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Abstract

Millions of Americans are affected by rare diseases, many of which have poor survival rates. 

However, the small market size of individual rare diseases, combined with the time and capital 

requirements of pharmaceutical R&D, have hindered the development of new drugs for these 

cases. A promising alternative is drug repurposing, whereby existing FDA-approved drugs might 

be used to treat diseases different from their original indications. In order to generate drug 

repurposing hypotheses in a systematic and comprehensive fashion, it is essential to integrate 

information from across the literature of pharmacology, genetics, and pathology. To this end, we 

leverage a newly developed knowledge graph, the Global Network of Biomedical Relationships 

(GNBR). GNBR is a large, heterogeneous knowledge graph comprising drug, disease, and gene 

(or protein) entities linked by a small set of semantic themes derived from the abstracts of 

biomedical literature. We apply a knowledge graph embedding method that explicitly models the 

uncertainty associated with literature-derived relationships and uses link prediction to generate 

drug repurposing hypotheses. This approach achieves high performance on a gold-standard test set 

of known drug indications (AUROC = 0.89) and is capable of generating novel repurposing 

hypotheses, which we independently validate using external literature sources and protein 

interaction networks. Finally, we demonstrate the ability of our model to produce explanations of 

its predictions.
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1. Introduction

In the United States, rare diseases are defined as diseases that affect fewer than 200,000 

people each. Although individually rare, the cumulative effect of all rare diseases amounts to 
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a significant proportion of the population. Collectively, the estimated 7,000 rare diseases 

affect millions of Americans.1 A major challenge of rare disease research is that despite this 

aggregate health burden, no single rare disease affects enough people to be prioritized for 

drug development over other, more prevalent diseases. As a result, there has historically 

been a lack of academic and pharmaceutical research for rare disease treatments, and the 

vast majority of rare diseases still have no therapeutic options. One way to address this 

unmet clinical need is through drug repurposing, or the use of pharmaceuticals already 

existing in the market to treat different diseases than they were developed to treat. This 

paradigm has been successful in many contexts with examples including methotrexate and 

sildenafil (Viagra).2,3 Previously, drug repurposing has largely been accomplished by 

clinical observation of drug side effects, but a systematic, data-driven approach for 

identifying repurposing opportunities is needed to improve efficiency and coverage.

Advancements in computation and machine learning have enabled natural language 

processing (NLP) techniques that are effective and scalable for processing large bodies of 

unstructured text. Recently, NLP was applied to all ~28.6 million PubMed abstracts to 

synthesize and summarize the relationships between drugs, genes/proteins, and diseases into 

a heterogeneous knowledge graph known as the Global Network of Biomedical 

Relationships (GNBR).4 This dataset is powerful because (1) it is large, consisting of over 

130,000 entities and over two million edges, (2) each of these edges is represented by a set 

of several important, semantic themes, and (3) the confidence associated with each of these 

themes is quantified as a continuous value. By harnessing GNBR, we can synthesize 

disparate sources of knowledge relevant to rare diseases in order to systematically generate 

repurposing hypotheses that can be directly mapped back to the literature.

Previous data-driven approaches to drug repurposing have relied on gene expression, 

chemical structure, or electronic health records data.5 For example, a gene expression–based 

drug repurposing method was described by Sirota et al. to repurpose topiramate as a 

therapeutic option for inflammatory bowel disease.6 Traditional network-based methods 

have focused on identifying disease modules and using diffusion strategies to rank novel 

interactions.7,8 Recently, network embedding methods, which learn a mapping from nodes 

and edges to low-dimensional vectors such that the proximity structure of the original 

network is preserved in the embedding space, have attracted great interest. The resulting 

vectors provide an ideal platform for machine learning tasks, and have been applied in 

pharmacological applications such as the prediction of polypharmacy side effects and drug-

drug interactions.9,10 Building on such successes, we implement a network embedding 

method for drug repurposing that explicitly models the confidence of relationships in GNBR 

based on their evidence in literature.11 This model is more appropriate for representing and 

learning from literature-based knowledge, which is inherently noisy. As far as we know, we 

are the first to incorporate such uncertainty into a literature-based graph embedding method, 

allowing for a more precise and nuanced drug repurposing model. Unlike previous methods, 

our hypotheses do not rely on any curated databases, allowing the model to automatically 

improve as the volume of literature proliferates and GNBR expands.

In this work, we first prioritize rare diseases based on their potential for drug repurposing, 

accounting for the availability of data and the current state of treatment need. Then, we 
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develop a knowledge graph embedding–based drug repurposing method that produces 

treatment hypotheses with strong evidence in literature and evaluate our results using gold-

standard drug indications. We then apply our model to generate novel drug repurposing 

hypotheses and assess their scientific validity using a variety of sources. Finally, for top-

scoring hypotheses we elucidate recurring network patterns that contribute to our predictions 

and demonstrate their capacity to provide mechanistic interpretations.

2. Methods

2.1. Data

GNBR contains edges or links between two entities from among the set {gene, drug, 

disease} and a support score (normalized between 0 and 1) representing the literature-

derived confidence of the relationships between those two entities.4 The relationships are 

divided into 32 high-level semantic themes (Fig. 1) and are organized into four categories 

based on the entities they connect. For example, the edge between metformin and type 2 

diabetes, a well-established relationship, has a support for the theme “Treatment” of 0.999. 

Some themes exist in multiple categories. In some cases, the two entities have a single very 

clear relationship, and in others, there is literature evidence for several relationships.

Using rare disease information from Orphanet,1 we extracted MeSH,12 OMIM13 and 

UMLS14 IDs for each rare disease in Orphanet. By directly matching MeSH and OMIM IDs 

and indirectly matching UMLS IDs using the UMLS Metathesaurus, we identified 2,779 

rare diseases in GNBR. We maximize clinical utility of our method by focusing on diseases 

with high prevalence and no FDA-approved indications. Prevalence was retrieved from 

Orphanet, and FDA-approved indications are found on DrugCentral.15 Finally, we filtered 

GNBR by identifying the largest connected component of the graph after removing any node 

that is not(1) a gene node, (2) a high-priority rare disease node, or (3) a drug/disease node 

present in a known indication. The resulting graph comprised a total of 63,252 nodes and 

583,685 edges.

2.2. Embedding-based prediction method

We adopt an uncertain knowledge graph embedding method,11 which takes advantage of the 

support scores in GNBR (i.e. the confidence of the relationship) in order to learn embedding 

vectors for all nodes and themes. The geometric intuition for this model is that the proximity 

between the vectors for head h, relation r, and tail t is related to the confidence score 

associated with the triple (h, r, t). This method takes advantage of patterns in the knowledge 

graph whereby certain high-supported relations may equivalently be represented by short 

indirect paths in the graph. Over a large knowledge graph, these patterns become encoded in 

the embeddings for entities and relations, enabling the inference of new high-confidence 

triples.

Concretely, for a given triple l = (h, r, t), a plausibility score, g, is defined by the 

corresponding embeddings h, r, t as follows:

g(l) = r ⋅ (h ∘ t), (1)
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where ○ denotes the element-wise product. This score is mapped to the interval [0, 1] 

through the bounded rectifier function

ϕ(x) = min(max(wx + b, 0), 1), (2)

where w and b are learned parameters. The final predicted confidence score, f(l), is thus:

f (l) = ϕ(g(l)) . (3)

In order to accurately rank candidate triples and avoid ties, we remove the min-max 

bounding in Eq. (2) at test time. For every triple used in training, a corresponding “negative” 

triple is sampled by corrupting the tail node and resampling a random node with an assumed 

support of 0. The joint objective function to be minimized is the sum of squared errors 

between the prediction, f(l), and support, sl, for each triple l:

𝒥 = ∑
l ∈ ℒ +

| f (l) − sl|
2 + ∑

l ∈ ℒ −
| f (l) |2 , (4)

where ℒ+ is the set of triples in GNBR and ℒ− is the set of sampled negative triples. We 

formalize the generation of drug repurposing hypotheses as a link prediction task in which 

we predict high-confidence triples of the form (Drug, “Treatment”, Disease) using the 

learned embeddings.

3. Experiments and Results

3.1. Embedding-based predictions

3.1.1. Experimental Design—As an internal validation, we quantify the ability for our 

model to recapitulate known gold standard drug-disease indications in the embedding-based 

link prediction task. For this we use MEDI,16 a database of drug indications compiled from 

SIDER 2,17 RxNorm,18 MedlinePlus,19 and Wikipedia. Drug-disease combinations were 

mapped from ICD9 codes to UMLS codes, resulting in 3,329 combinations comprising 811 

drugs and 360 diseases.

Triples in GNBR containing a known indication pair from MEDI were split into 60% 

training, 20% validation, and 20% test sets. All other triples in GNBR were split into 90% 

training, 5% validation, and 5% test sets. We chose an embedding dimensionality of d = 128, 

and trained the model for 100 epochs with batch size 1024. We used the Adam optimizer for 

training, with exponential decay rates β1 = 0.9 and β2 = 0.99.20 The validation set was used 

to determine early stopping criteria based on mean squared error and to tune the learning 

rate lr ∈ {0.001, 0.005, 0.01}.

To ascertain which parts of the network were most valuable to the embeddings, we 

considered three submodels: (1) removing all drug-disease triples with relationships other 

than “Treatment”, (2) removing all gene-associated triples and taking the largest connected 

component from the resulting drug-disease bipartite graph, and (3) considering only triples 

of the form (Drugi, “Treatment”, Diseasej) without embedding the network at all. Our test 

Sosa et al. Page 4

Pac Symp Biocomput. Author manuscript; available in PMC 2020 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



set consisted of 355 MEDI drug indications as positives and 355 randomly-sampled pairs as 

negatives, where the drugs and diseases were drawn from the sets of all drugs and diseases 

present in the known indications.

3.1.2. Performance on gold-standard indications—To assess the capacity of our 

model to recapitulate known treatment indications, we calculated the receiver operating 

characteristic (ROC) and precision-recall (PR) curves for all submodels based on the 

predicted confidence score given in Eq. (3). Our full embedding model performs well in 

discriminating between the positive and negative pairs, achieving an area under the ROC 

curve (AUROC) of 0.89 (Fig. 2). Removing non-Treatment drug-disease themes decreases 

performance markedly, as expected because the other drug-disease themes are semantically 

related and often correlated in support scores. Therefore, many training examples that would 

positively contribute to the final embeddings are lost. The “Treatment” theme alone achieves 

an AUROC of 0.83, indicating that the support score for that theme is in fact a suitable proxy 

for confidence that a true indication exists. However, this submodel fails to capture indirect 

relationships and thus cannot predict new links. Performance increases slightly when the 

gene-related triples are removed from the network, most likely because the embeddings for 

drugs and diseases are no longer constrained to be consistent with the genes, which 

dominate the number of triples in training. However, this is less useful for novel drug 

repurposing because it takes advantage of only transitive relationships between drugs and 

diseases and fails to consider gene-mediated mechanisms. Additionally, diseases without 

treatment do not exist in the largest connected component when genes are removed, so many 

rare diseases cannot even be embedded.

We expect that the element-wise product of drug and disease vectors representing for known 

indications should exist closer to the “Treatment” theme in the embedding space than those 

of randomly-sampled negative indications. To confirm this, we project the combined vectors 

for pairs in our test set into two dimensions using UMAP.21 Figure 3 shows known 

indications (positive, red) and randomly sampled (negative, blue) drug-disease pairs, where 

each point is the element-wise product of the drug vector with the disease vector. The 

positive drug-disease pairs are indeed closer to the “Treatment” vector (black), confirming 

that our embedding method was able to successfully learn embeddings that reflect a 

treatment relationship.

3.1.3. Evaluation of theme contribution—We hypothesize that the themes which 

provide the most utility in predicting a treatment-type edge will have embeddings that are 

similar to that of the “Treatment” theme. To evaluate this, we measured the cosine similarity 

between the embeddings of all 32 themes in GNBR and perform hierarchical clustering to 

group the themes. As shown in Fig. 4(a), the theme clusters correspond well with edge type, 

as expected because the theme embeddings within each group are learned by triples 

consisting of different node types. Of the two themes which do not appear to cluster with 

others of the same type, one (E+) belongs to both groups drug (Dr)–gene (G) and G-G. The 

sub-clusters within each edge type represent biologically relevant internal structure, giving 

us confidence in the quality of our embeddings. For example, blocks consisting of {“causal 

mutations” (U), “polymorphisms alter risk” (Y), “mutations affecting disease course” (Ud)} 
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and {“decreased expression” (E-), “antagonism” (A-), “inhibition” (N)} represent important 

classes of gene-disease and drug-gene relationships, respectively.

The top-left corner of Fig. 4(a), the Dr–disease (Dz) themes, is particularly relevant for drug 

repurposing. Note that the similarity between all themes in this group is high, especially 

“Treatment” (T) and “Inhibits cell growth (esp. cancer)” (C), because of the high literature 

bias towards cancer compared to other diseases. “Side effect” (Sa) edges are slightly more 

distant from T and C, which is promising because a side-effect phenotype should not be 

misconstrued as a treatment indication. In general, the high similarity among all themes in 

this group suggest that correlation between Dr-Dz themes is indeed the reason for the drop 

in performance when non-“Treatment” edges are removed from the embedding model. 

Outside of the Dr-Dz group, we see that among Dz-G themes, three stand out as quite 

similar to the Dr-Dz themes, suggesting a higher utility in our drug repurposing model 

(excluding J, which also belongs to the Dr-Dz group): “possible therapeutic effect” (Te), 

“diagnostic biomarkers” (Md), and “overexpression in disease” (X). Surprisingly, “Drug 

targets” (D) appears to be less related to treatment, suggesting that the literature references 

in this category are less specific (e.g. stating that a gene can be targeted without mentioning 

any actual drug).

To more directly assess how different themes contribute to the prediction of treatment-type 

edges, we measured the confidence f(l) for all drug-disease pairs relative to each theme 

using Eq. (3). The resulting predictions for each theme refer to the likelihood that an edge 

represents a relationship of that type, but by comparing these predictions to the true labels 

(i.e. known treatment indications), we can assess the degree to which each contributes to the 

prediction of a treatment-type edge. Figure 4(b) shows the precision at various recall levels 

for predicting known treatments. We choose precision as our primary performance metric 

because for drug repurposing we are most concerned with minimizing false positive 

predictions. As expected, the “Treatment” theme has the best performance on this task, 

especially at high recall levels, while other Dr-Dz themes are also highly predictive. The 

segregation between Dr-Dz/Dz-G and Dr-G/G-G edges suggests that disease nodes are the 

main drivers of the embeddings and that disease-related edges contain the majority of 

information relevant to treatment. In accordance with the embedding similarity results, we 

find that Te, Md, and X are the most predictive non–Dr-Dz themes for disease treatment. 

These themes may capture recurring semantic patterns that suggest treatment even when 

such a relationship is not directly stated.

3.2. Inferring novel treatments for high-priority rare diseases

The 30 highest-scoring novel drug repurposing candidates for high-priority rare diseases are 

shown in Table 1. We performed a detailed survey of literature evidence and assess the 

validity of the prediction using six categories: (1) published treatment, where there is 

literature evidence indicating the use of the drug to treat human subjects; (2) symptom 

management, where the drug has been used to address symptoms of the disease; (3) co-

morbidity treatment, where the drug treats a comorbid or closely related disease; (4) 

potentially feasible treatment, where there lies pre-clinical and/or biologically tractable 

evidence for the drug targeting the rare disease; (5) possible contraindication, where the drug 
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may produce a physiological effect opposite that which is desired; and (6) unknown/no 

effect, where there is little or no literature evidence to support the drug-disease combination.

Most evidence for the feasibility of drug repurposing candidates is not found in a papers 

abstract or title (the inputs to our model), but within the full text itself. The examples in 

category 1 provide evidence that our method is able to correctly identify treatments that have 

been published but are not present in GNBR. The remaining categories represent more 

complicated cases and demonstrate the additional inductive capacity of our model. Symptom 

management is one such category; while these drugs do not treat the underlying condition, 

they can be effective in rare disease patients. For instance, cimetidine, an H2 antagonist that 

reduces acid in the stomach, may alleviate the gastric reflux symptoms that accompany 

Prader-Willi syndrome. Other common forms of symptom management drugs include pain 

relievers, diuretics, and anti-arrhythmic drugs.

Likewise, common comorbidities of rare diseases are not direct treatments, but these cases 

demonstrate that the model is able to learn patterns in disease co-occurrence and identify 

drugs that may have a secondary benefit for the rare disease. In some cases, treating the 

comorbidity may even prevent the onset of the rare disease in question. For example, it is 

known that tuberculosis (TB) is associated with an increased risk for cancers of the 

respiratory system such as mesothelioma. As such, drugs that treat TB such as rifampicin 

may indirectly be protective against mesothelioma.

Possible contraindications represent cases in which our model fails to accurately recognize 

the nature of the relationship between biological entities. The only possible contraindication 

noted in the top 30 was between acetazolamide (ACZ) and amyotrophic lateral sclerosis 

(ALS). To understand why this potential mistake was made, we enumerated all paths of four 

or fewer nodes containing ACZ and ALS in the largest connected component GNBR graph. 

Each edge in these paths was reduced to its highest-scoring theme, and the minimum across 

these theme support scores was used to rank the paths. The highest-ranking path by this 

method was the following: (ACZ) – [T (0.937)] – (Glaucoma) – [U (0.904)] – (OPTN) – [U 

(0.906)] – (ALS). In other words, ACZ treats glaucoma, which shares a causal mutation in 

the OPTN gene with ALS. This suggests that the model correctly identified a mechanistic 

similarity between the two diseases, but in this case, the conclusion that ACZ would treat 

both was inaccurate since ACZ does not target OPTN. This is an inherent limitation of high-

level semantic knowledge graphs, and incorporating more granular phenotypic effects (e.g. 

Drug A increases blood pressure) and directionality in edges could lead to a greater ability to 

learn true mechanistic hypotheses.

Our final category, which we denote as “potentially feasible treatment”, consists of drugs 

which have been used in pre-clinical or animal studies of the disease, or those that target 

biological mechanisms influential to the cause or progression of the disease. These examples 

could lead to novel discoveries and thus represent the most promising candidates for further 

clinical study. We explore two such cases in more detail.

3.2.1. Case Study 1: Trifluoperazine as a treatment of Wilms tumor—Wilms 

tumor is a childhood cancer of the kidney. Mutations of the WT1 gene (Wilms Tumor 
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transcription factor gene 1) are responsible for about 20% of Wilms tumor cases.22 In 

particular, WT1 is believed to regulator proto-oncogenes such as MYC in renal 

development.23 Thus, aberrant expression of WT1 can precipitate MYC-mediated cancers. 

Trifluoperazine is traditionally an antipsychotic but has recently been shown to have 

anticancer growth properties.24 In particular, it is believed to inhibit MYC-induced cell 

transformation.25 We hypothesize that trifluoperazine’s anti-cancer properties can therefore 

be used to treat cancers in which MYC is dysregulated, such as Wilms tumors. The ability of 

our method to capture this off-label indication is promising and suggests that the model is 

learning information from genes proximal to the drug and disease when predicting treatment 

relationships.

3.2.2. Case Study 2: mTOR inhibition as a treatment of sarcoidosis—
Sarcoidosis is a multi-system autoimmune disease with unknown etiology that leads to 

clusters of inflammatory cells called granulomas in several organs including lungs, skin, and 

lymph nodes.26 mTORC1 pathways activation is a hallmark of these clinical findings. In 

fact, inhibiting mTOR via drugs, such as everolimus and rapamycin, has slowed down 

granuloma formation in preclinical animal studies.27 To our knowledge, no papers have 

specifically referenced a relationship between everolimus to sarcoidosis; nonetheless, our 

method was able to generate a treatment hypothesis based on previous treatment mechanism 

(mTOR inhibition) and the pathogenesis of the disease (granuloma formation). This suggests 

that the model is able to synthesize the heterogeneous types of information in the knowledge 

graph in a way that is meaningful for evaluating treatment potential.

3.3. External validation using network proximity

To externally validate the pairs in Table 1, we calculated the network proximity between sets 

of drug target genes derived from DGIdb28 and disease-associated genes derived from 

OrphaNet and OMIM. The underlying assumption is that gene sets corresponding to true 

drug-disease combinations will be closer to each other in a protein-protein interaction (PPI) 

network than expected by random chance. We represented every node in the STRINGdb 

v1029 PPI network as a 128-dimensional embedding vector using Node2Vec30 with default 

parameters and calculated the median cosine similarity between proteins in the drug and 

disease sets.31 We calculated an empirical p-value based on 10,000 samples of genes drawn 

randomly with replacement into two sets of the same size as the true drug and disease sets. 

Seven pairs from Table 1 could not be calculated because either the drug or disease did not 

have a corresponding gene set. Thirteen of the remaining 23 pairs were found to be 

significant under a Bonferroni-adjusted p-value threshold of 0.05, demonstrating that many 

of our predictions can be corroborated by independent data under this network proximity 

hypothesis. Those that do not pass the significance threshold may simply not be related by a 

known genetic mechanism; failure to identify network proximity does not preclude a true 

treatment, especially for entirely novel predictions.

3.4. Drug-disease path analysis

To better understand how our model makes novel link predictions, we analyzed the four-

node paths connecting drug-disease pairs in the original GNBR graph, ranked using the 

procedure described in the ACZ-ALS example above. There are three possible metapath 
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motifs based on node type: drug-disease-gene-disease (DzG-mediated), drug-disease-drug-

disease (DzDr-mediated), and drug-gene-gene-disease (GG-mediated). In the first, the drug 

treats a different disease with the same genetic mechanism; in the second, the drug treats a 

different disease which shares a treatment with the disease of interest; and in the third, the 

drug affects the disease via two interacting genes. A representative example of each is shown 

in Fig. 5(a).

In particular, GG-mediated paths demonstrate the models ability to automatically identify 

biological mechanisms that do not rely transitively on other diseases. In the example shown 

in Fig. 5, we show an alternative, immunological hypothesis for the relationship in Case 

Study 1 (section 3.2.1). Here, trifluoroperazine is known to antagonize calmodulin 

(CALM1), a calcium-binding protein that induces expression of the inflammatory cytokine 

interleukin-6 (IL-6). Improper regulation of IL-6 is implicated in the progression of Wilms 

tumor,32 suggesting that antagonizing calmodulin could indirectly help slow tumor 

progression by reducing IL-6 expression. Cases such as this exemplify the capacity of our 

model to not only identify new treatment opportunities, but also develop a more nuanced 

understanding of how these treatments may manifest if they are successful.

Finally, we analyzed the distribution of path motifs for each of our defined feasibility 

categories to discover any systematic patterns in how the model infers link predictions (Fig. 

5(b)). We observe a relative enrichment in the DzG-mediated motif for pairs classified as 

comorbidity treatment. This is because two diseases that share a common genetic 

mechanism are frequently comorbid, and the model predicts that a drug that treats one of the 

conditions also treats the other. This can be a useful inference, especially in cases where the 

drug affects the mediating gene, but if not it can result in mistakes like the ACZ-ALS case. 

Such errors could be mitigated by incorporating information about the drugs mechanism of 

action (e.g. drug class) during inference to rule out obvious mismatches. Published 

treatments had fewer gene-mediated connecting paths because the evidence for these 

relationships is mostly contained in clinical journals, which do not typically discuss 

mechanism in the abstract. GG-mediated motifs were also infrequent in the top-ranked 

paths, most likely because a drug’s target genes are not referenced in abstracts as much as its 

disease indications, and thus drug-gene edges tend to have lower scores in GNBR. This 

suggests that a GNBR-like knowledge graph derived from full texts as well as abstracts 

could provide even more power to discover novel relationships.

More generally, the capacity of our approach to learning new treatment is dependent on the 

information represented in the underlying knowledge graph. In the case of GNBR, we rely 

on a fixed set of themes extracted from unsupervised clustering in a manner agnostic to the 

downstream task. Our method may benefit from a more granular, fine-tuned set of themes 

that better encapsulate important information for drug repurposing. Additionally, as NLP 

tools improve in their ability to capture complex relationships across unstructured text (e.g. 

dependencies across sentences), knowledge graphs such as GNBR will become more 

comprehensive, and our methods capacity to learn patterns across the literature will increase.
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4. Conclusion

We describe a method for generating drug repurposing hypotheses for these rare diseases 

using embeddings learned from the GNBR knowledge graph. Our approach is fully 

automated and takes advantage of the vast amount of unstructured information across the 

medical literature, while explicitly modeling the confidence in this information. We 

demonstrate high performance on a gold standard set of drug indications, as well as the 

ability to generate novel drug repurposing hypotheses. We further provide evidence to 

support our treatment predictions using independent sources, and identify specific motifs in 

the original knowledge graph which help explain model behavior. Our model was able to 

successfully learn biologically-relevant patterns from noisy knowledge-based data, but in the 

absence of experimental validation these predictions remain simply hypotheses. However, 

our approach of automatically synthesizing literature knowledge helps to narrow the search 

space of clinical research and thus accelerate the discovery of new treatment options for 

patients with rare diseases.
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Fig. 1: 
Summary of all themes in GNBR, organized by category along with their reference codes.
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Fig. 2: 
Treatment prediction on gold-standard test set for different submodels, including ROC (left) 

and PR (right) curves.
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Fig. 3: 
2D UMAP projection of embedded pairs compared to “Treatment”
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Fig. 4: 
(a) Pairwise cosine similarity (ranging from 1.00 to −0.23) between embeddings for each 

theme, clustered by hierarchical clustering. (b) Precision at various recall levels for drug-

disease score predicted by each theme.
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Fig. 5: 
(a) Examples of each drug-disease path motif. Edges are labeled with their highest-

supported themes and corresponding support scores. (b) Distribution of motifs across the six 

interpretation categories in Table 1 as determined by the occurrence of each motif across the 

top 100 ranked paths per drug-disease prediction.
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Table 1:

Summary of the top 30 drug repurposing candidates. “Score”: the predicted confidence generated by our 

model; “Proximal in PPI Network?”: indication of significant proximity between drug- and disease-associated 

genes (Section 3.3); Potential Mediators”: top three genes implicated in path analysis (Section 3.4); 

“Assessment”: manual designation of treatment (Tx) viability; “PMID”: literature reference supporting 

interpretation.

Drug Disease Score Proximal in 
PPI 

Network?

Potential 
Mediators

Assessment PMID

cortisone myelodysplastic 
syndrome

1.336 CD34, p53, EPO published Tx 23483702

everolimus sarcoidosis 1.196 ✓ ACE, LYZ, IL-18 potentially feasible Tx 28216612

rifampicin mesothelioma 1.168 hGF, THBD, p53 comorbidity Tx 21150470

citalopram myeloma 1.140 IL-6, BDNF, 
ABCB1

comorbidity Tx 17002797

streptomycin meningiomas 1.125 N/A MMP9, p53, VEGF comorbidity Tx 23374258

cimetidine Prader-Willi Syndrome 1.107 GH, BDNF, 
GBP-28

symptom management 29685165

hydroxychloroquine familial Mediterranean 
fever

1.079 SAA, IL-18, TNFα potentially feasible Tx 15720245

capsaicin non-Hodgkin’s 
lymphoma

1.055 IL-6, IL-2, WT1 potentially feasible Tx 12208886

trifluoperazine Wilms tumor 1.053 ✓ CTNB1, p53, PD-
L1

potentially feasible Tx 31058089

amantadine carcinoid syndrome 1.052 N/A GH, mTOR, MLN unknown/no effect —

lidocaine biliary atresia 1.050 ✓ LFA-1, CD4, 
HAMP

symptom management 21531533

ketoconazole acromegaly 1.047 GH, INS, IGF1 unknown/no effect —

acetazolamide amyotrophic lateral 
sclerosis

1.043 ✓ OPTN, GM-CSF, 
TGFβ

possible 
contraindication

23754387

famotidine leishmaniasis 1.036 N/A IL-4, TNFα, 
FOXP3

published Tx 28491373, 
27600041

idarubicin osteosarcoma 1.034 ✓ ABCB1, p53, 
VEGF

potentially feasible Tx 20979639

hydroxyurea MALT lymphoma 1.032 N/A BCL10, MYD88, 
MYC

potentially feasible Tx 25904378

citalopram thymoma 1.026 N/A IL-2, EGFR, PD-L1 potentially feasible Tx 28356024

acetazolamide systemic sclerosis 1.024 ✓ ET-1, VEGF, IL-17 symptom management 23541012

cortisone carcinoid syndrome 1.021 GH, HES1, GOT1 unknown/no effect —

cortisone trigeminal neuralgia 1.017 N/A ACTH, VIP published Tx 16762570

danazol adrenocortical carcinoma 1.011 ✓ p53, IGF-2, AGT2 potentially feasible Tx 25932386

budesonide biliary atresia 1.009 ✓ CD4, PCNA, IL-18 published Tx 25847799

chloramphenicol mesothelioma 1.002 ✓ CAT, hGF, p53 potentially feasible Tx 24939899

hydroxyurea familial Mediterranean 
fever

1.002 FMF, SAA, IL-18 unknown/no effect —

metoclopramide giant cell arteritis 1.000 ✓ IL-6, CRP, YKL-40 symptom management 21926152

dapsone sarcoidosis 0.996 ✓ IL-18, CD4, AAT published Tx 12588536, 
11176663
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Drug Disease Score Proximal in 
PPI 

Network?

Potential 
Mediators

Assessment PMID

vinblastine lymphoproliferative 
disorders

0.995 N/A BCL6, AID, BCL-2 published Tx 17243127

prednisone biliary atresia 0.995 ✓ LFA-1, CD4, hGF published Tx 26590818

acetazolamide porphyria cutanea tarda 0.992 ✓ INS, EPO symptom management 15464657

dextromethorphan carcinoid syndrome 0.989 GRIN1, HES1, 
mTOR

unknown/no effect —
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