
Hindawi Publishing Corporation
Journal of Nucleic Acids
Volume 2012, Article ID 978384, 10 pages
doi:10.1155/2012/978384

Review Article

Specific Roles of MicroRNAs in Their Interactions with
Environmental Factors

Juan Wang1, 2, 3 and Qinghua Cui1, 2, 3

1 Department of Biomedical Informatics, Peking University Health Science Center, Beijing 100191, China
2 MOE Key Lab of Cardiovascular Sciences, Peking University, Beijing 100191, China
3 Institute of Systems Biomedicine, Peking University, Beijing 100191, China

Correspondence should be addressed to Juan Wang, wjuan@hsc.pku.edu.cn

Received 4 July 2012; Accepted 26 September 2012

Academic Editor: Kenneth K. W. To

Copyright © 2012 J. Wang and Q. Cui. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

MicroRNAs (miRNAs) have emerged as critical regulators of gene expression by modulating numerous target mRNAs expression
at posttranscriptional level. Extensive studies have shown that miRNAs are critical in various important biological processes,
including cell growth, proliferation, differentiation, development, and apoptosis. In terms of their importance, miRNA dysfunction
has been associated with a broad range of diseases. Increased number of studies have shown that miRNAs can functionally interact
with a wide spectrum of environmental factors (EFs) including drugs, industrial materials, virus and bacterial pathogens, cigarette
smoking, alcohol, nutrition, sleep, exercise, stress, and radiation. More importantly, the interactions between miRNAs and EFs
have been shown to play critical roles in determining abnormal phenotypes and diseases. In this paper, we propose an outline of
the current knowledge about specific roles of miRNAs in their interactions with various EFs and analyze the literatures detailing
miRNAs-EFs interactions in the context of various of diseases.

1. Introduction

MicroRNAs (miRNAs) are regulatory RNAs that are 20–
30 nucleotides long that bind the 3′-untranslated regions
of target mRNAs [1–3]. miRNAs have emerged as critical
regulators of gene expression by modulating the expression
of numerous target mRNAs mainly at the posttranscriptional
level [4]. Since partial or imperfect complementarity of
an miRNA to a target mRNA can lead to translational
repression, a single miRNA has the ability of regulating a
large number of genes [5]. miRNAs have been shown to play
a role in regulating a wide range of biological processes, such
as cell growth, proliferation, differentiation, development,
and apoptosis [6]. In terms of their importance, dysfunction
of miRNAs has been associated with various diseases [7–
9]. In contrast to the wealth of publications about their
biological effects, the information about specific regulations
of miRNAs has comparatively lagged behind.

The phenotype of an organism is determined by the
complex interactions between genetic factors (GFs) and
environmental factors (EFs). EFs have been shown to

contribute tremendously to the formation and development
of many diseases, especially complex diseases [10–12]. The
interactions between GFs and EFs, often hypothesized to be
mediated by epigenetic mechanisms, modulate the reproduc-
tive fitness of an organism, its response to external stimuli
and health [13]. Similar to other GFs, miRNAs have complex
interactions with a wide spectrum of EFs [14]. Recently,
increased number of studies have shown that miRNAs can
functionally interact with a variety of EFs including drugs
[15, 16], industrial materials [17, 18], virus and bacterial
pathogens [19, 20], alcohol [21–23], cigarette smoking [24–
26], nutrition [27, 28], sleep [29], exercise [30, 31], stress
[32, 33], and radiation [34]. The interactions between
miRNAs and these EFs play critical roles in determining
phenotypes. The illustration of the specific roles of miRNAs
and the patterns of miRNA deregulation in the miRNAs-EFs
interactions can help to discover the mechanisms of diseases
and drug response therefore providing insights into disease
diagnosis, prognosis and novel pharmacologic approaches
(Figure 1). In this paper, we propose an outline of the current
understanding about specific roles of miRNAs when they
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Figure 1: Significant roles of miRNAs-EFs interactions.

are interacting with various EFs and analyze the literatures
studying the miRNAs-EFs interactions in the context of
diseases.

2. Drugs

Previous studies had highlighted the post-transcriptional
modifications mediated by miRNAs in drug treatment, drug
sensitivity, and drug addiction.

Several groups have shown the altered miRNAs profiles in
anticancer drugs treatment, including all-trans-retinoic acid
[35, 36], hydroxycamptothecin [37, 38], imatinib [16, 39–
41], 5-fluorouracil [42, 43], gemcitabine [44–47], cisplatin
[48–52], fludarabine [53], lithium [54–56], epigallocatechin
gallate [57], and curcumin [58–60]. Garzon et al. studied
the effects of all-trans-retinoic acid (ATRA) treatment on
the expression of miRNAs in acute promyelocytic leukemia
patients as well as in cell lines by using a miRNA microar-
ray platform and quantitative real-time polymerase chain
reaction (qRT-PCR). Their results showed upregulation of
miR-15a, 15b, 16-1, 223, 342 107 and let-7a-3, let-7c, let-
7d and downregulation of miR-181b in ATRA treatment.
Among the upregulated miRNAs, miR-107 was predicted to
target NFI-A, a gene involved in the regulatory loop with the
participation of miR-223 and C/EBPa during granulocytic
differentiation [35].

Drug insensitivity or resistance is a major obstacle for
successful cancer therapy. Increasing evidence suggested that
miRNAs modulate cellular sensitivity to anticancer reagents.
Wu et al. showed significantly different sensitivities of the
six gastric cancer cell lines to hydroxycamptothecin (HCPT).
The levels of 25 miRNAs were shown to be deregulated
in the HCPT-resistant gastric cancer cells, including miR-
200 family, miR-196a, 338, 126, 31, 98, 7 and let-7 g.
The target genes of these miRNAs are involved in cancer
development, progression, and chemosensitivity [37]. Ali

et al. evaluated the effects of curcumin or its analogue
difluorinated-curcumin (CDF) alone or in combination with
gemcitabine on cell viability and apoptosis in gemcitabine-
sensitive as well as gemcitabine-resistant pancreatic cancer
(PC) cell lines [58]. They showed downregulation of miR-
200 and upregulation of miR-21 (an indicator of tumor
aggressiveness) in gemcitabine-resistant cells in comparison
to gemcitabine-sensitive cells. In addition, gemcitabine sen-
sitivity can be induced in PC cells through the modulation of
miR-200 and miR-21 expression by curcumin or its analogue
CDF. With the application of anti-miR-21 oligonucleotide,
Li et al. were able to use anti-miR-21 oligonucleotide to
enhance the chemosensitivity of leukemic HL60 cells to
arabinosylcytosine [61]. In the study performed by Ji et
al. in 2009, the expression patterns of miRNAs in patients
with hepatocellular carcinoma (HCC), their survival, and
response to interferon alfa were examined [62]. They found
a higher expression of miR-26a and miR-26b in non-
tumor liver tissue in female than in male HCC patients.
They also showed significantly decreased levels of miR-26
expression in comparison to the paired noncancerous tissues.
Furthermore, cancer patients with tumors of low miR-26
level had shorter overall survival but better response to
interferon therapy than those with tumors of high levels of
miR-26. These results suggested the association between the
miR-26 expression level and the survival of HCC patients as
well as their response to adjuvant interferon alfa therapy [62].

Drug abuse induces persistent structural and functional
changes in the mesolimbic dopaminergic system and leads
to the progression of patients toward the high-risk drug-
seeking behavior and relapse. Much emerging evidence
suggests that drug-induced neuroplasticity is regulated by
gene expression and post-transcriptional regulation [63, 64].
Chandrasekar and Dreyer had shown that a chronic usage of
cocaine decreased miR-124 and let-7d levels and increased
the expression of miR-181a in mesolimbic pathway [65].
They also proposed a complex regulatory pathway involving
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miRNAs in cocaine-mediated neuronal adaptations [66].
Evidence has suggested that cross-regulation between tran-
scription factors and miR-212/132 played a role in drug
addiction [67]. MiR-132 and miR-212 are tandem miRNAs
whose expression is necessary for the proper development,
maturation, and function of neurons. Deregulation of miR-
212/132 had been associated with several neurological disor-
ders [67]. It has been shown that overexpression of miR-212
induces CREB activity, the negative modulator of the reward
response to cocaine, therefore exerts protective function
against cocaine addiction by reducing the responsiveness to
the motivational properties of the drug [68]. The X-linked
transcriptional repressor methyl CpG binding protein 2
(MeCP2), known for its role in the neurodevelopmental dis-
order Rett syndrome, is emerging as an important regulator
of neuroplasticity in postmitotic neurons. MeCP2 regulates
cocaine intake through homeostatic interactions with miR-
212 to control the effects of cocaine on striatal brain-
derived neurotrophic factor (BDNF) levels. As MeCP2 levels
are correlated to BDNF expression, which controls cocaine
intake, miR-212 could fine-tune the responses of patients
to drug abuse by both increasing CREB signaling and
decreasing BDNF expression, leading to decreased cocaine
intake [69].

3. Industrial Materials

Many industrial materials have toxicity and may alter devel-
opmental pathways and cell processes through epigenetic
mechanisms. Bisphenol A (BPA) is an industrial plasticizer
widely used as coating for food cans and plastic water bottles.
The frequency of BPA exposure has steadily increased during
recent years [18]. Whiting and colleagues investigated the
effects of BPA exposure on miRNAs in human placental cell
lines using miRNA microarray and qRT-PCR analysis. MiR-
146a was shown to be the only miRNA validated by qRT-PCR
as being significantly upregulated in both 3A and HTR-8 cell
lines with BPA treatment [17]. It was also demonstrated that
stable overexpression of miR-146a in 3A placental cell line
leads to a significant decrease in cell proliferation, a result
consistent with several other studies [70, 71]. In addition,
over-expression of miR-146a in placental cell lines led to
increased sensitivity of these cells to bleomycin, the DNA
damaging agent, suggesting that the targets of miR-146a may
be involved in the DNA damage response.

Jardim et al. investigated the pollutant-mediated reg-
ulations of miRNAs in airway epithelial cells with diesel
exhaust particles (DEP), the largest source of emitted
airborne particulate matter (PM).They showed that DEP
exposure significantly modulated the miRNA expression
profile in human airway epithelial cell lines. Specifically,
197 out of 313 (62.9%) detectable miRNAs had been
either upregulated or downregulated by 1.5 fold. Molecular
network analysis of putative targets of the 12 mostly altered
miRNAs suggested that DEP exposure was associated with
inflammatory responsive pathways and a strong tumorigenic
disease signature. These results clearly demonstrated that
alteration of miRNA expression profiles by environmental

pollutants such as DEP could modify cellular processes
by regulation of gene expression and subsequently lead to
disease pathogenesis [72]. In a similar study, Bollati et al.
discovered the significant increases of the expression of miR-
222 and miR-21 in peripheral blood leukocytes from foundry
workers with exposure to metal-rich particulate matter [73].

4. Virus and Other Pathogens

miRNAs have been known to play a critical role in the life
cycle of retroviruses and a few oncogenic viruses, including
HIV [74, 75], reticuloendotheliosis virus strain T (REV-T)
[76], influenza A virus [77], Epstein-Barr virus [78, 79],
human T-cell leukemia virus type 1 (HTLV-1) [80, 81],
gammaretrovirus XMRV [82], cytomegalovirus (HCMV)
[83, 84], Hepatitis B virus (HBV) [85, 86], Hepatitis C virus
(HCV) [87, 88], and human papilloma virus (HPV) [89].
These viruses regulate viral replication in the host cells with
the mediation of specific miRNAs. HCC is the fifth most
common cancer worldwide. The greatest risk factor for HCC
is the existence of cirrhosis, most commonly induced by
HBV or HCV infections as well as factors such as alcohol
consumption, oxidative stress, and aflatoxin or arsenic
exposure. Specific miRNAs have been shown to be involved
in subgroups of HCC caused by different environmental
risk factors. Examinations of miRNAs functions and their
expression are important for HCC diagnosis, treatment,
and prognosis (Figure 2). Several host cell factors including
liver-specific miR-122 have been shown to be involved in
virus translation, replication, and production. Jopling et al.
observed that sequestration of miR-122 in liver cells could
result in marked loss of autonomously replicating hepatitis
C viral RNAs. MiR-122 has been shown to increase HCV
abundance in HCV replication models by interacting with
the 5′ noncoding region (NCR) of the HCV genome [90].
MiR-122 has also been shown to stimulate HCV translation
by enhancing the association of ribosome with viral RNA
at an early initiation stage [91]. Studies by Lanford and
colleagues suggested that miR-122 was essential for the
accumulation of HCV RNA in chronically HCV-infected
chimpanzees by inhibiting miR-122 through a specific locked
nucleic acid (LNA) oligonucleotide [87]. Qiu et al. also
suggested a role of miR-122 in the regulation of HBV
replication by downregulating the Heme oxygenase-1 (HO-
1) [92]. These results suggest that miR-122 may serve as a
target for antiviral intervention.

Human T-lymphotropic virus type 1 (HTLV-1) is the
etiologic agent to which the prolonged exposure can cause
the adult T-cell leukemia of CD4+ T-cell origin, a severe
and fatal lymphoproliferative disease. Pichler et al. reported
the deregulation of several miRNAs, including miR-21,
24, 146a, 155, and 223 in HTLV-1-transformed cells. The
expression pattern of these miRNAs presented a uniform
phenotype in HTLV-transformed cells in comparison to
HTLV-negative control cells. Studies suggested miR-146a
could be directly attributed to oncoprotein Tax via NF-κB-
mediated transactivation in HTLV signaling pathways [81].
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Figure 2: Specific miRNAs are associated with different subgroups of HCC associated with various environmental risk factors. ↑ indicates
up-regulation; ↓ indicates down-regulation; HCC: hepatocellular carcinoma; HCV: hepatitis C virus; HBV: hepatitis B virus; AFB1: aflatoxin
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Recent studies characterized modifications of host miR-
NAs expression following infection by exclusively extracel-
lular (Helicobacter pylori) or intracellular (Salmonella enter-
ica) gram-negative bacteria, gram-positive bacteria (Listeria
monocytogenes) and other pathogens such as Mycobacterium,
Francisella species, and Plasmodium berghei [20, 93, 94].

5. Cigarette Smoking

Throughout one’s life course, a number of exposures can
affect an individual’s development, health, and overall qual-
ity of life. One of the most common, potentially hazardous
environmental exposures that negatively influence health
and development is cigarette smoke exposure [24]. Maccani
et al. investigated the effects of maternal cigarette smoking
during pregnancy on differential expression of miRNAs in
the placenta. The data suggested that maternal cigarette
smoking during pregnancy was associated with the down-
regulation of miR-16, 21, and 146a. They further identified
two components, nicotine and benzo [a]pyrene as the
specific miRNA modulators in cigarette smoking [26, 95].

Xi et al. investigated the effects of cigarette smoke
condensate (CSC) on miRNA expression and function in
both normal human respiratory epithelial cells and lung
cancer cells [96]. Their results showed that the exposure
to CSC induced the expression of miR-31 in both normal
respiratory epithelial cells and lung cancer cells. Further
studies showed that the overexpression of miR-31 led to
increased proliferation and tumorigenicity in lung cancer
cells, whereas knockdown of miR-31 expression significantly

decreased lung cancer cell proliferation [96]. These results
suggested that miR-31 was responsive to cigarette smoke
exposure in both normal respiratory epithelia and lung
cancer cells and might play a role as an oncomir in
lung cancer carcinogenesis pathway [96]. Schembri et al.
investigated whole-genome miRNA expression in bronchial
airway epithelium from regular smokers and nonsmokers.
They observed that 28 miRNAs were differentially expressed,
the majority of which were downregulated in the airway
epithelium of regular smokers including miR-218 [97].
Several studies have also been performed to characterize the
effects of environmental cigarette smoke (ECS) (also called
“passive,” “secondhand,” or “sidestream” cigarette smoke) on
miRNA expression. Izzotti et al. found that the most greatly
downregulated miRNAs belonged to miRNA families which
had been previously shown to regulate a number of key
biological processes, including stress response, proliferation,
angiogenesis, and apoptosis [98]. Furthermore, they showed
that exposure to ECS upregulated 2.9% of genes and 9.7%
of proteins in the same tissue, suggesting that the ECS
exposure-induced down-regulation of miRNAs may lead
to increased protein levels of genes which are negatively
regulated by these miRNAs [98].

6. Alcohol

Neurotoxicity-mediated pathophysiological conditions
could manifest diseases or disabilities such as Parkinson’s
and Alzheimer’s which have debilitating implications.
Neurotoxicity as well as brain injury can be caused by
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external agents including drugs and alcohol, and miRNAs
have been shown to play a pivotal role in these processes [99].
Maternal ethanol consumption during pregnancy can lead
to a stereotypic cluster of fetal craniofacial, cardiovascular,
skeletal, and neurological defects that are collectively termed
the fetal alcohol spectrum disorder (FASD) [22]. The
developing brain is an important and vulnerable target
for ethanol. In 2007, Sathyan et al. obtained the first
evidence showing that miRNAs mediated the teratogenic
effects by ethanol treatment [100]. The accumulated data
support the following conclusions. (1) Ethanol appears
to affect a relatively small subset of expressed miRNAs.
(2) Ethanol appears to affect miRNAs which are normal
components of the cellular repertoire for a given stage of
differentiation. As an example, miR-124 is sufficient to direct
fetal neural stem cells (NSCs) toward a neuronal lineage
(22,101). (3) Ethanol appears to affect increasing numbers
of miRNAs along the developmental stage. (4) MiRNAs
targeted by ethanol exhibit developmental stage-specific
sensitivity. (5) Some ethanol-sensitive miRNAs exert their
functions over multiple developmental stages, for example,
miR-9 exhibits ethanol sensitivity at multiple stages of
development, expanding from the embryo through fetus
to the adulthood [22, 101, 102]. In order to illustrate the
mechanisms of ethanol regulation of miRNAs, Sathyan et al.
reported that GABAA receptors and nicotinic acetylcholine
receptors could mediate certain ethanol effects on miRNAs
expression, respectively [100, 101]. It has been shown
that several ethanol-sensitive miRNAs are localized on
chromosomal regions that are susceptible to epigenetic
modifications. Ligand-gated ion channel receptors and
epigenetic modifications have been shown to be potential
mediators of the effects of ethanol on fetal miRNAs [22].
Ethanol and nicotine are often coabused. Balaraman et al.
studied their combined effects on fetal neural development,
particularly on NSCs. Their results showed that ethanol
suppressed the expression of known ethanol-sensitive
miRNAs (miR-9, 21, 153, and 335) and miR-140-3p, while
nicotine at the concentrations attained by cigarette smokers
could induce a dose-related induction in these miRNAs.
These data suggest that concurrent exposure to ethanol
and nicotine disrupts miRNA regulatory networks that are
important for NSC maturation [101].

Alcohol-dependence can lead to long-term changes of
gene expression in brain. Tapocik et al. examined the poten-
tial roles of miRNAs in persistent gene expression regulation
of the medial prefrontal cortex (mPFC) of the rats with a his-
tory of alcohol-dependence. Their results showed that more
than 41 rat miRNAs and 165 mRNAs in the mPFC were sig-
nificantly altered after chronic alcohol exposure. Categories
of gene ontology differential expression indicated that these
miRNAs served in functional processes commonly associ-
ated with neurotransmission, neuroadaptation, and synaptic
plasticity. Their results demonstrated a significant shift in
miRNA expression pattern in the mPFC following a history
of alcohol-dependence. MiRNAs may play a pivotal role in
the reorganization of synaptic connections and long-term
neuroadaptations in alcohol-dependence due to their func-
tions of global regulation of multiple target transcripts [23].

Chronic alcohol abuse can cause liver damage, including
inflammation, fatty liver, fibrosis, cirrhosis, and HCC. Bala
and Szabo showed that alcohol could induce miR-155
and miR-132 expression in liver as well as in isolated
hepatocytes and Kupffer cells of alcohol-fed mice [103]. Yin
et al. showed that miR-217 could promote ethanol-induced
fat accumulation in hepatocytes by downregulating SIRT1
[104]. Ladeiro et al. suggested the miRNA deregulations may
be associated with alcohol consumption and HBV infection
in HCC. Their studies indicated the correlation between
miR-126 down-regulation and alcohol abuse-related HCC in
comparison to the other HCCs (Figure 2). Their miRNAs
profiling is the first global genomic approach that enables us
to differentiate the alcohol abuse-related HCC from the other
HCC tumors [21].

7. Stress

Cells frequently encounter conditions that can lead to stress.
A few well-characterized stressors include hyperthermia,
hypoxia, ATP depletion, and oxidative stress [105, 106].
In order to survive and adapt to stressful conditions, all
mammalian cells have evolved a molecular defense reaction
termed the cellular stress response (CSR). Recent studies
have suggested that miRNAs participate in the CSR, such as
hypothermia [107], hyperthermia [108], hypoxia [109–112],
folate deficiency, and arsenic exposure [33].

Wilmink et al. studied the specific group of deregulated
miRNAs in the cells exposed to hyperthermia. Their results
showed that the heat could induce upregulation of miRNAs
including miR-125b, 382, and 452 and downregulation of
miRNAs including miR-138, 7, and 196b. Several thermally-
regulated miRNAs (miR-452, 382, and 378) expresses only in
cells exposed to hyperthermia [108].

Hypoxia is an essential feature of the neoplastic microen-
vironment. Tumors with extensive low oxygen level tend
to exhibit poor prognosis and resistance to conventional
therapy [109]. Ivan’s group identified a set of hypoxia-
regulated miRNAs (HRMs), including miR-21, 23a, 23b, 24,
26a, 26b, 27a, 30b, 93, 103, 103, 106a, 107, 125b, 181a, 181b,
181c, 192, 195, 210, and 213 [112]. In addition, a set of
miRNAs were down-regulated in hypoxic cells, including
miR-15b, 16, 19a, 20a, 20b, 29b, 30b, 30e-5p, 101, 141,
122a, 186, 320, and 197 [113, 114]. Saito et al. suggested
the involvement of the miR-130 family in hypoxia-induced
expression of hypoxia inducible factor 1α (HIF-1α). MiR-130
family has been identified to target DDX6 mRNA, which is a
component of the P-bodies, and facilitate the translation of
HIF-1α during hypoxia [110].

Dietary folate deficiency has been linked to developmen-
tal anomalies as well as increased risk for a number of cancers
[115]. Low dietary folate levels lead to decreased DNA
stability through misincorporation of uracil and subsequent
DNA damage during the repair process as well as to increased
genomic hypomethylation [116]. Arsenic exposure, similar
to ionizing radiation and folate deficiency, has been linked
to a variety of human cancers [117]. Marsit et al. examined
the in vitro effect of folate deficiency and arsenic exposure
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on the expression pattern of 385 known human miRNAs
using microarray analysis and they discovered alterations of
specific miRNA profiles. The miRNAs that were significantly
altered by 6-day folate deficiency treatment included miR-
181b, 182, 222, 345, 181a, 205, 145, 99a, 125b, 130b, 221,
22, 191, 103, 107, 34a, 198, 183, 146, 422b, 210, 24, and 361
[33]. These results suggested that aberrant phenotypes might
result from alterations in key miRNAs expression at critical
stages in development and tumorigenesis due to altered
folate status. Reduced dietary folate could lead to decreased
level of S-adenosyl methionine, which is the required methyl-
group donor for all cellular methylation reactions, including
those for DNA and proteins such as histones [33]. The altered
miRNAs expression profiles may be related to the altered
methyl-donor pool and the subsequent epigenetic alterations
at the DNA or histone code level, resulting in changes
of miRNA and gene expression [33]. The miRNAs that
were significantly altered by 6-day arsenic exposure included
miR-210, 22, 34a, 221, and 222 [33], all of which were
also altered by folate deficiency. Similar effects on genomic
methylation status have also been reported for arsenic [118].
These results supported the hypothesis that arsenic may alter
one-carbon metabolism and therefore cause downstream
epigenetic effects.

8. Radiation

DNA damage can be caused by multiple stressors including
ionizing radiation, UV exposure, reactive oxygen species, and
many DNA damaging chemicals, such as doxorubicin and
camptothecin [119–121]. MiRNA-mediated gene regulation
has been contributed to the mechanisms of DNA-damage
caused by UV exposure and ionizing radiation. Studies by
Pothof et al. suggested that the cellular responses to UV-
induced DNA damage were also regulated at the post-
transcriptional level by miRNAs. UV damage has been shown
to cause cell-cycle-dependent relocalization of Ago2 into
stress granules and changes of miRNA expression. Both
events of miRNA-expression alteration and stress-granule
formation occurred within the first hour following genotoxic
stress, which suggested miRNAs-mediated gene regulation
happened earlier than most transcriptional responses. The
functionality of the miRNAs response was illustrated by the
UV-inducible miR-16 which down-regulated checkpoint-
gene CDC25a and regulated cell proliferation [122].

Ionizing radiation (IR) has been widely used in cancer
therapy and biological studies. It disrupts cellular homeosta-
sis through multiple mechanisms including the alteration
of gene expression profile [123]. Shin et al. investigated the
effects of IR on miRNA expression profile in the human lung
carcinoma cell line A549. Microarray analysis identified 12
and 18 miRNAs in 20- and 40-Gy-exposed A549 cells, respec-
tively, with more than 2-fold changes in their expression
levels. Target prediction for IR-responsive miRNAs suggested
that these miRNAs might target genes which are related to
apoptosis, regulation of cell cycle, and DNA damage and
repair. The results suggested that the expression levels of
miRNAs could be affected by radiation and they might

be involved in the regulation of radiation responses [123].
Niemoeller et al. investigated IR-induced miRNA expression
profiles in six malignant cell lines. Their results showed that
IR could cause 2-3 fold change of the expression level of
miRNAs known to be involved in the regulation of cellular
processes such as apoptosis, proliferation, invasion, local
immune response, and radioresistance (e.g., miR-1285, 24-
1, 151-5p, and let-7i). Moreover, they discovered several
new miRNAs that are radiation-responsive (e.g., miR-144)
[34].

Exposure to high-dose radiation causes ionization in
the molecules of living cells, leads to DNA damage, and
promotes tumor formation. On the other hand, low-dose
radiation induces the beneficial effects on organisms, named
as hormesis. Cha et al. identified responses of miRNAs to
low- or high-dose γ-irradiation in the human lymphoblast
line IM9. They discovered that IR exposure could induce
changes in specific miRNA expression in a dose-dependent
manner and provided evidence that low-dose radiation could
suppress the progression of malignant cancer by controlling
miRNA expression [124].

9. Conclusion and Future Directions

Environmental exposures including drugs, industrial mate-
rials, cigarette smoking, alcohol, stress, and radiation may
cause a number of deleterious effects on health, develop-
ment, and survival. Increased research has discovered the
roles of miRNAs in the responses to environmental exposures
under various conditions. The interactions of miRNAs and
EFs have been associated with abnormal phenotypes and
diseases. For example, specific miRNAs have been identified
for different subgroups of HCC with various environmental
risk factors. Investigation into the specific roles of miRNAs
in the interactions between miRNAs and EFs may help
uncovering the mechanisms of disease. These studies may
potentially lead to the development of useful indicators of
toxic exposure or novel biomarkers for diseases diagnosis.
Studies of miRNAs in the disease context may also contribute
to the development of novel pharmacologic approaches. The
recent development of miRNA derivatives with increased
stability and binding efficiency, including anti-microRNA
oligonucleotides (AMOs) and LNAs served such purpose
[87, 109]. As an example, targeting an HRM which plays
a survival role in hypoxia may provide a new angle in
targeting a notoriously refractory fraction of tumor cells
[109]. Anti-miR-21 oligonucleotide has been shown to
enhance the chemosensitivity of leukemic HL60 cells to
arabinosylcytosine by inducing apoptosis [61]. Treatment
of chronically infected chimpanzees with a LNA-modified
oligonucleotide (SPC3649) complementary to miR-122 led
to long-lasting suppression of HCV viremia [87]. Further-
more, manipulations of selected miRNAs could synergize
with conventional therapies in the treatment of various
diseases. Finally, insilico analysis and modeling may help
studying patterns among miRNAs, EFs, and diseases and
identifying novel strategies for disease diagnosis, treatment,
and prognosis [125].
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