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Transcriptional profiles reveal histologic origin and prognosis 
across 33 The Cancer Genome Atlas tumor types
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Background: In recent years, with the development of transcriptome sequencing, the molecular 
characteristics of tumors are gradually revealed. Because of the complexity of tumor transcriptome, there is a 
need to look for the molecular signatures which can be used to evaluate the tissue origin and cell stemness of 
tumors in order to promote the diagnosis and treatment of tumors. 
Methods: Tumor tissue-specific gene sets (TTSGs) consisting of 200 genes were selected using RNA 
expression data of 9,875 patients from 33 tumor types. t-distributed Stochastic Neighbor Embedding (t-SNE) 
was used for dimensionality reduction and visualization of TTSGs in each tumor type. To evaluate oncogenic 
dedifferentiation and loss of cell stemness, Euclidean distance from each sample to a human embryo single-
cell RNA-seq dataset (GSE36552) of TTSGs was calculated as TTSGs index indicating dissimilarity of 
tumors and embryo. TTSGs index was evaluated for prognosis in each tumor type. Two published signature 
indexes, the mRNA signature index (mRNAsi) and CIBERSORT, were compared to assess the correlation 
between the TTSGs index with cell stemness and immune microenvironment. Finally, the difference of 
prognosis, immune microenvironment and radiotherapy outcomes were compared between patients with 
high and low TTSGs index.
Results: In this study, all 33 tumor types in The Cancer Genome Atlas (TCGA) were embedded into 
isolated clusters by t-SNE and confirmed by k-nearest neighbors (kNN) algorithm. Clusters of squamous-
cell carcinoma were adjacent to each other revealing similar histologic origin. Basal-like breast cancer was 
separated from luminal and HER-2-amplified subtypes and closed to squamous-cell carcinoma. TTSGs 
index was related to overall survival outcomes in cancers derived from liver, thyroid, brain, cervical and 
kidney. There was a positive correlation between mRNAsi and TTSGs index in pan-kidney and pan-
neuronal cancers. Furthermore, cell fractions of M2 macrophages and total leukocytes increased in the group 
with higher TTSGs index. Patients with higher TTSGs index had longer overall survival time and less 
radiation therapy resistance compared to patients with lower TTSGs index.
Conclusions: The signature of TTSGs is related to tumor expression features that distinguish tumors of 
different histologic origin using t-SNE. The signature also relates to prognosis of certain kinds of tumors.
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Introduction

Malignant tumors are diverse and complex diseases with 
molecular changes on genomic, transcriptomic, proteomic 
and epigenetic levels and are highly variable in histological 
features and clinical prognoses (1). This complexity creates 
a challenge in developing tumor molecular signatures and 
identifying methods that are clinically useful with respect 
to prognosis or prediction (2,3). In recent years, with the 
rapid development of next generation sequencing (NGS), 
there has been obvious progress in researches on the DNA 
mutational signatures of somatic mutations that can be used 
for evaluating tumor prognosis, drug resistance, and tumor 
cell percentage (4,5). However, due to the spatiotemporal 
complexity of gene expression and tumor evolution, tumor 
molecular signature studies at the transcriptome level are 
relatively unfolding (6).

The Cancer Genome Atlas (TCGA) is an open access 
cancer database that provides an integrated platform 
for studying tumors from multiple perspectives in large 
cohorts (7). Based on TCGA, an overall understanding 
of pan-cancer levels in the development of tumors was 

obtained, which contributed to the study of mRNA 
signatures (8). Some progress has been made in the study 
of tumor mRNA signatures for cell-of-origin patterns, 
oncogenic processes, mRNA methylation and signaling 
pathways through TCGA data (9-12). These studies 
have not only extended the current understanding of the 
nature of tumors but also provided a reference for clinical 
diagnosis, treatment and prognosis (13). On the other 
hand, advances in single-cell RNA sequencing (scRNA-
seq) have allowed for novel perspectives of transcriptome 
research (14). SCPortalen is a single-cell centric database 
constructed for data mining, in which the expression data 
from scRNA-seq are collected and rearranged for a more 
convenient accession (15).

The widespread application of deep learning algorithms 
in recent years has brought new methods for performing 
data-intensive bioinformatics, which have been applied to 
medical image recognition, clinical data mining and gene 
expression studies (16). t-distributed Stochastic Neighbor 
Embedding (t-SNE) is a non-parametric algorithm for 
dimensionality reduction that is particularly well suited for 
the visualization of high-dimensional datasets (17). t-SNE 
was used for the visualization of normal tissue expression 
data (18,19). The k-nearest neighbors (kNN) algorithm, 
among the simplest of all machine learning algorithms as a 
clustering method used for classification and regression, was 
applied for the classification of large cohorts of tumors (20). 
These two methods are large data-based and appropriate 
for TCGA expression data.

Using existing TCGA and single-cell sequencing data, 
we sought to find a new set of tumor molecular features 
that are more effective, intuitive, and able to be related to 
clinical outcomes. It was reaveled that one of the biological 
characteristics of tumors is the reduction in tissue specificity 
and gain of cellular dedifferentiation (21). Here, we 
present a new method to find tumor tissue-specific gene 
sets (TTSGs) with a size of 200 genes between different 
tumor tissues and to reflect tumor tissue stemness, immune 
microenvironment and radiotherapy resistance. We present 
this article in accordance with the MDAR reporting 
checklist (available at https://tcr.amegroups.com/article/
view/10.21037/tcr-23-234/rc).

Highlight box

Key findings 
• We established a new pipeline to investigate the tumor expression 

characteristics through data mining of tumor tissue-specific gene 
sets (TTSGs).

• We confirmed that there is correlation between this signature 
index with cell stemness and immune microenvironments, which 
might impact on progress and prognosis of certain cancers.

What is known and what is new?  
• There has been obvious progress in researches on the DNA 

mutational signatures that can be used for evaluating tumor 
prognosis, drug resistance, and tumor cell percentage.

• We presented a new method to find TTSGs with a size of 200 
genes between different tumor tissues and to reflect and quantify 
tumor tissue specificity and stemness.

What is the implication, and what should change now? 
• The signature could be used as biomarkers in tumor diagnosis or 

for prognosis prediction.

Submitted Feb 16, 2023. Accepted for publication Aug 18, 2023. Published online Sep 20, 2023.

doi: 10.21037/tcr-23-234

View this article at: https://dx.doi.org/10.21037/tcr-23-234

https://tcr.amegroups.com/article/view/10.21037/tcr-23-234/rc
https://tcr.amegroups.com/article/view/10.21037/tcr-23-234/rc


Xiao et al. Transcriptional profiles of TCGA tumors2766

© Translational Cancer Research. All rights reserved.   Transl Cancer Res 2023;12(10):2764-2780 | https://dx.doi.org/10.21037/tcr-23-234

Methods

Data preparation

RNA-seq whole-transcriptome expression data for all  
33 cancer cohorts from TCGA project (https://tcga-
data.nci.nih.gov/tcga/), including 9,875 tumors and  
721 normal solid tissues, were obtained via the Genomic 
Data Commons (GDC) client tool. The three main types 
of tumor tissues contained in TCGA were primary tumor, 
metastatic tumor, and recurrent tumor. The abbreviations 
and total number of specimens of each tumor types were 
shown in Table 1. Only primary tumors of 33 tumor types 
and metastatic tumors of skin cutaneous melanoma (SKCM) 
were with more than 20 samples recorded in TCGA and 
were included in this study. All TCGA tumors were divided 
into seven pan-cancer groups according to previous studies 
(9,22). For all cancer cohorts, the raw expression fragments 
per kilobase per million mapped reads (FPKM) data for all 
60,483 transcripts were collected and transformed into an 
m × n gene expression matrix where rows (m) are mRNA 
transcript Ensembl IDs and columns (n) were samples.

The respective survival status, gender, clinic stage and 
outcome information for all cases were extracted from 
TCGA clinical data. The single-cell RNA-seq FPKM 
data of 124 individual libraries of human pre-implantation 
embryos and human embryonic stem cells (hESCs) were 
downloaded from the SCPortalen database (http://single-
cell.clst.riken.jp/) under accession number GSE36552 (23).  
This study was conducted in accordance with the 
Declaration of Helsinki (as revised in 2013).

Tumor tissue-specific gene selection

To obtain an mRNA molecular signature that can reflect 
the specificity of tumor histology types, a gene set was 
structured with the following characteristics: the difference 
in expression levels within each tumor type was relatively 
insignificant, but the expression levels between different 
tumor types were significantly different. This group 
of genes reduced the impacts of age, gender, ethnicity, 
environment, and tumor stage on the tumor transcriptome, 
and the differences were mainly reflected in distinct 
histological features. It was significant to further study 
the molecular characteristics of different tumors and their 
clinical value for diagnosis and prognosis.

First, the mean, standard deviation (SD), and coefficient of 
variance (CV) of FPKM were calculated for each transcript 
in all samples from each tumor, and the transcripts with 

CV <25% in ascending order of CV and an average FPKM 
>1.0 were selected to establish subsets of each tumor. The 
intersection of each tumor subset was called for the next step of 
filtering. Second, the mean, SD, and CV of the FPKM values 
of each gene at this intersection were calculated. The CV in 
descending order of the first 200 genes was screened to form 
TTSGs. The number of genes in TTSGs varied, and different 
sizes of TTSGs were tested according to the analysis.

After z-score normalization of the expression matrix 
by TTSGs, a heatmap of 9,875 tumor expression data for  
200 TTSGs was generated to display the expression 
profiles and features of each tumor. To outline the potential 
functional features of TTSGs, a gene ontology (GO) 
enrichment analysis was performed to reveal the functional 
distribution characteristics of TTSGs in three gene 
ontologies of biological processes, molecular functions and 
cellular components. Pathway enrichment analysis based on 
the Kyoto Encyclopedia of Genes and Genomes (KEGG) 
was performed to find multiple cell pathways in TTSGs.  
P value <0.05 was used as the cut-off.

Visualization of tumor classification using t-SNE

The t-SNE algorithm was a non-parametric and non-linear 
dimensionality reduction method published in 2008 for 
the visualization of high-dimensional data. Compared with 
principal component analysis (PCA), t-SNE had a shorter 
history in the study of tumor expression profiles and a rapid 
development trend in recent years (24).

To visualize the classification of tumors, t-SNE was 
performed to project the expression of TTSGs in each 
individual sample to a 2-dimensional map. For the t-SNE 
analysis, different sizes from 50 to 200 of TTSGs were 
tested to validate the classification effect of this model. 
Dimensionality reduction and visualization using PCA were 
also performed for comparison with the t-SNE method. 
The performance of t-SNE was fairly robust under different 
settings of the perplexity, which depends on the density of 
the data. In our study, the key parameter perplexity of the 
t-SNE model was set to 30–80 to fit an optimal embedding 
and classification effect. t-SNE was repeated with the same 
data and parameters to select the visualization with the 
optimal classification effect as the final visualization.

Validation of classification capability using kNN

To estimate the potential capability of TTSGs for tumor 
molecule signature identification, a kNN model was 

https://tcga-data.nci.nih.gov/tcga/
https://tcga-data.nci.nih.gov/tcga/
http://single-cell.clst.riken.jp/
http://single-cell.clst.riken.jp/
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Table 1 Abbreviations, sizes of accessed samples, histology types and pan-cancer types of 33 tumors from TCGA database

Pan-cancer type Abbreviations
Primary tumor 

(n)
Normal tissue 

(n)
Histology type (full name)

Pan-squamous BLCA 411 19 Bladder urothelial carcinoma

CESC 304 3 Cervical squamous cell carcinoma and endocervical adenocarcinoma

ESCA 161 11 Esophageal carcinoma

HNSC 500 44 Head and neck squamous cell carcinoma

LUSC 501 49 Lung squamous cell carcinoma

Pan-gyn BRCA 1,097 113 Breast invasive carcinoma

OV 374 0 Ovarian serous cystadenocarcinoma

UCEC 547 35 Uterine corpus endometrial carcinoma

UCS 57 0 Uterine carcinosarcoma

Pan-
adenocarcinoma

CHOL 36 0 Cholangiocarcinoma

COAD 469 41 Colon adenocarcinoma

LUAD 524 59 Lung adenocarcinoma

PAAD 177 4 Pancreatic adenocarcinoma

PRAD 498 52 Prostate adenocarcinoma

READ 166 10 Rectum adenocarcinoma

STAD 375 32 Stomach adenocarcinoma

Pan-hem DLBC 48 0 Lymphoid neoplasm diffuse large B cell lymphoma

LAML 151 0 Acute myeloid leukemia

THYM 119 2 Thymoma

Pan-neuronal GBM 155 5 Glioblastoma multiforme

LGG 511 0 Brain lower-grade glioma

PCPG 178 3 Pheochromocytoma and paraganglioma

SKCM* 101 0 Skin cutaneous melanoma

UVM 80 0 Uveal melanoma

Pan-kidney KICH 65 24 Kidney chromophobe

KIRC 534 73 Kidney renal clear cell carcinoma

KIRP 288 32 Kidney renal papillary cell carcinoma

Others ACC 79 0 Adrenocortical carcinoma

LIHC 371 50 Liver hepatocellular carcinoma

MESO 87 0 Mesothelioma

SARC 259 2 Sarcoma

TGCT 150 0 Testicular germ cell tumors

THCA 502 58 Thyroid carcinoma

*, 369 metastatic tumor samples of SKCM also included. TCGA, The Cancer Genome Atlas.
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established for tumor discriminant analysis. The training 
group and validation group, which contained 70% and 30% 
of each tumor sample, respectively, were selected randomly 
and with no return. The kNN model was fitted using 
training group data and subsequently used to predict the 
tumor categories of specimens from the validation group. 
The accuracy of the prediction for the validation group from 
each tumor was generated by calculating the ratio of correctly 
predicted counts and the number of all samples. Parameter k 
was set to 3 to adjust for highest discriminant accuracy.

Dissimilarity between embryos and tumors

To explore the relationship between tissue specificity, 
differentiation and prognosis, the single-cell sequencing 
data of human pre-implantation embryos was downloaded 
as a reference for comparison with tumor cells. The 
developmental stages of embryo cells included oocyte  
(3 cells), zygote (3 cells), 2-cell stage (6 cells), 4-cell stage 
(12 cells), 8-cell stage (24 cells), morula stage (16 cells), late 
blastocyst (30 cells) and hESC (34 cells) and calculated the 
Euclidean distance of TTSGs from undifferentiated early 
embryos to each sample. The median expression FPKM of 
these 124 TTSGs was set as an undifferentiated reference 
sample, which represented the overall expression levels of 
TTSGs in embryo cells. The multidimensional Euclidean 
distance between the expression of TTSGs of the remaining 
tumor samples and the reference embryo cells was defined as 
TTSG index and calculated by using the following equation:

( )2

1

n

i i
i

dist x y
=

= −∑
 

[1]

where n was the size of TTSGs, and x was the FPKM value 
of each gene in TTSGs from each sample. Additionally, y 
was the median FPKM of TTSGs in all embryo cells. The 
higher the dissimilarity, the higher the difference between 
the expression features of embryos and tumors.

For each tumor, the samples were divided into two 
groups based on their dissimilarity: the top 50% in the high 
group and the bottom 50% in the low group. The overall 
survival difference between the two groups was compared 
using log-rank test, and two-tailed t-test. P value <0.05 was 
considered statistically significant in this study.

Correlation between cell stemness, immune cell fraction 
and TTSG index

The mRNA signature index (mRNAsi) represents the 

quantification of cell stemness and dedifferentiation using 
one-class logistic regression (OCLR) (25), a machine 
learning algorithm that provides a scalable approach 
to generate cell type signatures (22). To evaluate the 
association of the mRNAsi with embryo dissimilarity, these 
two signature indexes were compared according to tumor 
types.

The mRNAsi for each sample was scored based 
on Spearman’s rank correlation coefficient between 
the FPKM of each sample and the mRNA signature 
weight, which consisted of 12,965 genes selected using 
OCLR (https://gdc.cancer.gov/about-data/publications/
PanCanStemness-2018). CIBERSORT method was used 
to evaluate fractions of 22 types of immune cells and total 
leukocytes (26). The correlation of each immune cell 
fraction and immune cell activation with mRNAsi and 
embryo tumor distance was calculated to compare the 
characteristics of immune microenvironments.

Statistical analysis and available software

R 3.6.2 (https://www.r-project.org/) was used in this study 
to aggregate, organize, matrix compute, and visualize all 
data. T-test, log-rank test, kNN and visualization of results 
was performed using R. t-SNE was performed using the R 
package Rtsne 0.15. All applied software and adapted data 
resources were shown in Table S1.

Results

Selection of TTSGs

The clinical information and a total of 60,483 transcript 
profiles, including mRNA and long non-coding RNA 
(lncRNA), for 9,875 tumor samples from 33 cancer types 
were accessed from TCGA database (Table 1).

A set of genes was screened and selected from TTSGs 
by the average and CV distribution of mRNA expression 
profiles from different tumors. According to our method, 
there was no clear-cut limit to the size of the TTSGs; 
however, the effect and reliability of the classification 
model might be reduced by too small TTSGs. A total of 
200 genes were selected as the upper limit of the TTSGs 
for further analysis. Detailed information for each TTSG 
can be found in table available at https://cdn.amegroups.
cn/static/public/10.21037tcr-23-234-1.xlsx. To investigate 
the gene selection of TTSGs and other cancer related 
tumor signatures, the Cancer Driver gene set (Bailey et al.  

https://gdc.cancer.gov/about-data/publications/PanCanStemness-2018
https://gdc.cancer.gov/about-data/publications/PanCanStemness-2018
https://www.r-project.org/
https://cdn.amegroups.cn/static/public/TCR-23-234-Supplementary.pdf
https://cdn.amegroups.cn/static/public/10.21037tcr-23-234-1.xlsx
https://cdn.amegroups.cn/static/public/10.21037tcr-23-234-1.xlsx
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Figure 1 Characteristics of TTSGs. (A) Venn diagram showing the intersections of genes in 4 signature gene sets: Cancer Driver genes 
(n=299), Pathogenic Germline Variants genes (n=152), ESTIMATE genes (n=282) and TTSGs (n=200). (B) GO enrichment of TTSGs in 
BP and MF. P values were adjusted by FDR. (C) Heatmap showing the expression profile and characteristics of the 33 tumors by FPKM data 
of TTSGs at a size of 200 with hierarchical clustering of genes. TTSGs, tumor tissue-specific gene sets; GO, gene ontology; ESTIMATE, 
Estimation of STromal and Immune cells in MAlignant Tumours using Expression data; BP, biological process; MF, molecular function; 
FDR, false discovery rate; FPKM, fragments per kilobase per million mapped reads.

2018) (27), the Pathogenic Germline Variants gene set 
(Huang et al. 2018) (28) and the ESTIMATE gene set 
(Yoshihara et al. 2013) (29) were chosen for comparison 
(Figure 1A). The first two signatures were DNA mutation 
based,  and the ESTIMATE signature was mRNA 
expression based. TTSGs as a gene set for classification had 

less intersection with mutational signatures.
In order to outline the potential function of the 

TTSGs, GO enrichment analysis and pathway analysis 
were performed for the 200 genes. The enriched GO 
terms (P<0.05) were shown in Figure 1B. None of the cell 
component (CC) GO terms or KEGG pathways were 
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Figure 2 t-SNE map of tumor classification and visualization of 9,875 samples from 33 tumor cohorts. (A) Points colored according 
to tumor types represent single samples that are embedded into different clusters illustrated by tumor labels. Clusters of subgroups are 
illustrated by smaller letters. (B) Points colored according to pan-cancer types. The tumors of each pan-cancer type were colored separately. 
t-SNE, t-distributed Stochastic Neighbor Embedding.

enriched. The GO enrichment of TTSGs indicates that 
there was dispersed functional distribution within TTSGs. 
Expression levels of TTSGs in all cancer types were shown 
in Figure 1C.

Classification and visualization of tumors

To classify and visualize tumors using TTSGs, t-SNE was 
performed to reduce the high-dimensional data for TTSG 
expression FPKM values to 2-dimensional data. The size 
of the TTSGs was set to 50, 100 and 200 to explore the 
classification capability at different sizes of TTSGs for 
comparing t-SNE with PCA. When the size of the TTSGs 
was 50, some tumors were gathered into clusters by t-SNE 
but could not be separated from each other, and the 
classification was unclear. The classification effect of t-SNE 
was optimal when 200 genes were used. The tumors were 
separated with poor effects by the PCA method and were 
not more clearly separated when the size of the TTSGs 
increased (Figure S1).

All individual samples of each tumor type were embedded 
by t-SNE. Each tumor type was clearly divided into separate 
clusters, except for head and neck squamous cell carcinoma 
(HNSC), lung squamous cell carcinoma (LUSC), cervical 
squamous cell carcinoma and endocervical adenocarcinoma 
(CESC), sarcoma (SARC), lung adenocarcinoma (LUAD) 
and pancreatic adenocarcinoma (PAAD), which were 

dispersed into their respective regions but could not be 
completely separated into independent clusters, suggesting 
that these tumor types have similar TTSG expression 
profiles (Figure 2A). Stomach adenocarcinoma (STAD) and 
esophageal carcinoma (ESCA), rectum adenocarcinoma 
(READ) and colon adenocarcinoma (COAD), had 
overlapped clusters, indicating a high degree of similarity 
in their TTSG expression profiles. A few outliers existed 
in the graph, especially in the central region, revealing that 
this classification method is difficult to correctly classify 
a few samples with special expression values. In the pan-
cancer view, pan-squamous cancers were embedded into a 
co-cluster while other pan-cancer types were distributed 
separately (Figure 2B).

Normal tissue samples of tumor origin were embedded 
together with tumors of the same histological origin. 
The classification using TTSGs was also effective when 
distinguishing normal and primary tumors. Separated 
clusters of normal tissue were formed in LUAD/LUSC, 
COAD/READ, breast invasive carcinoma (BRCA) and 
pan-kidney tumors. Normal liver tissue was clustered but 
embedded into liver hepatocellular carcinoma (LIHC) 
tumor clusters. Metastatic tumors of SKCM were mixed 
into primary tumors, indicating that there were indistinct 
expression features for t-SNE to form independent clusters 
(Figure 3A).

However, the pathology or molecular types of some 

https://cdn.amegroups.cn/static/public/TCR-23-234-Supplementary.pdf
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Figure 3 Visualization of different histological types of tissues. (A) Normal tissues and metastatic tumors. (B) Pathology and tumor 
histological types of BRCA, CESC, LGG/GBM, SARC and TGCT. For each plot, samples without pathology information and other tumor 
types are illustrated as grey hollow points. The plot layer is as described for Figure 2A. BRCA (histology): red, infiltrating ductal carcinoma; 
green, infiltrating lobular carcinoma. BRCA (molecular): red, HER2-amp; green, luminal; blue, basal-like; purple, indeterminate. LGG/
GBM: red, astrocytoma; green, GBM; dark blue, oligoastrocytoma; light blue, oligodendroglioma. SARC: red, dedifferentiated liposarcoma; 
green, desmoid tumor; flesh yellow, leiomyosarcoma; blue, malignant peripheral nerve sheet tumors; orange, pleomorphic sarcoma; purple, 
synovial sarcoma. CESC: green, adenocarcinoma; blue, cervical squamous cell carcinomas; red, others. TGCT: red, embryonal carcinoma; 
green, seminoma. LUSC, lung squamous cell carcinoma; LUAD, lung adenocarcinoma; BRCA, breast invasive carcinoma; COAD, colon 
adenocarcinoma; READ, rectum adenocarcinoma; KICH, kidney chromophobe; KIRC, kidney renal clear cell carcinoma; KIRP, kidney 
renal papillary cell carcinoma; LIHC, liver hepatocellular carcinoma; SKCM, skin cutaneous melanoma; LGG, brain lower-grade glioma; 
GBM, glioblastoma multiforme; SARC, sarcoma; CESC, cervical squamous cell carcinoma and endocervical adenocarcinoma; TGCT, 
testicular germ cell tumors.

tumors from TCGA were heterogeneous. For example, 
CESC consisted of adenosquamous, squamous cell 
carcinoma and adenocarcinoma, each type characterized 
by different expression profiles. To reveal the classification 
potential of subtypes of tumors, outlier clusters generated 
within BRCA, CESC, brain lower-grade glioma (LGG)/
glioblastoma multiforme (GBM), SARC and testicular germ 

cell tumors (TGCTs) were illustrated (Figure 3B). The 
samples with molecular subtypes of basal-like breast cancers 
(ER−, PR−, HER-2−) were enriched for the sub-cluster of 
infiltrating ductal carcinoma, close to LUAD and LUSC, 
while luminal and HER-2-amplified subtypes were co-
clustered. LGG was classified into three types: astrocytoma, 
oligoastrocytoma and oligodendroglioma, and projected to 
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clusters close to GBM. SARC formed an isolated cluster 
mainly consisting of desmoid tumor, while other types of 
SARC showed scattered and mixed plots. By classification 
of the pathology types, a more distinct identification of 
inter-tumor expression features was observed, indicating the 
classification capacity of subtypes of tumors by TTSGs.

kNN discrimination analysis

As a supervised deep learning algorithm, kNN was used for 
discrimination analysis of the tumor samples (Figure 4A). 
Tumors with an accuracy rate lower than 0.9 include CESC 
(0.839), cholangiocarcinoma (CHOL) (0.846), COAD 
(0.816), HNSC (0.838), kidney chromophobe (KICH) 
(0.838), LUSC (0.858), PAAD (0.664) and READ (0.822). 

The accuracy of other tumors was higher than 0.9. The 
mismatching rate between two tumors higher than 10% 
involved COAD to READ (0.148) and READ to COAD 
(0.178). Similar to the results of the classification via t-SNE, 
mismatching between READ, COAD, ESCA and STAD 
reflected the similarity of TTSG expression in the above 
tumors, while the discrimination of other tumors was 
relatively accurate. The matrix of accuracy of each tumor 
discrimination was shown in table available at https://cdn.
amegroups.cn/static/public/10.21037tcr-23-234-2.xlsx.

TTSG index

The expression levels of TTSGs in 124 embryo cells were 
dimensionally reduced and visualized by t-SNE (Figure 4B).  

https://cdn.amegroups.cn/static/public/10.21037tcr-23-234-2.xlsx
https://cdn.amegroups.cn/static/public/10.21037tcr-23-234-2.xlsx
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A clear and progressive development pathway was observed 
from oocyte to late blastocyst cells, revealing that the changes 
in expression features in embryo development were reflected 
in TTSGs, which were significantly distinct in tumors.

However, the TTSG index was significantly lower in 
normal tissues of lung, bladder, endometrium, rectum/
colon, prostate and stomach than in tumors derived from 
these tissues (Figure 4C). These observations, which 
conflicted with the expectations of the analysis, revealed 
that there was a restriction on comparing tumors with non-
tumor tissues using TTSG index.

Euclidean distances between each tumor sample and 

the expression of TTSGs in morula and blastocyst stage 
cells were calculated as the dissimilarity between tumors 
and embryos (Figure 4D). The TTSG indexes of each 
analyzed sample were shown in table available at https://
cdn.amegroups.cn/static/public/10.21037tcr-23-234-3.
xlsx, suggesting that pan-squamous cancers had lower 
embryo distances than other pan-cancer types (P=2.7e−4). 
The overall survival outcomes are shown in Figure 5  
and table  avai lable  at  https ://cdn.amegroups.cn/
static/public/10.21037tcr-23-234-4.xlsx. Samples with 
dissimilarities of less and larger than the median embryo 
tumor distance in the same tumor were used as the low 

https://cdn.amegroups.cn/static/public/10.21037tcr-23-234-3.xlsx
https://cdn.amegroups.cn/static/public/10.21037tcr-23-234-3.xlsx
https://cdn.amegroups.cn/static/public/10.21037tcr-23-234-3.xlsx
https://cdn.amegroups.cn/static/public/10.21037tcr-23-234-4.xlsx
https://cdn.amegroups.cn/static/public/10.21037tcr-23-234-4.xlsx
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and high groups. There were relatively small dissimilarities 
in PAAD, HNSC, bladder urothelial carcinoma (BLCA), 
LUAD and LUSC, which had poor outcomes. The 
dissimilarity in adrenocortical carcinoma (ACC), KICH, 
pheochromocytoma and paraganglioma (PCPG) and 
TGCT with fewer deaths was relatively large. Both GBM 
and LGG are of neuroglial cell origin, but the dissimilarity 
in GBM is smaller than that in LGG. CESC, GBM, kidney 
renal clear cell carcinoma (KIRC), kidney renal papillary 
cell carcinoma (KIRP), LGG, LIHC and thymoma (THYM) 
had significant differences (P<0.05) in the overall survival 
status of the low and high groups, while the other groups 
had no significant difference.

Comparing cell stemness and TTSG index

The mRNAsi of cell stemness was calculated for each 
case through Spearman’s rank correlation coefficient and 
compared with TTSG index. Although the mRNAsi 
was higher in tissues with more stemness and cell 
dedifferentiation, middle to strong correlations (r>0.4, 
P<0.05) between TTSG index and mRNAsi were observed 
in ACC, GBM, KIRC, LGG, LUSC, PCPG, TGCT, and 
THYM (Figure 6A). There was no significant relationship 
(|r|<0.2) between the two signature indexes in BRCA, 
COAD, lymphoid neoplasm diffuse large B cell lymphoma 
(DLBC), ESCA, KIRP, acute myeloid leukemia (LAML), 
LIHC, LUAD, READ, thyroid carcinoma (THCA), 
uterine corpus endometrial carcinoma (UCEC) and uveal 
melanoma (UVM).

Relationship between TTSG index with immune 
microenvironment and radiation therapy resistance

To investigate the characteristics of tumor infiltrating 
immune cells in different embryo tumor distance levels, 
Immune cell fraction in the high (top half) and low (bottom 
half) groups of TTSG index were calculated using the 
CIBERSORT method. The total leucocyte fraction was 
significantly higher in the low group in all tumor types, 
except UCEC and LUAD. The increase in the total 
leucocyte fraction mainly consisted of macrophage M2 cells, 
which were considered as promoters of tumorigenesis and 
angiogenesis and were closely related to immunosuppression 
and prognosis (30). In addition to macrophage M2 cells, 
other immune cells were also enriched in the high TTSG 
index group (Figure 6B). Compared with the mRNAsi, the 
TTSG index had a lower correlation with CD4 memory T 

cell activation and a higher correlation with dendritic cell 
activation (Figure 7A). Tissues with higher TTSG index 
were enriched in dendritic cell activation, which played an 
important role in presenting tumor antigen and promoting 
anti-tumor immunity (Figure 7B).

The outcomes of patients with or without radiation 
therapy in high and low groups were further explored. 
By survival analysis, in BRCA, GBM, HNSC, STAD and 
uterine carcinosarcoma (UCS), patients with higher TTSG 
index had longer overall survival times compared to patients 
with lower TTSG index (Figure 8). The radiation therapy 
effect of CESC and LGG was reduced in low group. These 
results suggested that the TTSG index was correlated with 
radiation therapy resistance.

Discussion

The aim of this study was to establish a method for 
describing tumor expression profiling and segregating 
samples into biologically relevant groups based upon 
quantitative dimensions. In the current work, we found a 
new tumor molecular signature composed of TTSGs that 
reflected tumor expression profiling in the TCGA database. 
In particular, the potential effect of TTSGs in tumor 
identification and classification was validated by visualization 
and classification of tumor samples using t-SNE and kNN. 
Furthermore, by calculating the Euclidean distances as the 
dissimilarity of tumor and embryo cells, it was suggested 
that TTSGs were valuable in the outcome evaluation of 
several tumors.

In our observation of the pan-cancer 2D map projected 
from TTSGs, samples of BRCA, GBM, HNSC, KIRC, 
LAML, LGG, LIHC, ovarian serous cystadenocarcinoma 
(OV), PCPG, prostate adenocarcinoma (PRAD), SKCM, 
THCT, THCA, THYM, and UVM were separated 
from all other tumor types. In contrast, PAAD, SARC, 
CESC, and BLCA formed a co-clustering group that was 
isolated from other tumors. Notably, some tumors with 
similar origins were difficult to separate and distinguish, 
for example, COAD and READ, LGG and GBM, STAD 
and ESCA (adenocarcinoma). The co-cluster of squamous 
cancers that were not distinguished clearly indicated that 
squamous cancers had similar molecular features and should 
be classified by an integrative multiplatform (31,32). It was 
indicated that the TTSGs were not only able to distinguish 
different types of tumor samples but also able to uncover 
potential histological and molecular subtypes within some 
tumor types. There was unambiguous separation from the 
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Figure 6 TTSG index in different cancer types and the relationship between immune cells and TTSG index. (A) Comparison of the 
mRNAsi and TTSG index in pan-cancer types. Each sample was assigned to a normalized TTSG index (X axis) and mRNAsi (Y axis). (B) 
Constituent ratio of immune cells with an accumulated height of the total leukocyte fraction. mRNAsi, mRNA signature index; TTSG 
index, tumor tissue-specific gene index.

molecular types of BRCA: from the HER2-amp subtype 
and luminal subtype to a basal-like subtype, confirming that 
there was a large distinction of features between basal-like 
breast cancer and other molecular types, which could lead 
to different prognoses and outcomes (33-35).

Several studies have focused on the identification 
of mRNA biomarkers and the classification of TCGA 
tumor types in recent years. For a pan-cancer scale 
view of tumor expression profiling, many clustering and 

classification algorithms were applied to identify molecular 
characteristics. Roche et al. selected a set of specific 
biomarkers and background classification genes and sorted 
five human tumor types using t-SNE (36). Martínez  
et al. classified 12 TCGA tumor types using hierarchical 
clustering according expression data of 1,500 genes (37).  
Li et al. established a classification strategy based on GA/
KNN to classify 9,096 tumor samples from 31 tumor 
types (20). Hoadley et al. analyzed TCGA data from 
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a 4-experiment platform and found that cell-of-origin 
dominated the molecular classification of 10,000 tumors 
from 33 types of cancer using the iCluster and TumorMap 
algorithm (9). Compared with these studies focused on 
classification and visualization of tumors, in our study, 

there are two points of difference. First, the size of the gene 
set was limited to 200, and all TCGA tumor types were 
analyzed to explore the minimum size of the gene set for 
pan-cancer classification. Our results confirmed that tumor 
expression profiling can be reflected in a small number 
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Figure 8  Overall survival in the high and low groups with and without radiation therapy. The Y-axis represents survival probability. The 
number of cases (n), events (deaths) per group, median month survival, and P value of the high and low groups are shown in table available 
at https://cdn.amegroups.cn/static/public/10.21037tcr-23-234-4.xlsx.

of genes that represent tumor tissue origin. Second, the 
visualization method of t-SNE in our study is insensitive 
to outliers and fitted for large-scale data (38). In our study, 
t-SNE was effective for processing RNA data, especially 
when embedding a pan-cancer map of a large sample size. 
Surprisingly, TTSG expression profiling progressed in a 
sequential developmental direction from oocytes to late 
blastocyst cells using the t-SNE method in a 2D space. This 
observation was confirmed by the original experiment and 
analysis of the scRNA-seq research, which projected the 
cells to a 3D space using PCA (23).

Euclidean distances are usually used for quantifying the 
difference between two vectors of high-dimension data 
and are applied as the basic approach in some data mining 
algorithms, for example, hierarchical clustering and ridge 
regression (39-41). Survival outcomes were subsequently 
impacted by the dissimilarity in BRCA, KIRC, KIRP, 
LGG, LIHC, STAD and THYM. There are two potential 

reasons to explain the irrelevant results observed in other 
tumors. First, the prognosis of tumors is dominated by 
multiple factors that have increased weight in cancer 
treatment, such as therapy scheme, accessibility of surgery, 
metastasis occurrence and immune microenvironment (42).  
In our findings, the TTSG index is related to tumor 
radiation therapy and the immune microenvironment, 
which are impact factors of overall survival (43). Second, 
the clinical data were mostly completed in the past  
10 years, and the patient follow-up period was not long 
enough to accumulate adequate differences in survival 
outcomes of tumor cohorts (44).

The stemness feature of cancer cells, which indicates the 
degree of oncogenic dedifferentiation, can be evaluated by 
an mRNAsi based on 12,945 genes (22). However, there 
is a weak positive correlation between the mRNAsi and 
the embryo tumor distance in a majority of the 33 types of 
TCGA tumors, especially in pan-neuronal tumors. This 
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result means there is a conflict within these two signatures 
potentially because of different immune microenvironments 
and algorithms. In our research, overall survival outcomes 
in gliomas (LGG/GBM) of different TTSG index levels 
conformed with the observation of mRNAsi.

There were several limitations in this study. Firstly, 
this study is a reanalysis of TCGA data only in silico, 
without validation and implement using histologic or 
clinic experiments. Secondly, advanced feature selection 
algorithms, such as neural network algorithms, were 
not implemented in selection of TTSG. In future work, 
experimental verification and algorithm attempts should be 
conducted to obtain further insights.

Conclusions

In this study, a new pipeline is established to investigate 
the tumor expression characteristics through data mining 
of a group of genes with tumor tissue specificity (TTSGs). 
There is correlation between this signature index with cell 
stemness and immune microenvironments which might 
impact on progress and prognosis of certain cancers.
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