is recorded at 12 and 24 h and normalized to the untreated control which only be treated
with virus. Initial cell density is 12k per well in 96 well plate. MOI is 0.01. VSV and drugs are simultaneously added to host cells for co-incubation.
Dose response curves for drugs. Abbreviations: AMT, Amantadine HCl; DEX, Dexamethasone; AZT, Azithromycin; CLR, Chloroquine Diphosphate; NPX,
Naproxen Sodium; FLX, Fluoxetine HCl; LRT, Loratadine; OMP, Omeprazole Sodium; RTN, Ritonavir; LPN, Lopinavir; DOX, Doxycycline; RBV, Ribavirin.
Error bars show standard deviations (n = 3).

achieve sufficient efficacy as monotherapies. It is important to
note that for many of the top-ranked combinations, the com-
ponent therapies exhibited unfavorable efficacy when delivered
as monotherapies, but played a key role in mediating optimal
efficacy when co-administered. As an example, for Amanta-
dine HCl, Chloroquine Diphosphate, and Omeprazole Sodium,
monotherapy was shown to be relatively ineffective at high doses.
Compared to no drug treatment, Amantadine (HCl) treatment ex-
hibited infection rates of ≈75%. Chloroquine Diphosphate treat-
ment exhibited infection rates of≈25%, andOmeprazole Sodium
treatment exhibited infection rates of ≈50%. To further evalu-
ate the importance of drug and dose optimization in system-

atic combination therapy design, it is important to note that Op-
timal Combo 1 and Sub-Optimal Combo 2 were comprised of
the same therapies, but at different doses. This alone resulted
in infection rates of 1.5% and 10.7%, an approximately seven-
fold difference in efficacy and demonstrating the importance of
simultaneous drug and dose optimization. This is further con-
firmed by the scenario where replacing Amantadine HCl with
Omeprazole Sodium and administering this combination at a
sub-optimal dose results in a 21.6% infection rate. This repre-
sents a 14-fold difference in efficacy compared to Optimal Combo
1. With regards to the factors contributing toward the optimal
treatment outcomes, analysis of the interaction terms showed
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Figure 3. Systematic optimization of 12 drugs in combination with AI-medicine. A) Efficacy of the 72 anti-viral drug combinations. Viral infection rates
compared to no drug treatment at 12 h (bar plot and left y-axis) of the 72 combinations and their accumulative equivalent doses (line plot and right
y-axis). Error bars show standard deviations (n = 3). The anti-viral scores of each single drug and their quantatitive interactions with other drugs at B)
12 h and C) 24 h are provided. The ranks of drugs were determined by hierarchical clustering. The top 5 contributing drugs and their interactions are
tagged with red boxes. Abbreviations: AMT, Amantadine HCl; NPX, Naproxen Sodium; RTN, Ritonavir; DEX, Dexamethasone; FLX, Fluoxetine HCl; LPN,
Lopinavir; AZT, Azithromycin; LRT, Loratadine; DOX, Doxycycline; CLR, Chloroquine Diphosphate; OMP, Omeprazole Sodium; RBV, Ribavirin.

that the effects were primarily due to single-drug contributions,
drug quadratic effects, 2-drug interaction synergy as well as 3-
drug interaction synergy (Figure 4E; Equation S2–S4, Supporting
Information).
Fluorescence microscopy was also used to further evaluate the

viral infection rate for optimal drug combinations and the nonop-
timal drug combinations (Figure 5). Of note, no apparent adverse
effects cell density for Optimal Combo 1 and 2 were observed.
The identification and validation process implemented during
Project IDentif.AI demonstrated that rapid optimization of the
combination therapy development roadmap could be completed
within 3 days (Figure 6).

3. Discussion

3.1. The Role of AI toward Optimizing Combinatorial Drug
Repurposing

During the COVID-19 outbreak, immediately deployable combi-
nation therapies based on drug repurposing were used in the
clinic. These included Kaletra (ritonavir/lopinavir) in combina-
tion with oseltamivir. (Tamiflu®), and other regimens. Repur-
posed monotherapies and combination therapies carry the ben-
efit of previously demonstrated safety in patients and threshold

efficacy for other indications. Therefore, it is common in these
scenarios to select a small pool of established therapies to co-
administer, and to adjust drug doses accordingly if toxicity issues
ensue. While shown to be potentially clinically effective for some
patients, this is largely a trial-and-error strategy. Globally opti-
mizing drug repurposing is a starkly different approach, and can
yield combinations comprised of unexpected therapies that far
outperform traditional drug combination development, which
is based on target/mechanism-based drug selection followed by
dose finding.
When not constrained by drug selection based on targets and

mechanism of action, the pool of candidate therapies can be en-
larged to include a broader diversity of compounds for repurpos-
ing. Unfortunately, it should also be noted that drug dosing not
only impacts single drug efficacy and safety. In the context of drug
combination design, dosing considerations will also impact the
drugs that ultimately comprise the best combinations. This ef-
fectively creates a parameter space that is too large to interrogate
using brute-force testing of all possible combinations.
Project IDentif.AI sought to overcome this barrier that is per-

vasive across the drug development roadmap for virtually all in-
dications, and demonstrate that the rapid interrogation of a 12-
drug parameter space could be completed within a timespan of
days. In lieu of drug selection followed by dose finding, we used a
previously established quadratic correlation between the 12-drug
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Figure 4. Parabolic response surface analysis of the 5 anti-viral drugs established with the 30 combinations. A) Viral infection rates at 12 h (bar plot
and left y-axis) of the 30 combinations and their accumulative equivalent doses (line plot and right y-axis). Error bars show standard deviations (n =
3). B) The coefficients of the parabolic response surface were calculated by stepwise regression (p-value < 0.001). The values of the coefficients are
presented by heatmap. C) Response surfaces of the 3 identified interactions with the other three drugs at 0 dose. The x-axis values represent equivalent
doses. D) Response surfaces of the 3 identified interactions with the other three drugs at 1 equivalent dose. The x-axis values represent equivalent
doses. E) The adjusted R values of the polynomial models built by stepwise regression increase as 2-drug and 3-drug interaction terms are added.
However, the addition of 4-drug and 5-drug interaction terms makes no difference, indicating the overall anti-viral efficacy is mainly attributed from
single drug contributions, drug quadratic effects, 2-drug interaction synergy and 3-drug interaction synergy. Abbreviations: AMT, Amantadine HCl; AZT,
Azithromycin; CLR, Chloroquine Diphosphate; OMP, Omeprazole Sodium; RBV, Ribavirin.

Table 1. AI-optimized regimens. Two optimal, sub-optimal, and non-optimal combinations from those experimentally tested during the AI optimization
process are shown (units =micromolar).

Amantadine
HCI

Azithromycin Chloroquine
Diphosphate

Omeprazole
Sodium

Ribavirin Viral Infection
Rate

Optimal 1 5 5 0.5 0 2.5 1.5%

Optimal 2 5 5 0.5 0.5 0 1.6%

Sub-Optimal 1 0.5 5 0.5 5 0 9.8%

Sub-Optimal 2 0.5 5 5 0 2.5 10.7%

Non-Optimal 1 0 0.5 5 0.5 25 20.3%

Non-Optimal 2 0 0.5 0.5 5 25 21.6%

pool and drug doses (input) as well as inhibition of A549 infection
by VSV and A549 viability (outputs) to systematically identify the
top drug combinations. This was achieved independent of any
prior knowledge of drug targets, mechanism-of-action, or com-
plex disease biology. Furthermore, the implementation of our
platform does not require training based on existing data sets
or big data. Instead, a specified set of experiments based on a
broad spectrum of drug-dose combinations that sufficiently rep-

resents the parameter space that is created by the 12-drug set
is prospectively conducted. As such, the optimization process is
driven completely by prospectively validated data on a cell line or
patient sample. Many efforts to evaluate drug sets for single drug
treatment or sampled combinations have been conducted. Global
optimization of combination therapy design from a large drug set
opens up the doors to a broader spectrum of actionable regimens.
As our study has shown, even when combinations comprised of
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Figure 5. Microscope imaging of optimal and nonoptimal combinations from 5-drug validation test. Optimal drug combinations showed higher viral
inhibition rates than nonoptimal combinations. The optimal drug combinations almost completely eradicate viral infection.“−virus” indicates the host
cells without viral infection, serving as the negative control. “+virus” indicates the host cells with viral infection but without the drug treatment, serving as
the positive control. “Non-opt. Combo #1” indicates the host cells with viral infection and concurrent treatment with Nonoptimal Combo 1 (0.5 × 10−6 m
Azithromycin, 5 × 10−6 m Chloroquine Diphosphate, 0.5 × 10−6 m Omeprazole Sodium and 25 × 10−6 m Ribavirin). “Non-opt. Combo #2” indicates the
host cells with viral infection and concurrent treatment with Nonoptimal Combo 2 (0.5 × 10−6 m Azithromycin, 0.5 × 10−6 m Chloroquine Diphosphate,
5 × 10−6 m Omeprazole Sodium and 25 × 10−6 m Ribavirin). “Optimal Combo #1” indicates the host cells with viral infection and concurrent treatment
with Optimal Combo 1 (5 × 10−6 m Amantadine HCl, 5 × 10−6 m Azithromycin, 0.5 × 10−6 m Chloroquine Diphosphate and 25 × 10−6 m Ribavirin).
“Optimal Combo #2” indicates the host cells with viral infection and concurrent treatment with Optimal Combo 2 (5 × 10−6 m Amantadine HCl, 5 ×
10−6 m Azithromycin, 0.5 × 10−6 m Chloroquine Diphosphate and 0.5 × 10−6 m Omeprazole Sodium) The host cell density = 12k, VSV MOI = 0.1,
infection time = 12 h.

Figure 6. Time line of the optimization platform. The whole optimization process was accomplished within three days after the virus was selected and
isolated.

the same drugs are administered at varying doses, a sevenfold dif-
ference in efficacy was observed, and even greater differences (14-
fold) were observed when one drug was substituted (omeprazole
sodium) for another (amantadine HCl, yielding a combination
of azithromycin-chloroquine diphosphate-omeprazole sodium-
ribavirin) under sub-optimal dosing conditions. This is an inter-
esting finding considering the single drug substitution resulted
in such a profound disparity in treatment outcomes, even if all
of the drugs considered comprised the top 2 optimal combina-
tions. This further demonstrated the importance of simultane-
ous drug/dose optimization. Importantly, this process produced
multiple drug/dose-optimized combinations within 3 days. This
approach has the potential of providing a pipeline of alternatives
for patients if issues such as drug resistance are encountered.
It is important to emphasize that this study was conducted

using an in vitro VSV model, and the top ranked drug combi-
nation has not been subsequently clinically validated. In addi-
tion, the VSV model was selected primarily due to it being a

well-characterized and readily available platform. If a different
disease platform and/or host model are used, it is highly prob-
able that the ranking, drugs that comprise the combinations,
and the number of drugs that mediate optimal performance will
change. Also, this study was conducted with a diverse range of
potential drug candidates. In a clinical setting, especially to ad-
dress COVID-19 or other clinically relevant pathogens, the pool
of drug candidates, which should be developed in consultation
with the treating clinical team, is likely to differ substantially from
the pool used in this study. Furthermore, if this approach is ap-
plied toward clinical samples, patient-specific rankings of opti-
mal combinations can potentially emerge. The importance of the
findings of this study are centered on the ability to rapidly in-
terrogate massive parameter spaces that are created when both
the right drugs and their right respective doses have to simul-
taneously reconciled. The ability to reconcile this extraordinarily
large set of possible combinations in a timely fashion into ac-
tionable and globally optimized combinations may be effective

Adv. Therap. 2020, 3, 2000034 2000034 (8 of 13) © 2020 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim



www.advancedsciencenews.com www.advtherap.com

for scenarios where the prevention of community spread of novel
and aggressive pathogens is critical. While additional further
clinical validation at the point-of-care is required, several key
factors pertaining to the broad clinical relevance and prior val-
idation of technologies related to Project IDentif.AI should be
noted. Firstly, previous oncology studies using the quadratic phe-
notypic optimization platform (QPOP) and CURATE.AI, which
are foundational to Project IDentif.AI, have demonstrated that
benchtop-based implementation of this approach have directly
led to markedly enhanced patient outcomes compared to tradi-
tionally observed results.[33,34] Additional clinical validation stud-
ies, including one study that harnessed a related AI-guided dos-
ing platform against HIV in humans have further demonstrated
the critical importance of drug dosage inmediating optimal treat-
ment efficacy and tolerability.[34,35] Of note, doses that are lower
than expected, as well as dosages that were dynamically modu-
lated were commonly used to optimize patient outcomes.

3.2. Harnessing AI toward Global Health: Impact on Healthcare
Infrastructure, Policy, Surveillance, and Economics

Deploying AI-optimized infectious disease intervention may re-
sult in impact beyond technical and clinical innovation. To
scale these platforms toward broader use, healthcare policy, eco-
nomics, and infrastructure implications as they apply to the pa-
tient, payer, and system should be considered. This platform in
many ways simultaneously serves as a diagnostic and interven-
tion, because it identifies actionable intervention by calibrating
prospectively-obtained patient or population-based data. Added
possible benefits include the fact that optimizing drug repurpos-
ing to use well-established and potentially cost-effective thera-
pies to manage unpredictable clinical courses, and reductions
in treatment complications associated with dose-limiting toxic-
ities and lack of efficacy that may be encountered with trial-and-
error/nonoptimized repurposing. These outcomes may lead to
reduced healthcare cost burden, which opens up important dis-
cussions on how these platforms can be scaled and efficiently
integrated into healthcare workflows to enable better informed
healthcare spending decisions by patients.[36] These outcomes
may also serve as a foundation for broader clinical deployment
of AI to intervene effectively at the earlier stages of an epidemic.
Effective tailoring of treatment to both populations and indi-

viduals may also increase healthcare quality and efficiency, en-
abling an opportunity to personalize healthcare costs via quality-
based pricing. Specifically, technologies that realize actionable
data on patient-specific drug/dose profiles will play a key role
in establishing the relationship between individualizing treat-
ment with improved quality of care. This relationship will also
be driven by the emergence of quality variation, as some pa-
tients, hospital systems, and payers will be more willing than
others to make available and/or pay for the testing that may
generate more, or better data on patient-specific drug/dose pro-
files. In turn, this may lead to the introduction of performance-
based contracting or quality-based price discrimination, which
are suitable pathways to explore, especially if they result in bet-
ter health outcomes while reducing the cost of care.[37] This con-
cept led to a proposed personalized treatment plan for diabetes
patients by using the patients’ dose-effect characteristics. They

subsequently reported substantial cost reductions and improve-
ments in health outcomes.[37] From the perspective of healthcare
providers, financial incentives can improve health care quality,
efficiency, and coverage.[38] Many countries have implemented
a performance-based approach to contracting for medical ser-
vices, which has also led to improvements in domains beyond
healthcare quality and efficiency. For example, this approach in
the U.S. is implemented under the name of “pay for perfor-
mance” or “payment by results” in the U.K. These strategies
have shown that performance-based contracting can improve so-
cial welfare,[39] an important consideration considering that pan-
demic mortality rates have been linked to social inequality, with
higher mortality rates being observed with lower socioeconomic
status patients.[40] Therefore, in the context of global health and
addressing epidemics and pandemics, the impact of AI-guided
healthcare will likely expand beyond technical advances and also
influence the broader domains of healthcare economics and
equality.
In addition to considering patient-centric healthcare coverage

of emerging AI platforms to tailor their treatment, as the latest
circumstances show on a larger scale, global health emergencies
can substantially impact economies. For example, prolonged
overburdening of providers, patients, payers and policymakers
due to pandemics, coupled with ageing populations can lead
to unsustainable healthcare infrastructures. When considering
the core disease areas that receive the most attention, such as
cancer, diabetes, and cardiovascular, the reality is that communi-
cable infection remains a formidable healthcare infrastructural
burden.[41] For example, in many parts of the world, there
remains a need to develop better infectious disease interventions
to fight the overuse of antibiotics (positioned to consume 10
million lives annually by 2050).[42] This challenge alone could
have dramatic economic consequences. Considering the re-
gional relevance of this problem, ≈80% of the malaria parasites
in parts of Thailand and Vietnam were resistant to artemisinin
and piperaquine, and that the failure rates of the among the
most potent frontline combination therapy regimens comprised
of dihydroartemisinin-piperaquine (DHA-PPQ) had reached as
high as 87% in Northern Thailand.[43] Many solutions ranging
from vaccines to novel drug designs are being proposed to ad-
dress the COVID-19 situation. However, maintaining agility in
modulating drug regimens to account for potentially rapid viral
mutation or other factors that could dynamically predict patient
responses and identify corresponding optimized interventions
will be critical. Dengue, which affects more than 400 million
people each year, is highly-dynamic based on variables such as
geographical climate. A recent study has suggested that 8000
cases of TB could be prevented each year solely through the use
of more advanced analytics.[44] The economic evaluation of in-
terventions may become increasingly important as extraordinary
circumstances strain healthcare system-wide operations as well
as industry operations. Therefore, governments and healthcare
systems may be under pressure to substantially impact their
quality-adjusted-life-years (QALY) and disability-adjusted-life-
years (DALY). It should also be noted that the compound annual
growth rate (CAGR) in global spend on drug research and
development was 3.6% between 2010 and 2017, outpacing global
sales of prescription drugs, which grew at a CAGR of 2.0%
during the same period.[45] Further analysis has shown that the
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same life expectancy in countries could be achieved at 30% of
current healthcare expenditures.[46] Therefore, the importance of
accomplishing more while using less resources, making health-
care systems more economically-viable, and maximizing the
potential of deploying AI into the agile and dynamic deployment
of therapeutic regimens cannot be overstated.
From a global health surveillance perspective, merging and

re-emerging infectious diseases will continue to pose a threat
to mankind, and it is necessary to develop an arsenal of tools
that can be utilized in combatting these pathogens with epi-
demic/pandemic potential. Based on historical experience, the
next big outbreak will be something we have not seen before. In
February 2018, The World Health Organization (WHO) added to
the R&D Blueprint list of priority of diseases, Disease X.[47] Clade
X was previously considered a hypothetical variant of an exist-
ing family of organisms that evolved to cause human disease.
A preparedness exercise using this modelled pandemic-causing
pathogen demonstrated that a lack of actionable interventions
could cause devastating global outcomes.[48]

As exhibited with the recent emergence of COVID-19, there
are adequate tools to rapidly identify and obtain genomic details
in near real time through modern sequencing techniques that
often enable the swift development of effective diagnostics.[49]

However, the ability to develop medical therapeutics that are
both effective and easily deployable remains a critical gap in epi-
demic response efforts. Vaccines and therapeutics for the past
two outbreaks have benefited from greater than 20 years of de-
velopment efforts that allowed for rapid advancement to human
use clinical studies. In epidemic situations interventions that
address both individual patient illness and control/prevention
of continued transmission are necessary. The spectrum of dis-
ease caused by emerging/re-emerging infectious diseases can
vary considerably including severe symptomatic disease, mod-
erate/mild symptomatic disease, and asymptomatic spreaders.
Moreover, convalescence remains a challenge as recovering pa-
tients may continue to shed virus, sometimes for extended peri-
ods of time after initial infection. Therefore, effective therapeu-
tics and interventions must have the ability to address the full
spectrum of disease and contribute to controlling transmission
and spread of the pathogen.
Recently, efforts around monoclonal antibodies (Mabs) have

been proposed as a possible solution.[50] While traditional devel-
opment times for Mabs frame (6 months to years), overall costs
(≥$100 per gram),[51] and laborious clinical administration (in-
travenous), has previously limited their utility in emergency sit-
uations, especially in austere and resource-limited clinical set-
tings, substantial efforts have been directed to overcome these
challenges.[52] This will play a key role in bringing these criti-
cally important and potentially high-efficacy and high-specificity
interventions toward broader use. Numerous efforts have con-
sidered drug repurposing for infectious disease indications as an
approach to quickly respond to an outbreak. Small molecule ther-
apeutics are ideal for rapid deployment in response to an epi-
demic because they are often stable at room temperature, eas-
ily available and have known human pharmacokinetic and safety
profiles.[53]

Most successful cases of drug repurposing have been largely
serendipitous clinical discoveries, however tremendous effort
has also been focused on rational drug repurposing through

pathogenic phenotypic in silico and in vitro screening efforts.
How these drugs works are often complex and can be on-target
or off-target of the original indication. On-target mechanisms of
action(s) (MOAs) are often useful targets to block pathogen at-
tachment, entry, and replication within the host. Existing viral
drugs are usually the first to be applied to novel viral threats. An
additional benefit with repurposed molecules is their potential
off-target impacts on a pathogen. These off-target effects are usu-
ally harder to define during development.
Amajor challenge in drug repurposing efforts is that few drugs

demonstrate the safety and potency alone to achieve therapeu-
tic antiviral activity. Therefore, studies have focused on combi-
national strategies to meet the potency and safety dose require-
ments to be considered in response to a new threat.[54] These
efforts rely on in vitro and in vivo testing to evaluate and can
be considerably difficult to demonstrate, even with two drug
combinations.[55] In vitro and especially in vivo testing of sin-
gle drugs or combinations can be a lengthy process (months to
years).[56] Higher complexity combinational approaches offer the
greatest benefit, but traditional methods developing higher-order
combinations . Emerging in silico modelling and AI approaches
that are driven by prospective experimental validation are con-
verging to allow for potentially rapid responses to outbreak and
pandemic events.[7,32,57] The approach described here, and other
recently reported methods are key steps to higher order combi-
national treatment formulations that overcomes past limitations
with repurposing and will allow for disease specific and likely
personalized antivirals.[58] The optimized combinations in Table
1 were derived and identified from those experimentally tested,
and thus further studies using the optimized combinations as
determined from IDentif.AI will be required.

4. Conclusion

This work has provided a foundation toward the rapid identifica-
tion of dynamically optimized and actionable combination ther-
apies to address a broad spectrum of infectious disease applica-
tions while also accounting for new strains that may eventually
circulate. Given the mechanism- and disease-agnostic founda-
tion of Project IDentif.AI, further studies will evaluate this plat-
form for rapid COVID-19 intervention, and establish its readi-
ness to pinpoint regimens toward downstream pathogens with
aggressive clinical courses. Pairing the technical capabilities of
AI-driven drug development platforms with important policy-
based considerations and lessons learned from the global re-
sponse to SARS, H1N1, EVD, and other epidemics/pandemics
may ultimately lead to expedited intervention at scale.

5. Experimental Section
Cell Culture: The lung cancer cell line (A549, ATCC, USA) was cultured

in high-glucose Dulbecco’s modified Eagle’s medium (DMEM) (Invitro-
gen, USA) that was supplemented with 10% fetal bovine serum (FBS)
(Invitrogen, USA) and 1% penicillin–streptomycin (Invitrogen, USA). The
culture was maintained at 37 °C containing 5% v/v CO2 and the cells
were harvested upon reaching 80% confluence. 100 µL of cell suspen-
sion (4–12k cells per well) was seeded in 96-well plates and pre-incubated
for 12 h for treatment with the candidate drugs and viral platform. Cells
without any drug treatment and without viral infection served as a con-
trol. Each condition was run in triplicate. Drug-induced cytotoxicity was
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measured using a cell counting kit-8 (CCK8, DOJINDO, Japan). Briefly,
15 µL of CCK8 solution was added to each well containing 150 µL solution
and then incubated for 2 h at 37 °C in order to conduct the cytotoxicity as-
say. The cell viability was assessed by measuring the absorbance (450 nm)
via a microplate reader (BioTek, Synergy HT, USA).

Viral Infection and Plate Reader: Vesicular stomatitis virus (VSV), a
RNA virus, was used as the pathogen model in this work. VSV was en-
gineered and encoded with green fluorescent protein (GFP). The concen-
tration of VSV stock was 1 × 104 pfu µL−1, and different multiplicity of
infection (MOI) parameters were used to optimize the final MOI for cell
infection. TheMOI used for the optimization process included 1, 0.5, 0.25,
0.125, 0.1, 0.01, and 0.001 and 0 (control). Cells were infected by VSV un-
der different MOI parameters for 12, 24, and 30 h during the optimiza-
tion process. For each MOI, the conditions were run in triplicate. 100 µL
of cell suspension (12k cells per well) was seeded in a 96 well-plate and
pre-incubated for 12 h to be infected by VSV. Following viral infection, the
GFP fluorescence intensity of the cells induced by VSV reproduction was
measured with a microplate reader (BioTek, Synergy HT, USA) using the
top-reading mode, with excitation wavelength of 483 nm, and emission
wavelength of 535 nm).

Dilution of Candidate Therapies: 12 drugs purchased from Sell-
eckchem (TX, USA) were included in this study. These included aman-
tadine HCl, dexamethasone, azithromycin, chloroquine diphosphate,
naproxen sodium, fluoxetine HCl, loratadine, omeprazole sodium, riton-
avir, lopinavir, doxycycline and ribavirin. Amantadine HCl, chloroquine
diphosphate, naproxen sodium, fluoxetineHCl, omeprazole sodium, doxy-
cycline and ribavirin were diluted using complete cell culture medium,
while dexamethasone, azithromycin, loratadine, ritonavir, and lopinavir
were diluted in DMSO. The final stock concentration of all the drugs was
100 × 10−3 m. With the exception of naproxen sodium and ribavirin, the
other 10 drugs were further diluted for four concentrations including 0.1, 1,
10, and 100 × 10−6 m during the drug optimization process. The concen-
trations of naproxen sodium and ribavirin during the drug optimization
process were 0.5, 5, 50, and 500 × 10−6 m. The maximum possible final
concentration of DMSO added to the cells for monotherapies and combi-
nation therapies was 0.3% for both. During the drug optimization process,
triplicates were run per treatment condition.

Design-Of-Experiment (DOE): The experimental design of the first
stage of testing was generated according to uniform design theory.[59] 72
combinations were chosen with the largest sum of multi-drug interaction
distances and smallest variance of accumulative doses from trillions of
randomly generated experiment designs. The design of the second stage
of validation was generated according to orthogonal array design (OAD).

Accumulative Equivalent Dose: To cancel the disparity of the therapeu-
tic concentration ranges between drugs, as well as to facilitate the expres-
sion of dose concentrations, the concept of equivalent dose was adopted.
1 equivalent dose refers to 5 × 10−6 m for naproxen sodium and ribavirin,
and 1 × 10−6 m for the others. Thus, the accumulative equivalent dose of
a combination therapy was defined as the sum of the equivalent doses of
its constituents.

Data Analysis: The parabolic response surface analysis andmulti-drug
interaction regression analysis were conducted via the build-in function
“stepwiselm” in MATLAB 2018a with self-written code. The algorithm de-
rived a quadratic model accounting for collinearity using the bidirectional
elimination approach with the adjusted R-value as selection criterion.

The STRICT algorithm was used to identify quantitative drug interac-
tions. STRICT is a scoring algorithm based on projection distance, which
assesses the capacity of infection inhibition by giving an anti-viral score
to each drug and pairwise interaction in this study.[60] Consider a com-
bination k = (xk,1, xk,2,… , xk, n), the normalized Euclidean distance from
point k to the projection p on axis i is

Dk,i =

√∑
s≠i x

2
k, s

n − 1

WhereDk, i is normalized to [0,1], andmapped with a decreasing function:

f
(
Dk,i

)
=
(
1 − Dk, i

)q

The single drug STRICT score is then defined as the sum of the produc-
tions of the outputs, projections, and the function of the distance, which
can be denoted as

Scorei =
m∑
k=1

Yk ⋅ xk, i ⋅ f
(
Dk, i

)

Using this definition, the STRICT score can be easily expanded to multi-
drug interactions, if point k is projected to plane i, j instead of axis i. The
normalized distance is

Dk,i =

√∑
s≠i, j x

2
k, s

n − 2

Thus, the drug-pair STRICT score can be defined as

Scorei,j =
m∑
k=1

Yk ⋅
√
xk, i ⋅ xk, j ⋅ f

(
Dk, i,j

)
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