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Purpose of review

To review the advances in our understanding of the genetics of inclusion body myositis (IBM) in the past year.

Recent findings

One large genetic association study focusing on immune-related genes in IBM has refined the association
within the human leukocyte antigen (HLA) region to HLA-DRB1 alleles, and identified certain amino acid
positions in HLA-DRB1 that may explain this risk. A suggestive association with CCR5 may indicate genetic
overlap with other autoimmune diseases. Sequencing studies of candidate genes involved in related
neuromuscular or neurodegenerative diseases have identified rare variants in VCP and SQSTM1. Proteomic
studies of rimmed vacuoles in IBM and subsequent genetic analyses of candidate genes identified rare
missense variants in FYCO1. Complex, large-scale mitochondrial deletions in cytochrome c oxidase-
deficient muscle fibres expand our understanding of mitochondrial abnormalities in IBM.

Summary

The pathogenesis of IBM is likely multifactorial, including inflammatory and degenerative changes, and
mitochondrial abnormalities. There has been considerable progress in our understanding of the genetic
architecture of IBM, using complementary genetic approaches to investigate these different pathways.
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INTRODUCTION

Sporadic inclusion body myositis (IBM) is the most
common acquired muscle disease presenting in
people over 50 years of age. Clinically, it is charac-
terized by slowly progressive weakness and muscle
wasting predominantly of the quadriceps and long
finger flexor muscles.

In IBM, inflammatory features in muscle biopsy
specimens suggest an immune-mediated compo-
nent to disease pathogenesis. In addition, circulat-
ing anti-Ro autoantibodies may be found in around
20% of patients and recent work has identified
cytosolic 50-nucleotidase 1A (anticN-1A) autoanti-
bodies in around one-third of patients. However,
unlike other idiopathic inflammatory myopathies
(IIMs), such as polymyositis and dermatomyositis,
IBM is unresponsive to conventional immuno-
suppressive treatments. This lack of response may
be explained by evidence of impaired autophagic
processes, including rimmed vacuole formation and
the accumulation of misfolded proteins. Whether
these degenerative processes represent a primary or
secondary involvement is unclear.

Some hereditary diseases may mimic clinical fea-
tures of IBM. These diseases may also exhibit similar
pathological features, such as rimmed vacuoles and
protein accumulations [1,2]. These disorders are
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sometimes referred to as hereditary IBM (hIBM),
but are better described using the associated genetic
abnormality. Genes involved with these ‘rimmed
vacuolar myopathies’ will not be discussed here,
but have been reviewed previously [3,4].

Although the primary cause of IBM remains
unknown, genetic factors likely influence disease
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KEY POINTS

� There is evidence that the pathogenesis of IBM is
multifactorial, including inflammatory and degenerative
changes, and mitochondrial abnormalities.

� The strongest genetic risk lies within the HLA region,
and there is evidence that other immune-related genes
are associated with IBM.

� Candidate gene sequencing studies have identified rare
variants in VCP, SQSTM1 and FYCO1 suggesting
impaired autophagy as a mechanism in IBM
pathogenesis.

� Mitochondrial DNA deletions in COX-deficient muscle
fibres correlate with T-lymphocyte infiltration and
muscle fibre atrophy, suggesting a mechanistic link
between these inflammatory and degenerative disease
processes.

FIGURE 1. Strategies for identifying genetic variants in IBM.
Rare causal variants of high effect size are expected in
Mendelian diseases such as hIBM. Genetic variants
contributing to IBM susceptibility are expected to have a
more modest effect size. Low-frequency variants of
intermediate effect sizes will likely be found using
sequencing studies. Common variants of low effect size will
be detectable by well-powered genetic association studies.
hIBM, hereditary IBM; IBM, body myositis.
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susceptibility. This article reviews advances that
have been made in the past year in our understand-
ing of the genetic component of IBM and potential
future approaches for research in this rare disease.
APPROACHES IN GENETIC STUDIES

There has been considerable progress in our under-
standing of the genetic basis of IBM. Two different
approaches have been used recently in IBM; large
genetic association studies and smaller targeted
sequencing studies.

The study design of genome-wide association
studies (GWAS) and contemporary genetic associa-
tion studies frequently test hundreds of thousands,
if not millions, of single nucleotide polymorphisms
(SNPs) across the genome. Results from GWAS in
autoimmune diseases suggest that most associated
variants reside in regulatory regions, exerting their
low effect sizes (odds ratio<1.1) on the expression of
immune-mediated genes [5,6]. The combination of
the burden of multiple testing and modest effect
sizes of associated SNPs means that studies in rare
diseases are hampered by low power because of small
sample size. Success will depend on the presence of
common variants of modest effect sizes (Fig. 1).

Other approaches to investigate the genetic
component of IBM have relied on detecting rarer
variants through sequencing studies that common-
ly involve fewer individuals than GWAS. To date,
these have focused on candidate genes taken from
related neuromuscular or neurodegenerative dis-
eases. However, novel approaches are also being
used, including targeting of genes identified in
proteomic studies. Variants discovered through
these studies likely will be rarer, with a larger effect
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size than those discovered by GWAS. Therefore,
GWAS and sequencing approaches test complemen-
tary hypotheses to investigate the genetic architec-
ture of IBM.
IMMUNE-RELATED GENES IN INCLUSION
BODY MYOSITIS

There are multiple lines of evidence for inflamma-
tion as a key pathway in the pathogenesis of IBM.
These include the presence of CD8þ cytotoxic T cells
surrounding major histocompatibility complex
(MHC) class I-expressing fibres [7], the presence of
plasma cells within affected muscle [8], IBM specific
and nonspecific autoantibodies [9,10] and a strong
genetic association with the human leukocyte anti-
gen (HLA) region [11–13]. Recent studies suggest
that several autoimmune diseases, including the
IIMs, share genetic overlap for susceptibility to
disease [14,15]. In line with this evidence, a recent
study hypothesized that there may be shared
immune loci associated with IBM [16

&&

].
Through the international Myositis Genetics

Consortium (MYOGEN), 252 patients with IBM
were recruited and genotyped on the Illumina
Immunochip array. This SNP array contains cover-
age of 186 established autoimmune susceptibility
loci and extended coverage across the MHC. The
strongest associations with IBM were seen within
the MHC, therefore imputation was used specifically
to investigate classical class I and class II HLA alleles
that may be explaining the risk in this region. Three
Health, Inc. All rights reserved.
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HLA-DRB1 alleles were found to be independently
associated with IBM; HLA-DRB1�03 : 01, HLA-
DRB1�01 : 01 and HLA-DRB1�13 : 01. Although
HLA-DRB1�03 : 01 is known to be associated with
polymyositis and dermatomyositis, the association
with HLA-DRB1�01 : 01 and HLA-DRB1�13 : 01 is
unique to IBM within the IIMs. Unlike many other
diseases [14,17,18], it is interesting to note that the
association of IBM with HLA is localized to HLA-
DRB1. Although this may be due to low power to
detect other HLA genes, it is in keeping with previ-
ous studies in IBM [12,19]. One potential explana-
tion for risk shared across multiple HLA alleles is an
amino acid ‘signature’ that may confer risk. When
analyzing amino acid positions within HLA-DRB1,
positions 26 and 11, located within the peptide
binding groove, were associated with IBM. The
strongest associations were with amino acids pres-
ent on classical risk haplotypes, such as a tyrosine at
position 26, predominantly carried on HLA-DR3
alleles. Functional research is needed to elucidate
whether the association within this gene can be
explained by these amino acids. Other candidate
genes within the MHC were not investigated in this
study, for example NF-kB genes, TNFA and NOTCH4
[20–22]. NOTCH4 has been associated previously
with IBM, although because of the strong linkage
in this region, it is not clear whether it is directly
involved in disease or associated because of carriage
on classical HLA-risk haplotypes.

Potential genetic associations within the HLA
region were also investigated for the development of
anticN-1A (NT5c1A) antibodies, a recently described
autoantibody common in IBM. A significant associ-
ation was seen with HLA-DRB1�03 : 01 when com-
pared to healthy controls; however, there was no
difference when 35 anticN-1A positive patients were
compared to 68 anticN-1A negative IBM patients
[16

&&

]. This suggests that there is no strong HLA
association with the antibody over and above the
general association with HLA-DRB1�03 : 01 in IBM.
Similarly, a study in 24 anticN-1A positive IBM
patients did not detect a unique HLA class II associ-
ation independent of HLA-DR3 [23].

In the total IBM analysis, no loci outside the
MHC reached genome wide significance [16

&&

].
However, three other loci reached a suggestive level
of significance, one of which was assigned to the
CCR5 gene. The authors hypothesize that the
protective effect of this association may be due to
a frameshift mutation in CCR5 which inhibits its
function as a chemokine receptor involved in T-cell
migration. CCR5 previously has been associated
with other autoimmune diseases lending support
to the hypothesis of an immune-mediated compo-
nent to IBM [24].
 Copyright © 2017 Wolters Kluwe
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SEQUENCING STUDIES IN INCLUSION
BODY MYOSITIS
Evidence for a degenerative component of IBM
pathogenesis includes the formation of rimmed
vacuoles and accumulation of misfolded proteins
such as b-amyloid, p62, TDP43 and phosphorylated
tau. To date, candidate gene studies mostly have
focused on genes known to be associated with
neurodegenerative diseases such as Alzheimer’s
disease, Parkinson’s disease and amyotrophic lateral
sclerosis (ALS). Genes investigated include amyloid
b precursor protein, microtubule-associated protein
tau, a-1-antichymotrypsin (SERPINA3), prion pro-
tein and C9orf72. However, these studies have failed
to find significant associations [4]. A well-studied
locus is Apolipoprotein E (APOE) -‘translocase of
outer mitochondrial membrane 40’ (TOMM40)
[25–27], and although a recent study showed no
significant associations with risk of developing IBM,
a potential association with later onset of symptoms
was reported [28]. Another negative study investi-
gated genetic variants within autoantibody targets
such as cN1A or cN1B [29]. One large candidate gene
sequencing study reported, among others, two rare
variants in the valosin-containing protein gene
(VCP) [30]. Variants in VCP cause IBM associated
with Paget’s disease of the bone (PDB) and fronto-
temporal dementia (FTD); however, neither patient
in this study manifested other symptoms reported
with VCP mutations and both fulfilled the diagnos-
tic criteria for IBM.

A recent study used whole exome sequencing
(WES) in 181 IBM patients focusing on p62, also
named sequestosome 1 (SQSTM1), and VCP genes,
both of which are known to harbour genetic variants
associated with ALS, PDB and FTD [31

&&

]. They re-
port four rare missense variants in SQSTM1 and three
variants in VCP. This represented 4.0% of the
cohort, and is the first time potential pathogenic
variants in SQSTM1 have been observed in IBM
patients. As these variants may cause diseases that
mimic IBM, it was confirmed that none of these
patients had developed symptoms of PDB, FTD or
ALS and all fulfilled diagnostic criteria for IBM. As
SQSTM1 is involved in the autophagy pathway, and
VCP is involved in proteasomal degradation of
misfolded proteins, this further supports the role
of autophagic alterations and aggregation of
proteins in the pathogenesis of IBM. These studies
suggest that there is merit in the targeted sequenc-
ing of genes previously associated with hIBM and
other inherited muscle disorders.

Rather than using related diseases, a novel way
of identifying candidate genes is using proteomic
analysis. We know that p62/SQSTM1 accumulates in
inclusions of IBM muscle fibres [32]. A recent study
r Health, Inc. All rights reserved.
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sought to identify other proteins present in the
rimmed vacuoles in skeletal muscle of IBM patients
by mass spectrometry [33

&&

]. Two hundred and
thirteen proteins showed a statistically significant
overrepresentation in rimmed vacuole samples
compared to controls. Many proteins already known
to be involved in IBM or other protein aggregate
myopathies overlap with the proteins identified,
validating this approach. The 173 novel proteins
not described before in IBM warrant further investi-
gation. Proteins that were present in at least 50% of
rimmed vacuole samples (131 genes) were taken
forward for genetic analysis using WES data from
62 patients with IBM. Hundred missense or loss of
function variants were identified in 52 genes.
Genetic data from ALS patients were then used to
identify variants statistically enriched that are
specific to IBM. Rare missense or loss of function
variants in FYCO1 were enriched in IBM patients
(11.3%) compared to ALS patients (2.6%, P¼0.003)
or healthy controls (3.4%, P¼0.01). FYCO1 is
involved in autophagosome/endosome trafficking.
Along with the VCP and SQSTM1 associations
described above, this provides further evidence for
autophagosome processing as a basis for future
mechanistic studies. Novel treatments targeting
protein dyshomeostasis are currently in develop-
ment [34].

In contrast to the studies outlined above, a
smaller sequencing study from Finland did not find
any rare missense genetic variants [35]. This study
sequenced the exomes of 30 patients from Finland
and a replication cohort of 12 patients from Italy,
with the hypothesis that the genetically more
homogeneous Finnish population would be condu-
cive to identifying genetic risk variants. Initially, a
candidate gene approach on WES data was taken,
focusing on 180 genes including those known to
cause hereditary primary myopathies as well as 42
novel candidate genes [36]. No rare missense var-
iants in SQSTM1 and VCP were found, or in genes
that would explain the observed clinical phenotype.
A subsequent case�control association analysis
identified seven SNPs enriched in the Finnish IBM
population with P<0.005. Reassuringly, two of
these were within the HLA region; however, the
other associations were in novel genes; STARD3,
SGPL1 and SETD4. Results from a small association
study are to be treated with caution, and will need to
be replicated.

As discussed above, associations with VCP,
SQSTM1 and FYCO1 validate the use of a sequencing
approach, and have given us greater mechanistic
insight in to IBM cause. It is worth noting, however,
that in all of these cases, patients lacked a family
history of IBM or weakness, indicating that these
 Copyright © 2017 Wolters Kluwer 
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inherited variants alone are not sufficient for disease
pathogenesis. There are likely many more variants
that predispose to IBM. Identification of novel genes
will come from WES and whole genome sequencing
(WGS) studies that detect rarer coding variants with
potentially larger effect size. Additional WES studies
in IBM are currently being undertaken [37]. Future
studies will employ WGS, which comprehensively
covers the genome including regulatory regions,
intronic regions and structural variations that
may be missed by WES. WGS studies, however,
are still expensive, with the huge amount of data
produced being complex, and computationally
expensive to analyse and store.
MITOCHONDRIAL DNA DELETIONS

Cytochrome c oxidase (COX)-deficient muscle
fibres are a common histopathological feature of
IBM, and there is increasing evidence that mito-
chondrial abnormalities may play a role in the cause
of this disease. Recent research has shown increased
mitochondrial DNA (mtDNA) deletions in COX-
deficient muscle fibres, and that the proportion of
these deficient fibres correlates with severity of
T-lymphocyte infiltration and muscle fibre atrophy
suggesting a mechanistic link between these disease
processes [38,34]. In addition, a recent study in IBM
has implicated a number of nuclear DNA genes that
are associated with transcription, replication and
maintenance of mtDNA [39].

Myofibres may harbour clonally expanded
large-scale mtDNA deletions responsible for respira-
tory chain deficiency that is thought to be central to
IBM pathogenesis [40,41]. Previous works reporting
mtDNA deletions have been based on a small num-
ber of mtDNA genes, and were focused on single
major arc deletions. A recent study sought to char-
acterize mtDNA deletions in more detail in patients
with IBM [42

&

]. mtDNA rearrangements were inves-
tigated in single muscle fibres from patients with
IBM using complementary techniques. The authors
confirmed the presence of mtDNA deletions in 78
out of 92 (�85%) COX-deficient cells, but demon-
strated that mtDNA rearrangements in IBM are more
complex than previously assumed. The authors
showed for the first time that 20% of COX-deficient
cells harboured two or more mtDNA deletions. In
addition, some unusually large deletions were
detected that extended into the origin of light
strand replication.

Further evidence for mitochondrial dysfunction
in IBM is provided by research that sought to
characterize mitochondrial phenotype at a genetic,
molecular and functional level in 30 IBM patients
[43

&

]. The authors also compared mitochondrial
Health, Inc. All rights reserved.
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FIGURE 2. A proposed model for the pathogenesis of IBM. Inflammation within muscle (Box 1) may induce fibre injury and
HLA-I overexpression. Overloaded protein degradation systems (Box 2) induce misfolded protein deposits in muscle fibres. ER,
endoplasmic reticulum; UPR, unfolded protein response. Figure adapted from [44].

Genetics in inclusion body myositis Rothwell et al.
differences between muscle and peripheral blood
mononuclear cells (PBMCs) in IBM cases and con-
trols to assess whether these alterations could be
used as biomarkers in a less invasive tissue. Multiple
mtDNA deletions were found in the muscle of 57%
patients, and while there was a significant decrease
in total mtDNA in muscle, the decrease was less
pronounced in PBMCs. This may be attributed to
shorter lifespan of PBMCs and thus reduced accu-
mulation of mitochondrial deficiencies. The
authors found that mitochondrial COX activity
was decreased in both muscle and PBMCs suggesting
that mitochondrial dysfunction may not be con-
fined to the target tissue of the disease.

CONCLUSION
There has been considerable progress in our under-
standing of the genetic architecture of IBM.
 Copyright © 2017 Wolters Kluwe

1040-8711 Copyright � 2017 The Author(s). Published by Wolters Kluwe
Evidence suggests a complex interplay between
inflammatory and degenerative processes and mito-
chondrial abnormalities. A model starting with
inflammation within muscle and subsequent depo-
sition of amyloid and other proteins because of
overloaded protein degradation systems has been
proposed by Benveniste et al. in Fig. 2 [44]. Comple-
mentary approaches to investigate these hypotheses
have been used successfully in IBM. Investigating
the effect of common variants on disease suscepti-
bility in rare diseases will rely in part on continuing
sample collection by coordinated international col-
laborations, including different ethnicities that will
facilitate larger studies. In addition, novel statistical
methods are being developed that leverage the pow-
er from larger datasets in related diseases because of
the similarities in genetic susceptibility [45]. WES
and WGS studies will identify novel variants across
r Health, Inc. All rights reserved.

r Health, Inc. www.co-rheumatology.com 643



Myositis and myopathies
the genome and may uncover previously over-
looked biological processes to further expand our
knowledge of the genetic component of IBM.
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