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Abstract

Cilia are highly-conserved organelles projecting from the cell surface of nearly every cell type in 

vertebrates. Ciliary proteins have essential functions in human physiology, particularly in signaling 

and organ development. As cilia are a component of almost all vertebrate cells, cilia dysfunction 

can manifest as a constellation of features that characteristically include, retinal degeneration, 

renal disease and cerebral anomalies. The terminology “Ciliopathies” refers to inherited human 

disorders caused by genetic mutations in ciliary genes, leading to cilia dysfunctions that form an 

important and ever expanding multi-organ disease spectrum. Ciliopathies are a diverse class of 

congenital diseases, with twenty-four recognized syndromes caused by mutations in at least ninety 

different genes. In order to start to dissect the phenotypes of each disease associated with ciliary 

dysfunction it is necessary to understand the mechanisms underlying the phenotype using suitable 

animal models. Here, we review the advantages of the zebrafish as a vertebrate model for human 

ciliopathies, with a focus on ciliopathies affecting the eye and the kidney.
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INTRODUCTION

Cilia are thin rod-like microtubule-based organelles, which are found on most vertebrate cell 

types. Cilia can be classified as motile or non-motile (more commonly referred to as 

primary) cilia which arise from a common origin, the centrosome [1]. Motile cilia function 

mainly as motor organelles and are also found in larger organisms, including humans. For 

example, motile cilia are present on cells that line the trachea, where their coordinated wave-

like motions carry mucus along with the inhaled dust, bacteria, and other small particles 

towards the mouth to be removed from the body. Primary cilia play a key role in the receptor 

This open-access article is distributed under the terms of the Creative Commons Attribution Non-Commercial License (CC BY-NC) 
(http://creativecommons.org/licenses/by-nc/4.0/), which permits reuse, distribution and reproduction of the article, provided that the 
original work is properly cited and the reuse is restricted to noncommercial purposes
*Correspondence: Glenn P Lobo, Department of Medicine, Medical University of South Carolina, Charleston, SC, 29425, USA, Tel: 
843-876-2371; lobo@musc.edu. 

For commercial reuse, contact reprints@pulsus.com

HHS Public Access
Author manuscript
Clin Nephrol Res. Author manuscript; available in PMC 2018 March 14.

Published in final edited form as:
Clin Nephrol Res. 2017 December ; 1(1): 6–9.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://creativecommons.org/licenses/by-nc/4.0/


cells of sensory systems and are responsible for cell communication [2–4]. The outer 

segment of the rod photoreceptor cell in the human eye is connected to its cell body with a 

specialized non-motile cilium. Mutations in cilia proteins have the potential to adversely 

affect numerous organs and tissues, and may be multifunctional [5]. Ciliopathies, referring 

to cilia loss and/or dysfunction in cilia development or function, cause a group of disorders 

associated with genetic mutations encoding defective proteins, resulting in abnormal 

formation or function of cilia. Clinical manifestations of ciliopathies can arise in nearly all 

tissue types during development and throughout life. Sensory impairments include the 

presence or onset of blindness, neurosensory hearing loss, altered nociception and anosmia. 

In addition, organ defects such as renal and liver cyst formation, airway distress, and 

hydrocephaly occur. Ciliopathies, phenotypes associated with cilia dysfunction, are often 

syndromes, such as Bardet-Biedl syndrome (BBS), Joubert syndrome (JBTS), Meckel-

Gruber syndrome (MKS), Senior-Loken syndromes (SLS), Orofaciodigital syndrome 

(OFD), Leber’s congenital amaurosis (LCA), Ellis van Creveld syndrome, Sensenbrenner 

syndrome, Nephronophthisis (NPHP), Renal dysplasia, and Autosomal Polycystic kidney 

disease (APKD) affect multiple organs, resulting in central nervous system malformation, 

cystic kidney disease, polydactyly, situs inversus obesity, encephalocele and retinal 

dystrophy [6–8]. While disease manifestation in any organ can occur in the context of 

ciliopathic dysfunction, the predominant organs affected include the kidney, eye, liver and 

brain. Currently there is a ciliary proteome database that is an integrated community 

resource for the genetic and functional dissection of cilia [9]. Although ciliopathies are 

conveniently classified into specific syndromes, their phenotypes are best viewed as a 

continuum that spans a phenotypic spectrum from embryonic lethality to isolated late onset 

retinal degeneration [10]. Several studies support this view by demonstrating that individual 

ciliopathy disease genes are expressed broadly rather than discretely across the spectrum, 

and that mutations within the same gene can display marked phenotypic differences across 

and even within families [11,12]. In the ensuing text, we will provide an overview of cilia 

protein and ciliopathies of the kidney and eye function, highlight an ideal animal model, 

zebrafish, and, importantly, discuss the future direction of research into ciliopathies”.

Zebrafish as models to study ciliopathies of the eye and kidney

Over the past decade zebrafish has proven to be an excellent vertebrate model for genetic 

analysis and imaging of cilia-related processes. The developing zebrafish larvae are largely 

transparent, and differentiate cilia at early stages of embryogenesis. Thus, immunostaining 

for ciliary proteins combined with confocal microscopy makes it easy to examine the 

morphology and movement of cilia during organ development in zebrafish [13–15]. 

Zebrafish are vertebrates, and zebrafish eyes are well-laminated structures that are 

functionally very similar to the eyes of other vertebrates, including humans. The eye shape 

of the zebrafish begins at 11.5 hours post fertilization (hpf), and the eyecup is well formed 

by 24 hpf. Most of the retina is subdivided into its characteristic subcellular structure by 48 

hpf. The internal connecting cilia and basal body of the inner segment are observed at 50 

hpf, and the outer segment is visible at 54 hpf. The first visual response can be seen around 

70 hpf, and the photoreceptor cells reach an adult size of 576 hpf (24 days) [16].
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Primary cilia are found in developing and mature human kidneys, which extend from the 

apical surface of the epithelial cells lining the nephron tubule and collecting duct. Cilia are 

present on endothelial cells in the developing zebrafish vasculature [14]. Zebrafish kidney 

vascularization and glomerular filtration occurred between 40 and 48 hpf [17]. The 

pronephric ducts are completely formed and patent to the exterior by 24 hours post 

fertilization (hpf). Cilia have been known for decades to exist, and have recently been 

recognized as sensory antennas that are involved in physiological functions. Nodal cilia, for 

example, propagate fluid flow across the embryonic node, and thereby are thought to 

function in the determination of left–right asymmetry. In mutations, the mis-orientation and 

shortening of kidney duct cilia suggest that pronephric fluid flow may be affected [15]. As a 

dynamic organelle, the presence, length, and composition of primary cilia are under constant 

regulation in order to fulfill essential functions such as signaling transduction.

A notable feature of the zebrafish model is that cilia homozygote mutants usually manifest a 

curly-body axis, a phenotype that is very easy to detect during genetic screens (Figure 1) 

[16,18,19]. Recent advances in targeted genomic mutagenesis using TALEN and CRISPR/

Cas9 nuclease systems make the zebrafish an attractive model to study reverse genetics. 

These approaches are valuable as tools to study the genetic bases of cilia function in a living 

embryo. For multiple ciliopathies, zebrafish mutants are available, including AHI1, 

ARL13B, ARL6, ARMC9, BBS5, CC2D2A, Cdc42, CEP41, CEP290, CSPP1, C8ORF37, 

Exoc5, IFT122, IFT81, INPP5e, KIAA0556, NBCe1, POC1B, PDE6D, RPGR1P1, RP2, 

SDCCAG8, TMEM6, TTC26, which have kidney and retina phenotypes that suggest a 

common mechanism underlying these defects [18,20–31] (Table 1).

DISCUSSION & FUTURE DIRECTIONS

Although many mechanistic aspects of ciliogenesis are now better understood, numerous 

questions revolving round the pathogenesis have yet to be answered. Animal models, 

including zebrafish in particular, will be indispensable in this regard. Cilia are well 

characterized in a number of organs, but the understanding of what they do varies greatly 

depending on the context. Photoreceptor cilia are among the best understood in terms of 

function and structure. In contrast to the eye, very little is known about the role of cilia in the 

brain, heart or the bone. The understanding of cilia function in these organs will benefit from 

live imaging of intact animals at developmental stages. Such imaging experiments are the 

strength of the zebrafish model. The zebrafish has proven to be an excellent model to study 

many aspects of cilia function. The ease of generating zebrafish mutants in ciliary genes 

using forward and reverse genetic approaches has led to a number of important findings [32–

35]. Advances in imaging, such as light sheet microscopy and the use of ever more 

sophisticated combinations of mutant genotypes and transgenic tools to monitor cell 

behavior in live animals have created a fertile ground for the zebrafish model to continue 

generating insights into the mechanisms of ciliogenesis.
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ABBREVIATIONS

AHI1 Abelson helper integration site 1 (ORF1; AHI-1; JBTS3; dJ71N10.1)

ARL13B ADP ribosylation factor like GTPase 13 (JBTS8; ARL2L1)

ARL6 ADP ribosylation factor like GTPase 6 (BBS3; RP55)

ARMC9 Arrowhead Regional Medical Center 9

BBS5 Bardet-Biedl syndrome 5

CC2D2A coiled-coil and C2 domain containing 2A (MKS6; JBTS9)

Cdc42 cell division cycle 42 (TKS; G25K; CDC42Hs)

CEP41 centrosomal protein 41(JBTS15; TSGA14)

CEP290 centrosomal protein 290 (CT87; MKS4; POC3; rd16; BBS14; JBTS5; 

LCA10; NPHP6; SLSN6; 3H11Ag)

CSPP1 centrosome and spindle pole associated protein 1 (CSPP; JBTS21)

C8ORF37 chromosome 8 open reading frame 37(RP64; BBS21; CORD16; smalltalk)

Exoc5 exocyst complex component 5 (SEC10; HSEC10; SEC10P; PRO1912; 

SEC10L1)

IFT122 intraflagellar transport 122 (CED; SPG; CED1; WDR10; WDR10p; 

WDR140)

IFT81 intraflagellar transport81 (DV1; CDV1; CDV-1; CDV1R; CDV-1R)

INPP5e inositol polyphosphate 5-phosphatase E (CPD4; CORS1; JBTS1; MORMS; 

PPI5PIV; pharbin)

KIAA0556 KIAA0556 (JBTS26)

NBCe1 electrogenic Na+/nHCO3− cotransporter (SLC4A4)

POC1B POC1 centriolar protein B (PIX1; CORD20; TUWD12; WDR51B)

PDE6D phosphodiesterase 6D (PDED; JBTS22)

RP2 RP2, ARL3 GTPase activating protein provided (XRP2; NME10; TBCCD2; 

NM23-H10; DELXp11.3)

RPGR1P1 retinitis pigmentosa GTPase regulato interacting protein 1

SDCCAG8 serologically defined colon cancer antigen 8 (BBS16; CCCAP; SLSN7; 

NPHP10; hCCCAP; HSPC085; NY-CO-8; CCCAP SLSN7)

TMEM67 transmembrane protein 67 (MKS3; JBTS6; NPHP11; TNEM67; 

MECKELIN)
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TTC26 tetratricopeptide repeat domain 26 (DYF13; IFT56; dyf-13)
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Figure 1. 
Common ciliopathy phenotypes in exoc5-mutant zebrafish Lateral view of WT and exoc5 

homozygous mutants zebrafish at 3.5 days post fertilization (dpf). Exoc5 mutants showed 

cilia defects, which included; *tail curvature **hydrocephaly; ***smaller eyes and 

****pericardial edema.
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Table 1

Ciliopathy Genes modeled in Zebrafish and showing Eye and Kidney henotypes.

Cilia Gene modeled 
in Zebrafish Eye Phenotype Kidney Phenotype Disease PMID

AHI1 mutant

Shortened cone outer 
segments Cone degeneration 
Rhodopsin mislocalization Kidney cysts JBTS 28118669

ARL13B mutant
Shortened photoreceptor outer 
segments retinal defects Renal cysts JBTS

27571019
25138100
27153923

ARL6 mutant Retinopathy microphthalmia Polydactylyrenal malformations BBS
15314642
15258860

ARMC9 mutant Retinal dystrophy Fibrocystic kidney disease JBTS 28625504

BBS5 Morphant
Morphants displayed retinal 
layering defects Dilated cystic pronephric ducts

PKD,BBS
NPHP,MKS

24559376
18604564

CC2D2A mutant

Shortened outer segments, 
Mislocalization of opsins and 
accumulation of vesicles Pronephric cyst

JBTS
MKS

26485645
18950740

Cdc42 Morphants Smaller eyes Cystic kidney PKD 23766535

CEP41 Morphants Smaller eyes Cystic kidney JBTS 22246503

CEP290 Morphants Rod-cone dystrophy Renal abnormalities JBTS, LCA 26301811

CSPP1 Morphants Smaller eyes Pronephric cysts JBTS 24360808

C8ORF37 morphants Retinal degeneration Renal cysts JBTS 27008867

Exoc5 Mutants and 
Morphants

Smaller eyes Retinal 
lamination was lost 
Disorganization and lack of 
photoreceptor outer segments

Glomerular expansion left-right 
patterning defects PKD

28729419
21490950

IFT122 mutation Photoreceptor degeneration Cystic kidney RP 27681595

IFT81 mutation Retinal dystrophy Kidney cyst Nonsyndromic retinal dystrophies 28460050

INPP5e Morphants Smaller eyes Cystic kidney JBTS 27401686

KIAA0556 Morphants

Oculomotor apraxia 
nystagmus Dysmorphic 
photoreceptor outer segments Kidney cysts JBTS 27245168

NBCe1 mutation Smaller eyes retinal distention Pronephric ducts defect
renal tubular acidosis, glaucoma 
and cataracts 19625604

POC1B Mutation

Smaller eyes Retinal 
degeneration Reduce 
photoreceptor connecting cilia Cystic kidney JBTS, PKD, LCA 25044745

PDE6D Morphants
Disorganized retinal cell 
layers

Cloacal cysts distended 
pronephric tubules polydactyly 
and kidney hypoplasia JBTS 24166846

RP2 Morphants

Affected the shedding of 
membrane discs from the 
distal end of the 
photoreceptor outer segment Pronephric cysts renal–retinal ciliopathies 20729296

RPGRIP1 Morphants
Smaller and underdeveloped 
eyes Pronephric cyst formation NPHP, RP 20200501

SDCCAG8 Morphants Smaller eyes Pronephric cysts NPHP 20835237

TMEM67 mutation Smaller eyes Bilateral pronephric cysts MKS 23393159

TTC26 Morphants

Eye morphology altered; 
outer segments of 
photoreceptor cells appeared 
shortened or absent

Tubule dilation; distended/
dilated pronephric tubes and 
ducts renal–retinal ciliopathies 22718903
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