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Abstract: Long-term exposure of the skin to solar radiation causes chronic inflammation and oxidative
stress, which accelerates collagen degradation. This contributes to the formation of wrinkles and dark
spots, skin fragility, and even skin cancer. In this study, Anemopsis californica (AC), a herb from North
America that is well known for treating microorganism infection and promoting wound healing, was
investigated for its photoprotective effects. The biological effects of AC were studied on two in vitro
models, namely, lipopolysaccharide (LPS)-induced macrophages and ultraviolet B (UVB)-irradiated
dermal fibroblasts, to characterize its underlying molecular mechanisms. The results showed that
AC decreased the mRNA levels of inflammatory mediators in sensitized macrophages, including
cytokines, inducible nitric oxide synthase (iNOS), and cyclooxygenase (COX-2). Moreover, AC
alleviated UVB-induced photoaging in dermal fibroblasts by restoring procollagen synthesis. This
resulted from the regulation of excessive reactive oxygen species (ROS) by AC, which was mediated
by the activation of the antioxidative system nuclear factor erythroid 2-related factor 2 (NRF2).
AC also alleviated oxidative stress and inflammatory responses by inhibiting the phosphorylation
of mitogen-activated protein kinase (MAPK) and interfering with the nuclear translocation of the
immune regulator nuclear factor of activated T-cells 1 (NFATc1). In conclusion, the protective effects
of AC on skin cellular components suggested that it has the potential for use in the development of
drugs and cosmetics that protect the skin from UVB-induced chronic inflammation and aging.

Keywords: Anemopsis californica; oxidative stress; photoaging; nuclear factor erythroid 2–related
factor 2 (NRF2); nuclear factor of activated T-cells (NFAT)

1. Introduction

As the primary defense system of the body, the skin directly undergoes physiological
changes caused by ambient factors such as pollution, bacteria, and chronic light exposure.
Solar radiation, which contains >10% ultraviolet (UV) light, is considered to be a major
cause of skin photoaging, which is characterized by rough wrinkles, dark spots, and
dryness [1]. Although atmospheric ozone absorbs UVC radiation (100–280 nm), UVA
(315–400 nm) and UVB (280–315 nm) radiation can reach the earth’s surface and directly
penetrate layers of the skin [2]. The more energetic radiation, UVB, also called “burn rays,”
reaches the epidermis unimpeded and partly reaches the upper dermis [2]. Histological
studies of the skin have reported an increase in mononuclear cell infiltration and degraded
elastic fibers under conditions of repeated exposure to sunlight, when compared with
shielded skin [3]. Exposure to UVB leads to the recruitment of macrophages to remove
the damaged skin cells with oxidized surface lipids [4]. Activated macrophages release
cytokines such as interleukins (ILs) and tumor necrosis factor alpha (TNF-α), as well as
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inflammatory molecules, including nitric oxide (NO) and prostaglandin E2 (PGE2), leading
to chronic inflammation and thus triggering inflamm-aging [5]. These molecules stimulate
the expression of matrix metalloproteinases (MMPs) to disrupt the collagen fibers that
are present in the extracellular matrix (ECM) of the dermal skin layer, supporting the
migration of macrophages through the dermis to injured sites [3]. Therefore, it is important
to manage the release of inflammatory mediators to alleviate immunological responses in
photoaged skin.

UVB irradiation also induces oxidative stress in dermal fibroblasts, which is charac-
terized by the overproduction of reactive oxygen species (ROS) [6]. ROS accelerate the
phosphorylation of mitogen-activated protein kinase (MAPK) subunits, thus causing the
activation of transcription factor activating protein-1 (AP-1) to initiate the transcription
of collagenase MMPs [6]. It was also reported that UV radiation downregulated the ex-
pression of the transforming growth factor beta (TGF-β) receptor, which is involved in the
synthesis of procollagen type I, by the production of ROS [7]. In addition, expression of the
TGF-β1 gene has been inhibited by a blockade of the Smad signaling pathway by AP-1 [8].
Thus, the ROS level needs to be decreased in order to sustain collagen synthesis, which
further maintains the integrity and elasticity of the skin.

To defend against the excessive production of ROS, cells can activate the antioxidative
system called nuclear erythroid 2-related factor (NRF2) [9]. A high level of intracellular ROS
frees cytosolic NRF2 from its inhibitor, Kelch like-ECH-associated protein 1 (KEAP1), al-
lowing it to translocate to the nucleus [9]. NRF2 initiates the transcription of cytoprotective
molecules, such as NAD (P)H quinone oxidoreductase-1 (NQO1) and heme oxygenase-1
(HO-1), which removes quinones from biological systems as a detoxification reaction and
cleaves the oxidative radicals of heme groups, respectively [10]. Moreover, it was reported
that UVB irradiation inhibited the expression of the dihydrolipoamide dehydrogenase
(DLD) protein in the tricarboxylic acid cycle [11]. DLD not only associates with α-keto acid
dehydrogenase, a regulator of ROS, but also metabolizes α-lipoic acid, which activates two
cytoprotective proteins, NRF2 and HO-1 [12]. In addition, under hypoxic conditions and
UVB exposure, hypoxia-inducible factor 1 alpha (HIF1-α) is stabilized by NRF2 activation,
binds to hypoxia-responsive elements in the nucleus, and initiates the transcription of
target genes such as HO-1 [13]. Therefore, regulation of the NRF2 signaling pathway has
the potential to alleviate UVB-induced oxidative stress.

Oxidative stress also undergoes a bidirectional interaction with calcium signaling,
in which ROS mediate calcium signaling, while calcium influx accelerates the activity of
ROS-generating enzymes and the synthesis of free radicals [14]. Calcineurin/nuclear factor
of activated T cells (NFAT) is composed of transcription factors which are regulated by
calcium signaling [15]. NFAT was originally indicated to function as a transcription factor
that regulated cytokine expression by associating with the IL-2 promoter, following T-cell
activation [15]. However, recent research has indicated that NFAT signaling can regulate
not only T cells, but also other immune and non-immune cells. NFAT was reported to be
an emerging target for controlling photodamage by UV irradiation. A study by Masaki
indicated that the increase of ROS formation in UVB-exposed keratinocytes was accompa-
nied by an immediate elevation of the intracellular calcium level [16]. In addition, Mazière
et al. reported that the exposure of fibroblasts to UVA induced the dephosphorylation of
nuclear NFATc1, allowing its translocation to the nucleus for transcription initiation [17].
Moreover, Flockhart et al. showed increases in NFAT transcriptional activity and the
nuclear localization of NFATc1 in UV-irradiated keratinocytes [18]. NFAT is involved in the
mRNA synthesis of inflammation-related genes, including IL-6, TNF-α, PGE2, COX-2, and
iNOS [19,20]. Furthermore, NFATs have been reported to be pro-invasion transcription
factors that upregulate the production of MMPs during tumor invasion [21].

Anemopsis californica (AC), belonging to the Saururaceae family, predominantly inhab-
its southwestern North America [22]. The root powder of AC can be used as a spice and
the seeds can be utilized to make bread and various dishes. AC tea and tincture are also
widely known as abundant sources of antioxidants and phytoflavanoids [23]. Preliminary
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analysis of the phytochemical composition of the ethanolic extracts of AC showed that
they included tannins, steroids, coumarins, flavonoids, and phenols [24]. In addition,
the isolation of active compounds from AC extracts have resulted in the identification of
sesamin and asarinin [22]; meanwhile, the most abundant volatile components of AC es-
sential oil were shown to be methyl eugenol (57%), α-pinene (11.7%), elemicin (13.2%), and
piperitone (16.2%) [23], which have been well studied for their antioxidant and anti-aging
properties [25–27]. Studies also confirmed the antioxidative [28], anti-bacterial [22], and
anti-cancer [29] effects of AC essential oil and plant extract. However, there have been
limited studies on the application of AC in the treatment of skin diseases.

This study was established to investigate the protective effects of AC against LPS-
stimulated macrophages (Raw264.7 cells) and UVB-irradiated dermal fibroblasts (HDF
cells). This work demonstrated that AC treatment downregulated the LPS-induced mRNA
expression of IL-1β, IL-6, TNF-α, iNOS, and COX-2. In addition, AC exerted UVB-induced
ROS overproduction, resulting in the restoration of procollagen production. In particular,
AC reduced the ROS-triggered phosphorylation of MAPK subunits, leading to a decrease
in MMP production and an increase in TGF-β1 expression. AC also activated the NRF2
signaling pathway for the detoxification of excess ROS formation. Finally, AC was found
to prevent the nuclear translocation of NFATc1, suggesting that it might moderate inflam-
matory responses during radiation exposure. These results highlight the potential of AC
for the production of drugs and cosmetics for photoaged skin.

2. Materials and Methods
2.1. Materials

Anemopsis californica (AC) leaf powder was purchased from Ecuadorian Rainforest,
LLC (Clifton, NJ, USA). Dulbecco’s modified Eagle’s medium (DMEM), fetal bovine serum
(FBS), and penicillin–streptomycin were supplied by Gibco RBL (Grand Island, NY, USA).
Standard tannic acid, chlorogenic acid, apigenin, positive control ascorbic acid, dexametha-
sone, and tacrolimus, as well as 5-diphenyltetrazolium bromide (MTT), were purchased
from Sigma-Aldrich (St. Louis, MO, USA). An ELISA kit for procollagen type 1 was pur-
chased from Takara (procollagen type 1 C-Peptide ELISA Kit; Takara Bio, Otsu, Japan).
Human total MMP-1 and human total MMP-3 ELISA kits were purchased from R&D Sys-
tems (Minneapolis, MN, USA). Organic solvents were purchased from Samchun Chemical
(Seoul, Korea) and Daejung Chemical & Metal (Siheung, Korea). Inorganic salts were
purchased from Sigma-Aldrich. Silica gel was purchased from Merck (Kenilworth, NJ,
USA). The primary and secondary antibodies were obtained from Cell Signaling Technol-
ogy (Beverly, MA, USA), Santa Cruz Biotechnology (Santa Cruz, CA, USA), and Bio-Rad
Laboratories, Inc. (Hercules, CA, USA).

2.2. Sample Preparation

A weight of 100 g AC was extracted in 500 mL of 70% ethanol and shaken, using a
Twist shaker (Daihan Scientific Co., Ltd., Seoul, Korea) for 24 h at room temperature. The
extraction was replicated thrice. The extracts were collected and subsequently filtered
using filter paper (Whatman, Maidstone, Knent, UK). The sample was concentrated by
rotary vacuum evaporation (EYELA WORLD–Tokyo Rikakikai Co., LTD., Tokyo, Japan) at
40 ◦C. The extract yield was 15.33 ± 0.38%.

2.3. Total Phenolic, Flavonoid, and Tannin Contents

The total phenolic content of the AC extract was examined based on the Folin-
Ciocalteu colorimetric method [24]. Briefly, either standard gallic acid (6.25–100 µg/mL) or
plant extract, was reacted with 1M Folin-Ciocalteu reagent for 15 min. Then, 0.7 M sodium
carbonate in NaOH was added, and the mixture was incubated for 1 h. The absorbance
value was measured at a wavelength of 625 nm.

The total flavonoid content of the AC extract was quantified based on the aluminum
chloride colorimetric method [25]. 50 mg/mL of sodium nitrate was mixed with either
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standard quercetin (0.03125–1 mg/mL) or plant extract. After incubation for 5 min, alu-
minum chloride was reacted with the mixture for an additional 6 min. Finally, 1M sodium
hydroxide was added and incubated for 40 min. Optical density was determined at a
wavelength of 450 nm.

The total tannin content was evaluated based on a HCl–vanillin assay [26]. Either
standard catechin (0–900 µg/mL) or plant extract was reacted with 4% vanillin in methanol,
following by an addition of 32% sulfuric acid. After 15 min of incubation, the plate was
read at 450 nm.

The measurement was performed by a microplate reader (Molecular Devices FilterMax
F5; San Francisco, CA, USA). The total phenols, flavonoids, and tannins were presented as
gallic acid, quercetin, and catechin equivalents in mg per gram of plant extract, respectively.

2.4. HPLC Analysis

The plant extract was prepared in 50% methanol at a concentration of 2 mg/ml. Serial
dilutions (2.5, 25, 125, 250, 500, and 1000 µg/mL) of standard compounds (tannic acid,
chlorogenic acid, and apigenin) were prepared in methanol. High-performance liquid
chromatography (HPLC) was performed on a Dionex Chromelon TM chromatography
data system with P580 and UVD100 detectors (Thermo Fisher Scientific Inc., Waltham,
MA, USA). Chromatographic separation was performed on a Discovery C18 (250 × 4.6
mm, 5-µm particle size). Column temperature was 25 ◦C; flow rate was 1.0 mL/min;
injected volume was 10 µL. The condition for chromatographic separation was described
in Supplementary Materials Table S1. The chemical content was quantified by determining
the area of the peak in the HPLC analysis, following the formula below:

Content (g/100) =
(

sample area
standard area

)
×

(
sample dilution volume

standard dilution volume
× dilution factor

)
×

(
sample amount

standard amount

)
× 100

2.5. 2,2-Diphenyl-1-Picrylhdrazyl Radical Scavenging Activity

The antioxidant effects of the AC extract on 2,2-diphenyl-1-picrylhdrazyl (DPPH,
PubChem CID: 2375032) was examined. Various concentrations of AC (1–250 µg/mL)
were tested. Ascorbic acid was used as the positive control. The 0.2 mM DPPH in 100%
methanol solution was prepared. An aliquot of a 40 µL sample was reacted with 160 µL of
DPPH solution, followed by dark incubation at 37 ◦C for 30 min. The optical density was
determined at a wavelength of 595 nm. The inhibitory effect of the sample was assessed by
using the following formula:

DPPH radical inhibition (%) =
(OD 0 −ODx)

OD0
×100

OD0: Optical density of negative control
ODx: Optical density of the sample

2.6. 2,2’-Azino-Bis (3-Ethylbenzothiazoline-6-Sulfonic Acid) (ABTS) Radical Scavenging Activity

The antioxidant effects of the AC extract on ABTS (ABTS, PubChem CID: 5464076)
was detected. Various concentrations of AC (1–250 µg/mL) were tested. Ascorbic acid was
used as positive control. A solution of ABTS was made from the reaction of a 2.5 mM ABTS
solution with 1 mM 2,2’-azobis (2-amidinopropane) dihydrochloride (AAPH) and 150 mM
sodium chloride. Then, the solution was incubated at 70 ◦C for 30 min. In each well of
a 96-well plate, an aliquot of a 4 µL sample was reacted with 196 µL of ABTS solution,
followed by dark incubation at 37 ◦C for 10 min. The optical density was determined at
a wavelength of 405 nm. The inhibitory effect of the sample was assessed by using the
following formula:

ABTS radical inhibition (%) =
(OD 0 −ODx)

OD0
×100
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OD0: Optical density of negative control
ODx: Optical density of the sample

2.7. Cell Culture and Treatment

Murine macrophage Raw264.7 cells were provided by the Korean Cell Bank (Seoul,
Korea). Normal adult human primary dermal fibroblasts (HDF) (ATCC PCS-201-012) were
purchased from ATCC (Manassas, VA, USA). The cells were grown in an incubator at 37 ◦C
under a humidified atmosphere containing 5% CO2. A DMEM medium, supplemented
with 10% heat-inactivated FBS and 1% antibiotics and antimycotic solution, was used for
cell culture.

To induce an inflammatory response, Raw264.7 cells were sensitized with 1 µg/mL
LPS at a cell confluence of 80% for 24 h. An aliquot of 10 µM dexamethasone (positive con-
trol) or AC extract (1–50 µg/mL) was diluted in a serum-free medium and supplemented
for the same time as the LPS treatment.

To mimic the photoaging process, after HDF cells had reached 80% cell confluence, cell
plates with a closed lid were exposed to UVB (144 mJ/cm2) radiation using a UVB irradia-
tion machine (Bio-Link BLX-312; Vilber Lourmat GmbH, France). Irradiance (0.1 mW/cm2)
was measured using a UVB photometer (IL1700 Re-search Radiometer/Photometer; Inter-
national Light, Peabody, MA, USA). Then, cells were rinsed thrice with warm 1X PBS to
remove apoptotic cells. Subsequently, fresh serum-free media containing 10 µM ascorbic
acid (positive control) or three doses of AC (1–50 µg/mL) were added to each plate for
incubation.

2.8. MTT Assay

After 24 h of treatment with LPS, or 72 h of treatment with UVB, 1 mg/mL MTT was
added to the cell culture and then incubated for 3 h. After incubation, the medium was
discarded, followed by the addition of DMSO to solubilize formazan. The optical density
was recorded at a wavelength of 595 nm.

2.9. NO Assay

NO production was measured in LPS-induced Raw264.7 cells. Raw264.7 cells were
seeded at a density of 1 × 106 cells/mL in 96-well cell culture plates (SPL Life Sciences
Co., Ltd., Gyeonggi, Korea) and were incubated for 24 h. 24 h after LPS sensation, the
secretion of NO was quantified in the cell culture supernatant. A volume of 100 µL of cell
culture supernatant was reacted with 100 µL of Griess reagent, which is a mixture of 1%
sulfanilamide in 5% phosphoric acid and 0.1% naphthylethylenediamine dihydrochloride
(1:1 ratio). Then, the plate was incubated for 10 min at 37 ◦C. The absorbance density was
measured at 595 nm.

2.10. ROS Assay

Intracellular ROS levels were measured in UVB-exposed HDF cells. After 24 h of
the sample treatment and sensitizer exposure, the supernatant was discarded, and the
cells were incubated with 30 µM 2′7′-dichlorofluorescein diacetate (DCFH-DA) (Sigma) for
30 min at 37 ◦C under dark conditions. Then, the cells were rinsed two times with cooled
1X PBS and collected using 0.05% trypsin EDTA. Quantification of intracellular ROS was
evaluated by a BD Accuri C6 flow cytometer system (BD Biosciences, Franklin Lakes, NJ,
USA). The data were collected and analyzed using FCS 6 plus Research Edition software
(De Novo Software, Pasadena, CA, USA).

2.11. Enzyme-Linked Immunosorbent Assay

HDF cells were seeded at a density of 1.5 × 105 cells/mL in 35 mm cell culture plates
to acquire treatment conditions after 24 h. After 72 h of UVB irradiation, cell supernatant
was collected to measure the concentrations of MMP-1, MMP-3, and procollagen type 1
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protein in media, which were estimated using commercially available ELISA kits according
to the manufacturers’ instructions. Each sample was repeatedly analyzed twice.

2.12. Reverse Transcriptase (RT)-PCR

Cells were collected 24 h after sensitization with inducers. RNA was isolated by using
TRIZOL reagent, according to the manufacture’s guidelines (Invitrogen Life Technologies,
Carlsbad, CA, USA). An equal amount of RNA (3 µg) was reverse transcribed using a
PCR premix (Bioneer Co., Daejoon, Korea), 0.5 µg/mL oligo-(dT)15 primer, and 0.5 µg/mL
hexamer primer. The cDNA was resynthesized at 42 ◦C for 60 min and was incubated
at 94 ◦C for 5 min to stop the reaction. PCR amplification was performed using a PCR
premix (Bioneer) and designated primer pairs outlined in Supplementary Materials Table
S2. Amplified products were observed by gel electrophoresis and detected by nucleic acid
staining (NobleBio Inc., Gyeonggi, Korea) under UV illumination. GAPDH was used for
normalization.

2.13. Western Blot

Cell lysates were merged in RIPA buffer (Sigma) for at least 1 h and centrifuged at
12,000 rpm in 15 min to obtain the total protein extract. To isolate the nucleoprotein, an
NE-PER nuclear and cytoplasmic extraction reagents kit (Pierce) was used according to
the manufacturer’s instructions. The protein concentration was calibrated using Bradford
reagent (Bio-Rad). Homogenized proteins were separated by SDS-PAGE and transferred to
a nitrocellulose membrane (Bio-rad). Transfer membranes were blocked in 5% skim milk
or 5% BSA for 30 min. After several washing steps with 1X TBST, the primary membrane
was added with primary antibodies overnight at 4 ◦C. After incubation with secondary
antibody for 1 h, the protein bands were detected using chemiluminescence detection
ECL reagents (Fujifilm, LAS-4000, Tokyo, Japan) and ImageMaster™ 17 2D Elite software,
version 3.1 (Amersham Pharmacia Biotech, Piscataway, NJ, USA). β-actin and histone were
used for the normalization of either the total protein extract or nuclear protein extract,
respectively.

2.14. Statistical Analysis

The data were obtained by using the Statistical Analysis System GraphPad Prism
5 (GraphPad Software, San Diego, CA, USA). All experiments were conducted thrice,
for three replications. Data are shown as mean ± standard deviation (SD). Significant
differences between the different treatments were analyzed using a one-way analysis of
variance followed by the Duncan’s test. The comparison between sample treatments and
the control group were performed by using the Student’s t-tests. Statistical significance
was set as follows: * p < 0.05, ** p < 0.01, and *** p < 0.001.

3. Results
3.1. Analysis of Chemical Contents of AC Extract

AC extract contained high concentrations of total phenols, flavonoids, and tannins,
represented as 102.6 ± 0.61 mg gallic acid/g extract, 274.7 ± 1.16 mg quercetin/g extract,
and 43.4 ± 1.33 mg catechin/g extract, respectively.

Tannic acid, chlorogenic acid, and apigenin were identified in AC leaf extract at the
concentration of 18.83 ± 0.13, 0.94 ± 0.03, and 0.27 ± 0.01 mg/g, respectively (Supplemen-
tary Figure S1). The retention time of tannic acid, chlorogenic acid, and apigenin were 24.5,
14.3, and 33.4 min, respectively.

3.2. Antioxidative Activities of AC Extract

To evaluate the antioxidative activity of the AC extract, its radical scavenging effect
was analyzed by DPPH and ABTS assays. The ascorbic acid and AC extract showed a
dose-dependent inhibition of DPPH and ABTS radicals. As shown in Figure 1, the positive
control, ascorbic acid, showed the scavenging effect on DPPH and ABTS radicals, with an
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IC50 value of 7.91 ± 0.33 µg/mL and 13.05 ± 0.28 µg/mL, respectively. AC extract also
significantly suppressed DPPH radicals with an IC50 value of 20.72 ± 1.01 µg/mL, and
ABTS radicals, with an IC50 value of 15.81 ± 0.78 µg/mL, suggesting that AC exhibited a
potent antioxidative effect.

Figure 1. DPPH (A) and ABTS (B) inhibition of A. californica extract. The radical scavenging effect
was presented as a percentage of that measured in the control group. Data are presented as the
mean ± SD. *, **, and *** indicate the significant within-group differences (* p < 0.05 ** p < 0.01 and
*** p < 0.001, respectively).

3.3. Cytotoxicity of AC Extract

The toxicity of AC on Raw264.7 and HDF cells was assessed by an MTT assay. As
shown in Figure 2A, LPS treatment on Raw264.7 cells slightly decreased survival of cells
by 28.2% when compared to the normal group; however, the supplement of 10 µM dexam-
ethasone and AC recovered cell viability. When compared to LPS-treated control cells, at
50 µg/mL, the AC extract protected cells from apoptosis, enhancing living cells by 44.5%.

Figure 2. Effect A. californica extract on cell viability of Raw264.7 (A) and human dermal fibroblast
(HDF) (B) cells. Data are presented as the mean ± SD. # and * indicate significant differences from
the non-treated cells and induced groups, respectively. # p < 0.05 vs. the non-treated group. * p < 0.05
vs. the induced control.

In Figure 2B, HDF cell survival of the irradiated control group was markedly reduced
by 16.4% when compared to the untreated group. AC doses (1–50 µg/mL) did not show a
significant effect on cell viability. Thus, AC at the concentrations of 1, 10 and 50 µg/mL
were used for the cell treatment in further experiments.

3.4. AC Extract Regulates Inflammatory Response in Raw264.7 Cells
3.4.1. Effect of AC Extract on NO Production in LPS-Induced Raw264.7 Cells

In photoaging, macrophages infiltrate to the site of skin damage to remove dead
cells, releasing abundant types of inflammatory mediators which are important for wound
healing after tissue injury. However, the uncontrollable release of these mediators may
lead to inflammatory damage, with many undesirable immunological responses. NO
overproduction is a hallmark of inflammatory responses. As shown in Figure 3A, in
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comparison to the untreated Raw264.7 cells, NO synthesis was increased by 1170.3% in the
LPS-treated cells after 24 h. However, in AC-treated groups, NO secretion decreased by
25.1% and 68.3% at 10 and 50 µg/mL, respectively, when compared to LPS-treated controls.
Dexamethasone also exhibited an inhibitory effect on NO production, which decreased by
35.4% when compared to the LPS-treated control. . . .

Figure 3. Effect of A. californica extract on NO production (A) and mRNA levels of IL-1β, IL-6, TNF-
α, iNOS, and COX-2 (B) in LPS-induced Raw264.7 cells. Data are presented as the mean ± SD. # and
* indicate significant differences from the non-treated cells and LPS-induced groups, respectively.
### p < 0.001 vs. the non-treated group. *, ** and *** p < 0.05, 0.01, and 0.001 vs. the LPS-induced
control, respectively.

3.4.2. Effect of AC Extract on the mRNA Expression of IL-1β, IL-6, TNF-α, iNOS, and
COX-2 in LPS-Induced Raw264.7 Cells

Inflammation triggers cellular signals that promote the production of inflammatory
mediators, to recruit other immune cells to the site of infection. In response to LPS induction,
the mRNA expression of cytokines such as IL-1β, IL-6, and TNF-α was accelerated by
384.2%, 314.7%, and 209.5%, respectively, when compared to untreated cells (Figure 3B).
AC at 50 µg/mL reversed these changes, evidenced by the decline of IL-1β, IL-6, and
TNF-α mRNA levels by 74.1%, 79.2%, and 42.7%, respectively, when compared to LPS-
treated control cells. The AC treatment was more effective than the positive control,
dexamethasone, which moderately inhibited IL-1β, IL-6, and TNF-α by 27.5%, 37.4%, and
14.7%, respectively.

Additionally, some inflammatory molecules, such as NO and prostaglandin E2, were
synthesized by enzymes such as iNOS and COX-2, respectively. In Figure 3B, LPS sensiti-
zation promoted iNOS and COX-2 mRNA production by 93.6% and 239.1%, respectively,
when compared to the normal group. However, the highest dose of AC effectively allevi-
ated iNOS and COX-2 mRNA expression by 44.7% and 50.0%, respectively, when compared
to the LPS-treated control.

3.5. AC Extract Protects HDF Cells from UVB Irradiation
3.5.1. Effect of AC Extract on ROS Production in UVB-Irradiated HDF Cells

As shown in Figure 4, ROS formation sharply increased by 51.1% in the irradiated
control group when compared with the non-treated group. However, the AC-treated
group exhibited a significant decrease in ROS levels when compared with the irradiated
control cells. In particularly, the treatment of 10 and 50 µg/mL AC lowered ROS formation
by 28.9% and 57.7%, respectively. The positive control, ascorbic acid, also exhibited an
inhibition of ROS production (by 19.6%).
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Figure 4. Effect of A. californica extract on levels of intracellular reactive oxygen species (ROS) in UVB-
irradiated HDF cells. After 24 h of treatment, intracellular ROS level was measured. The number
of cells is plotted versus the dichlorofluorescein fluorescence detected by the FL-2 channel (A).
Results are presented as histograms (B). Data are presented as the mean ± SD. * indicate significant
differences from the non-irradiated control and UVB-treated groups, respectively. ## p < 0.01 vs. the
non-treated group. *, ** and *** p < 0.05, 0.01 and 0.001 vs. the UVB-treated control, respectively.

3.5.2. Effect of AC Extract on the Protein Secretion of MMP-1, MMP-3, and Procollagen
Type I in UVB-Irradiated HDF Cells

To investigate the inhibitory effect of AC extract on collagen degradation, the study
further quantified the secreted protein levels of MMP-1, MMP-3, and type I procollagen in
irradiated cell culture supernatants by using ELISA kits. The exposure to UVB irradiation
elevated MMP-1 and MMP-3 protein levels by 63.5% and 117.1%, respectively, meanwhile
it also decreased procollagen type I production by 61.2% when compared to non-treated
group (Figure 5). The treatment of AC resulted in a dose-dependent reversed effect, which
inhibited the release of MMP-1 and MMP-3 by 21.2% and 26.8%, respectively, and promoted
the synthesis of procollagen by 79.3% when compared to the irradiated control group.
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Figure 5. Effect of A. californica extract on the protein secretion of metalloproteinase 1 (MMP-1) and
3 (MMP-3) (A), and procollagen type I (B) in UVB-irradiated HDF cells. Data are presented as the
mean ± SD. # and * indicate significant differences from the non-irradiated control and UVB-treated
groups, respectively. ## and ### p < 0.01 and 0.001 vs. the non-treated group, respectively. * and
** p < 0.05 and 0.01 vs. the UVB-treated control, respectively.

3.5.3. Effect of AC Extract on the mRNA and Protein Expression of MMP-1, TGF-β1, and
Procollagen Type I in UVB-Irradiated HDF Cells

As MMP-1 upregulation is a hallmark of photoaging, the mRNA expression studies
indicated that irradiation raised the mRNA expression of MMP-1 by 104.1%; meanwhile,
expression of the collagen synthesis activator, TGF-β1, and the collagen precursor procol-
lagen type I were diminished by 72.4% and 60.8% when compared to the normal group,
respectively (Figure 6A) AC extract reduced UVB-induced MMP-1 expression by 30.7% (at
10 µg/mL) and 49.4% (at 50 µg/mL). By contrast, AC (50 µg/mL) promoted TGF-β1 and
procollagen type I expression by 200.0% and 102.5%, respectively, when compared with the
irradiated control cells. This was comparable to the positive control, ascorbic acid (10 µM),
which showed inhibition of the MMP-1 level by 62.2% and upregulation by 146.6% and
105.1%, for the TGF-β1 and procollagen type I levels, respectively.

Figure 6. Effect of A. californica extract on mRNA (A) and protein (B) expression of MMP-1, TGF-β1,
and procollagen type I in UVB-irradiated HDF cells. Data are presented as the mean ± SD. # and *
indicate significant differences from the non-irradiated control and UVB-treated groups, respectively.
## and ### p < 0.01 and 0.001 vs. the non-treated group, respectively. *, ** and *** p < 0.05, 0.01 and
0.001 vs. the UVB-treated control, respectively.
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Similarly, the protein expression study also indicated an upregulation of MMP-1 by
74.5%, and a consequently downregulated procollagen type I by 32.1% when compared
to normal cells (Figure 6B) However, treatment with ascorbic acid and AC at 50 µg/mL
reversed this trend, and diminished MMP-1 expression by 29.1% and 49.9% when com-
pared to the irradiated control group, respectively. Furthermore, AC effectively promoted
procollagen type I by 69.9% at 50 µg/mL. Under UVB irradiation, TGF-β1 was inhibited
by 67.8% when compared to non-irradiated cells. However, AC recovered the expression
level of TGF-β1 by 155.6% when compared to UVB-irradiated control group.

3.5.4. Effect of AC Extract on MAPK/AP-1 Activation in UVB-Irradiated HDF Cells

The downstream signaling that follows UVB includes the phosphorylation of the
MAPK subunits: p38, ERK, and JNK. The effect of AC extract on MAPKs family members
was studied in UVB-exposed dermal fibroblasts. As shown in Figure 7, UVB triggered an
elevation of activated p-ERK, p-JNK, and p-p38. However, the treatment with AC extract
dose-dependently reversed these changes. Supplement of 50 µg/mL AC extract suppressed
the expression of p-p38, p-ERK, and p-JNK by 44.2%, 43.3%, and 26.7%, respectively.

Figure 7. Effect of A. californica extract on the protein expression of phosphorylated MAPK/AP-
1in UVB-irradiated HDF cells. Data are presented as the mean ± SD. # and * indicate significant
differences from the non-irradiated control and UVB-treated groups, respectively. #, ##, and ###
p < 0.05, 0.01 and 0.001 vs. the non-treated group, respectively. * and ** p < 0.05 and 0.01 vs. the
UVB-treated control, respectively.

Phosphorylation of MAPK subsequently activated the transcription factor c-Jun, which
can reside in the nucleus to assemble with c-Fos to form the AP-1 transcription factor
complex. AP-1 plays a pivotal role in MMP activation for collagen degradation. To further
analyze the molecular mechanism of AC, protein levels of phosphorylated c-Fos and c-Jun
were measured. As shown in Figure 7, UVB exposure upregulated the phosphorylation of
c-Fos and c-Jun. However, treatment of cells with 50 µg/mL AC extract inhibited p-c-Fos
and p-c-Jun levels by 55.0% and 74.8%, respectively.

3.5.5. Effect of AC Extract on NRF2 Activation in UVB-Irradiated HDF Cells

To assess the activation of the antioxidative system by AC treatment, the expression of
the cytoprotective factor NRF2, as well as NRF2-regulated antioxidant proteins in UVB-
exposed cells, were investigated. As shown in Figure 8, nuclear NRF2 protein expression
was increased by UVB stimulation. Treatment of cells with 50 µg/mL AC extract increased
NRF2 protein levels by 96.4% when compared with UVB control group. In addition, the
reduction of DLD (by 30.3%) in UVB-irradiated cells, which is a flavoprotein enzyme
of the TCA cycle-associated enzymes, was reversed by the AC treatment (increased by
36.0%). DLD not only associates with α-keto acid dehydrogenase, a regulator of ROS,
but also metabolizes α-lipoic acid, which activates two cytoprotective proteins, NRF2 and
HO-1. It was also found that AC treatment recovered the reduction in HIF1-α expression,
which plays vital roles in the adaptive response to hypoxia, resulting in the increases
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of 68.7% (10 µg/mL) and 76.6% (50 µg/mL). This might result from NRF2 activation,
which was reported to promote HIF1A gene expression and HIF1-α stability [30]. HIF1-α
can translocate to the nucleus and transcribe hypoxic adaptation genes, such as HO-
1 [13]. Moreover, HO-1 and NQO-1 protein expressions were significantly induced by the
supplement of AC extract. As shown in Figure 8, the protein levels of HO-1 and NQO-1
were upregulated by 70.4% and 38.3% with 50 µg/mL AC treatment, respectively.

Figure 8. Effect of A. californica extract on the expression of NRF2, DLD, HIF-α, HO-1, and NQO-1
in UVB-irradiated HDF cells. Data are presented as the mean ± SD. # and * indicate significant
differences from the non-irradiated control and UVB-treated groups, respectively. # p < 0.05 vs. the
non-treated group. *and ** p < 0.05 and 0.01 vs. the UVB-treated control, respectively.

3.5.6. Effect of AC Extract on NFATc1 Nuclear Translocation in UVB-Irradiated HDF Cells

NFAT is strictly involved in the skin inflammatory response. Following dephospho-
rylation, activated NFAT translocates to the nucleus, initiating cytokine gene expression.
Although NFAT has been well demonstrated for its role in immune systems, the merging
effect of NFAT in photoaging has also been reported. Thus, NFATc1 protein expression
was evaluated in UVB-irradiated HDF cells. As shown in Figure 9, UVB exposure induced
NFATc1 expression by 98.2%, however, treatment with the calcineurin inhibitor tacrolimus
and AC at 50 µg/mL inhibited NFATc1 by 25.6% and 32.7%, respectively, when compared
to the normal group. Additionally, AC reversed the dephosphorylation of NFATc1 in the
cytosol by 49.4%.

Figure 9. Effect of A. californica extract on the protein expression of nuclear NFATc1 and cytoso-
lic phosphorylated NFATc1 in UVB-irradiated HDF cells. Data are presented as the mean ± SD.
* indicate significant differences from the non-irradiated control and UVB-treated groups, respec-
tively. ## p < 0.01 vs. the non-treated group. * and ** p < 0.05 and 0.01 vs. the UVB-treated control,
respectively.
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4. Discussion

AC, which is native to northwestern Mexico and southwestern USA, has been tra-
ditionally applied for treating bacterial infections and inflammation [23]. AC products,
such as tea, tincture, and infusion, have also been utilized to alleviate the inflammatory
injury of mucous membranes, swollen gums, and sore throats [22]. In addition, its dusting
powder can be used externally for soaking inflamed or infected areas [29]. Furthermore,
in vitro investigations have also demonstrated the biological effects of AC, such as its
anti-bacterial [22,23], antioxidant [28], and anti-cancer activities [29]. However, despite the
historical and modern use of this plant to treat acute inflammation of the skin, only a few
studies have focused on the pharmacological effects and the mechanism underlying the
effects of AC on chronic inflammation, such as in skin photoaging. Thus, in this study, we
investigated the protective effects of AC treatment on LPS-stimulated murine macrophages
and UVB-exposed human dermal fibroblasts.

UVB exposure leads to physical cutaneous tissue damage and chronic inflammation.
The inflammatory response involves the infiltration of immune cells into the irradiated
area, leading to the release of NO and pro-inflammatory mediators such as cytokines,
chemokines, and prostaglandins. The control of inflammatory signaling molecules is essen-
tial for avoiding inflammatory injuries. The current study found that the use of AC extract
effectively downregulated the secretion of NO by approximately two-thirds, and the gene
expression of inflammatory mediators, including IL-1β, IL-6, TNF-α, COX-2, and iNOS, by
about half when compared with the levels of the LPS control. Noticeably, treatment with a
high concentration of AC resulted in a reduction in the mRNA expression of inflammatory
molecules, showing superior effects when compared with the anti-inflammatory drug dex-
amethasone, a corticosteroid with severe side effects such as rash, acne, allergic dermatitis,
and impaired wound healing [31].

To combat skin aging, the key strategy is to sustain the synthesis of collagen, the main
constituent of the ECM, contributing to 75% of the dry weight of the skin and providing
integrity and elasticity [32]. In this study, increases in collagenases such as MMP-1 and -3
under UVB irradiation were identified, further degrading type I collagen, which constitutes
80% to 90% of the total collagen of human skin [33]. However, AC treatment significantly
reversed this change by inhibiting the expression of MMP-1 by about 50% at both mRNA
and protein levels in UVB-irradiated dermal fibroblasts. In addition to the downregulation
of collagen degradation, AC also led to the upregulation of a procollagen inducer, TGF-
β1. A high dose of AC increased the mRNA and protein expression of TGF-β1 by over
100%, which was comparable to the effect of the positive control, ascorbic acid (10 µM),
which is a cofactor in the biosynthesis of procollagen and elastin. Furthermore, collagen
homeostasis was significantly influenced by the activation of the transcription factor AP-1,
which not only initiates the mRNA expression of several collagenases, including MMP-1,
-3, and -9, but also depresses the production of procollagens (precursors of collagens) by
downregulating the gene expression of procollagen type I. Under UVB irradiation, the
activation of AP-1 is mediated via MAPK phosphorylation, which is induced by high
intracellular ROS levels. The results from this study indicated a three-fold reduction in ROS
formation and the protein expression of phosphorylated MAPK subunits in AC-treated
cells, consequently suppressing MMP expression under UVB induction.

A study by Carmen et al. also reported high antioxidant levels in the stems and
leaves of AC upon measuring lipid peroxidation and scavenged free radicals after arsenic
exposure [34]. AC exhibited a low level of thiobarbituric acid reactive substances (TBARS),
typical oxidative stress markers, and a higher level of scavenged DPPH radicals under
arsenic-exposed conditions. This is consistent with the results from the current study,
in which AC showed inhibitory effects on DPPH and ABTS radicals at IC50 values of
20.72 ± 1.01 µg/mL and 15.81 ± 0.78 µg/mL, respectively. Additionally, one study re-
vealed activation of the antioxidant defense system NRF2 under UVB irradiation [35]. The
transcription factor NRF2 might be switched on to detoxify excessively produced ROS in
irradiated cells [35]. As NRF2 is required for the transcription of ROS quenching proteins,
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such as NQO1 and HO-1, it was found that there was an increase in nuclear-resident
NRF2 in UVB-exposed cells [36]. Interestingly, AC treatment induced a sharp increase in
the nuclear translocation of NRF2, which was even higher than that for the well-known
antioxidant ascorbic acid, a common constituent of skincare products. This resulted in
the mass production of detoxifying proteins such as NQO1 and HO-1 in the AC-treated
cells. In addition, it was found that a high dose of AC restored the expression of DLD
protein, which is not only associated with α-keto acid dehydrogenase, a regulator of ROS,
but also metabolizes α-lipoic acid, which activates two cytoprotective proteins, NRF2 and
HO-1. NRF2 is also involved in the upregulation of the transcription factor HIF1-α, which
is required for the transcription of HO-1 in the hypoxic response [37]. The removal of
excess ROS in irradiated cells is has been indicated to prevent further DNA damage and
the activation of AP-1, which upregulates collagenase MMPs. Moreover, genetic or phar-
macological NRF2 activation downregulated the mRNA expression of interleukin (IL)-6
and IL-1β, and cyclooxygenase (COX)-2 in mice after UV exposure [38]. Additionally, a hu-
man study revealed that topical applications of the Nrf2 activator sulforaphane alleviated
the level of solar-induced skin erythema, which indicates a high risk of skin cancer [38].
Thus, the antioxidant AC was suggested to be an effective contributor to preventing the
photodamage of skin.

In this study, the high concentrations of chemical components such as phenols,
flavonoids, and tannins found in AC extract were suggestive of its biological activities. In
particular, the HPLC results from the current study identified three phytochemicals in AC
extract: tannic acid, chlorogenic acid, and apigenin. Tannic acid decreased the levels of
ROS and pro-inflammatory cytokines in phorbol 12-myristate 13-acetate (PMA)- or H2O2-
induced Raw264.7 cells; meanwhile, in an in vivo zymosan-induced peritonitis mouse
model, tannic acid alleviated neutrophil recruitment and pro-inflammatory cytokines [39].
Moreover, as a strong antioxidative agent that attenuates ROS formation and NADPH
oxidase activation, and reduces the activity of the endogenous antioxidant defense system,
tannic acid prevented photodamage by reducing MMP-1 production in UVB-irradiated
L929 fibroblasts [40]. Other active components found in AC, such as chlorogenic acid and
apigenin, also exhibited anti-inflammatory effects, which reduced inflammatory mediators
(IL-1β, TNF-α, iNOS, NO, and COX-2) in LPS-induced Raw264.7 macrophages [41,42].
Moreover, apigenin alleviated apoptosis in UVB-irradiated keratinocytes by activating an-
tiapoptotic protein B-cell lymphoma 2 (Bcl-2) [43] and inhibiting COX-2 [44]. Chlorogenic
acid was also reported to prevent DNA damage in UVB-exposed human keratinocytes,
resulting from ROS reduction and downregulation of the pro-apoptotic marker cleaved
caspase-3 [45]. Thus, the synergistic effects of these identified active components might
contribute to the anti-inflammatory and photoprotective effects of AC extract.

Moreover, the key immune regulator NFATc1 was also found to be expressed in non-
immune cells, namely, dermal fibroblasts, under UVB irradiation. This can be explained
by the reciprocal effect between the overproduction of ROS and intracellular calcium
influx [46]. As intracellular calcium concentration is elevated, calcineurin dephosphorylates
NFAT to promote the nuclear localization of NFAT [15]. NFAT was reported to coordinate
with c-Jun to initiate the transcription of collagenase MMPs [47,48]. Furthermore, targeting
NFAT resulted in the downregulation of COX-2, which is involved in carcinogenesis [19]. In
the current study, AC treatment prevented the translocation of NFATc1 in UVB-irradiated
dermal fibroblasts by upregulating phosphorylated NFATc1, which might subsequently
reduce the activation of the AP-1 complex in the nucleus. This results in lower MMP-1
mRNA expression in AC-treated cells, further supporting the restoration of collagen.

5. Conclusions

This study was conducted to assess the protective effect of AC against photoaging
in an in vitro model. The results indicated that AC treatment might regulate the activa-
tion of macrophages by reducing the secretion of NO and pro-inflammatory cytokines,
consequently alleviating the inflammatory response. In addition, AC treatment restored
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the synthesis of procollagen type I in UVB-irradiated dermal fibroblasts by inhibiting
MMP expression and activating the collagen inducer TGF-β1. This further prevented the
degradation of ECM components during UVB exposure, thus reducing the formation of
aging phenotypes. Besides, AC acted as a strong source of antioxidants, which prevented
oxidative imbalance by inhibiting ROS formation and activating the cytoprotective NRF2.
The relief of cellular oxidative stress can alleviate macrophage infiltration and MAPK acti-
vation, thus minimizing skin damage caused by the overexpression of MMP. In particular,
the study indicated that NFATc1, a central regulator of the immune system, might be a
promising target for efforts to counter photoaging. The inhibition of the nuclear localization
of NFATc1 by AC might decrease the expression of MMP genes, as well as genes encoding
pro-inflammatory cytokines such as IL-6 and TNF-α.

In summary, the multiple functions of AC suggested that it is an effective alternative
therapeutic candidate for skin diseases, especially in the photodamage of skin. Neverthe-
less, there is a need for the further evaluation of the biological effects of AC and its active
compounds on in vivo models and in clinical trials.
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