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P H Y S I C S

Vortices as Brownian particles in turbulent flows
Kai Leong Chong1, Jun-Qiang Shi2, Guang-Yu Ding1,3, Shan-Shan Ding2, Hao-Yuan Lu2,  
Jin-Qiang Zhong2*, Ke-Qing Xia3,1*

Brownian motion of particles in fluid is the most common form of collective behavior in physical and biological 
systems. Here, we demonstrate through both experiment and numerical simulation that the movement of 
vortices in a rotating turbulent convective flow resembles that of inertial Brownian particles, i.e., they initially 
move ballistically and then diffusively after certain critical time. Moreover, the transition from ballistic to diffusive 
behaviors is direct, as predicted by Langevin, without first going through the hydrodynamic memory regime. The 
transitional timescale and the diffusivity of the vortices can be collapsed excellently onto a master curve for all 
explored parameters. In the spatial domain, however, the vortices exhibit organized structures, as if they are 
performing tethered random motion. Our results imply that the convective vortices have inertia-induced memory 
such that their short-term movement can be predicted and their motion can be well described in the framework 
of Brownian motions.

INTRODUCTION
Brownian motion is an example of stochastic processes that oc-
cur widely in nature (1). Einstein was the first to provide a theoret-
ical explanation for the movement of pollen particles in a thermal 
bath (2). Later, Langevin considered the inertia of the particles and 
predicted that the motion of particles would be ballistic in a short 
time and then changes over to a diffusive one after certain time (3). 
Because this transition occurs in a very short time scale, its direct 
observation had to wait for over 100 years (4).

However, the “pure” Brownian motion, as predicted by Langevin, 
is never observed in liquid systems, i.e., the mean squared displace-
ment (MSD) of the Brownian particles changes directly from a t2 de-
pendence to a t dependence. Rather, the transition spans a broad range 
of time scales, as is the case in (4). This slow and smooth transition 
is caused by the so-called hydrodynamic memory effect (5), which 
arises as the surrounding fluid displaced by moving particles react-
ing back through entrainment, thereby generating long-range cor-
relations (6). This also manifests in the spectrum of the stochastic 
force in the Langevin equation being “colored” (7, 8). The hydrody-
namic memory effect has been observed in a number of systems, for 
instance, colloidal suspensions (9), particles suspended in air (10), 
and trapped particles in optical tweezers (4, 7, 11).

In the studies of Brownian motion, a common assumption is that 
the objects should have distinct density or mass difference from their 
environment such that inertia plays a role initially (3). Here, we dem
onstrate, by both experiment and numerical simulations, that vortices 
in highly turbulent convective flows behave like inertial particles per
forming pure Brownian motion, i.e., their MSD changes sharply from 
a t2 dependence to a t dependence without being influenced by the 
hydrodynamic effect. The system here is thermally driven rotating 
turbulent flows in which the convective Taylor columns move two-
dimensionally in a highly turbulent background flow that serves as 
a heat bath. Our results suggest that within a well-determined time, 

the inertia of vortices becomes effective such that it persists to drift 
along the previous direction. This may entail the capability of pre-
dicting the vortex motion within certain period of time in astro- and 
geophysical systems.

In many situations in astrophysics, geophysics, and meteorology, 
thermal convection occurs while being influenced by rotation. The 
existence of Coriolis force leads to the formation of vortices (12), 
which appear ubiquitously in nature, for instance, tropical cyclones 
in the atmosphere (13), oceanic vortices (14), and long-lived giant 
red spot in Jupiter (15). Another intriguing example is the convective 
Taylor columns in Earth’s outer core, which is believed to play a 
major role in Earth’s dynamo (16) and is therefore closely related to 
Earth’s magnetic field variation and the corresponding seismic activ-
ities (17). A challenge in the astro- and geophysical research com-
munities is whether one can predict the movement of vortices within 
certain period of time.

A model system used in the study of vortices in convective flows 
is the so-called rotating Rayleigh-Bénard (RB) convection (18–21), 
which is a fluid layer of fixed height (H) heated from below and cooled 
from above while being rotated about the vertical axis at an angular 
velocity . Here, the temperature difference destabilizes the flow such 
that convection occurs when the thermal driving is sufficiently strong. 
Three dimensionless parameters are used to characterize the flow dy-
namics of this sytem, which are the Rayleigh number Ra = gTH3/, 
the Prandtl number Pr = /, and the Ekman number Ek = /2H2 
(another often used dimensionless parameter to quantify the effect 
of rotation is the Rossby number ​Ro  =  Ek ​√ 

_
 Ra / Pr ​​). Here, , , and 

 are the thermal expansion coefficient, thermal diffusivity, and ki-
nematic viscosity of the fluid, respectively; tg is the gravitational ac-
celeration, and T is the temperature difference across the fluid layer.

In the absence of rotation, fragmented thermal plumes are 
detached from the thermal boundary layer and being transported to 
the opposite boundary layer. When rotation is present, especially 
when its effect becomes non-negligible, vortical structures emerge 
that can be seen as fluid parcels spiraling up or down (Fig. 1). It is 
known that these vortical plumes arise as a result of Ekman pump-
ing and can enhance heat transport (22). When rotation becomes 
rapid yet not too strong so the flow is not completely laminarized, 
the Taylor-Proudman effect (23, 24) becomes dominant, which sup-
presses flow variation along the axis of rotation. The resultant flow 
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field is the long-lived columnar structure extending throughout the 
entire cell height known as convective Taylor columns (25–27). 
Because of their importance in the momentum and heat trans-
port, previous works had studied extensively the morphology 
and statistical properties of these vortices (20, 25, 26, 28, 29).

The parameter range of the present study is such that, for exper-
iment, Ra is fixed at 3 × 107 and Pr is fixed at 4.38, while Ek is varied 
from 3.36 × 10−5 to 2.68 × 10−4. For direct numerical simulation 
(DNS), Ra varies from 107 to 109, and Pr is fixed at 8, while Ek 
changes from 1.5 × 10−6 to 4 × 10−4. In the experiment, we use a 
cylindrical convection cell of the lateral dimension to height aspect 
ratio  = 3.8, with rigorous thermal control at the wall boundaries 
(30, 31). In DNS, periodic boundary condition is adopted with  = 2. 
In addition, we consider only the influence of the Coriolis force but 
neglecting the effect of centrifugal force in the simulation. This con-
dition is valid in the experiment for small enough Froude number 
Fr [usually for Fr = 2L/2g < 0.05 (32)]. Although for the case of the 
fastest rotation, Fr is 0.06, which is slightly larger than 0.05, one can 
still neglect the centrifugal effect in most part of the domain due to 
the fact that the strength of centrifugal force diminishes toward the 
rotation axis. To compare experimental and numerical results, all 
the physical parameters are made dimensionless, using the buoyancy 
time scale (also known as the free-fall time scale; see Materials and 
Methods for the definition of the time scale), the temperature dif-
ference across the fluid layer, and the system height. The vortices 
are identified and extracted using the so-called Q-criterion (33) (for 
details, see Materials and Methods). Figure 1C shows a typical field 
of the Q quantity and the examples of extracted vortices.

RESULTS
Horizontal motion of the vortices
We first examine the motion of vortices by tracking their positional 
change from a sequence of snapshots with a time interval of smaller 
than 1 buoyancy time unit, so that the movement of vortex is smooth 
in this time frame. With the obtained trajectories, the statistical be-
havior of the vortices can be characterized by their MSD, ​〈 ​​ → r ​​​ 2​(t ) 〉  =  

​ 1 _ N​ ​ ∑ 
i=1

​ 
N

 ​​ ​(​​ → r ​​ i​​( + t ) − ​​ → r ​​ i​​( ) )​​ 2​​, where N is the total number of trajectories. 

Figure 2A shows the MSD versus time t from both simulation (Ra = 
1 × 108) and experiment (Ra = 3 × 107) for various values of Ek. For 
most cases, the time scale spans three decades. The MSDs for differ-
ent Ek and Ra are seen to exhibit the same behavior, i.e., at short 
time, the vortex motion is ballistic and the motion becomes diffusive 
after certain time. This is demonstrated more clearly by the power 
law dependence ​〈 ​​ → r ​​​ 2​(t ) 〉  ∼ ​ t​​ ​​, with the exponent  = 2 for small 
values of t, which changes to 1 for larger times. Note that this tran-
sition from ballistic to diffusive motion resembles that of Brownian 
particles in a thermal bath. If the vortices can be treated as Brownian 
particles, then their motion can then be described by the solution of 
a Langevin equation (3)

	​​ ​ → r ​ ¨ ​  =  − ​​ → r ​  ​ / ​t​ c​​ + ​ 
→

 ​(t)​	 (1)

	​ 〈​ 
→

 ​(t ) 〉  =  0​	 (2)

	​ 〈​ 
→

 ​(t′) ⋅ ​ 
→

 ​(t′′) 〉  = ​  2D ─ 
​t​c​ 
2​
  ​ (t′− t′′)​	 (3)

L
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B Vortices detaching from boundary layer

Vortical plume

Fig. 1. Flow structures with rotation. Snapshots of (A) the temperature  and (B) streamlines originating from the lower thermal boundary layer. (C) Snapshots of Q/Qstd 
(see main text for the definition of Q) taken horizontally at the edge of thermal boundary layer for Ek = 4 × 10−5 and Ra = 108 and a demonstration of the extracted vortex. 
The locations of vortex center are marked as yellow crosses.
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where ​​ 
→

 ​(t)​ is a stochastic force with white-noise spectrum, tc is a char-
acteristic time scale separating the ballistic and diffusive regimes, and 
D is the diffusion coefficient of vortices in thermal turbulence. From 
the Langevin equation, one obtains the MSD

	​​  〈 ​​ 
→ r ​​​ 2​(t ) 〉 ─ 2 ​Dt​ c​​

  ​  = ​  t ─ ​t​ c​​ ​(1 − ​ ​t​ c​​ ─ t ​(1 − exp(− ​ t ─ ​t​ c​​ ​ ) ) )​	 (4)

The above expression can be used to fit the measured MSD to 
obtain D and tc for each Ek and Ra. By plotting ​⟨​​ → r ​​​ 2​(t ) ⟩/ 2D​t​ c​​​ versus 
t/tc, one finds that all the measured MSDs collapse excellently onto 
a single curve, which implies that the dynamics of vortex motion is 
the same for the various values of Ra and Ek. The solid line in Fig. 2B 
represents a fit of Eq. 4 to the data points. The excellent agreement, 
including both the ballistic and the diffusive behaviors and the sharp 
transition between the two regimes, suggests that the two-dimensional 
motion of the vortices exhibit a “pure Brownian” behavior. In the 
convective system, the vortices carry fluid parcels that are colder or 
hotter than the surrounding fluid. It is particularly notable to ob-
serve that the relatively small density difference caused by the tem-
perature variations can have considerable inertial effect that gives 
rise to the notable ballistic behavior; such inertia in convective vor-
tices lead to different behaviors from that of point vortices (34).

Note that the two fitting parameters D and tc in the equations of 
motion depend on both Ra and Ek. It is thus remarkable that, when 
plotted against Ra/Rac [where Rac = 8.7Ek−4/3 is the critical Rayleigh 
number for the onset of convection (18)], both D and tc collapse nicely 

onto a single trend as shown in Fig. 2C. This suggests that the rescaled 
Ra can serve as a suitable parameter to describe the dynamics of vor-
tex motion. When Ra/Rac increases, the diffusivity D of the vortex 
motion increases monotonically, which reflects a greater level of tur-
bulent fluctuations in the background flows. These turbulent fluc-
tuations are represented by (t) in Eq. 1. The term ​− ​​ → r ​  ​ / ​t​ c​​​ in Eq. 1 
represents the drag experienced by the vortices, which originates 
mainly from the viscous boundary layers. We observe that the vor-
tices experience less drag from the walls with the increasing rotation 
rate, which can be seen from the Supplementary Materials that the 
wall normal velocity gradient (of horizontal velocity) decreases with 
larger rotation rate. Note also that, when Ra ≥ 10Rac, tc approaches 
to 1, i.e., it becomes the buoyancy time scale. This suggests that the 
buoyancy time becomes the dominant scale in controlling the bal-
listic to diffusive transition of the vortex motion when Ra becomes 
much larger than Rac.

We have shown that the gradual transition caused by the hydrody-
namic memory effect is absent in the Brownian motion of the vortices. 
This can be demonstrated by examining the velocity autocorrela-
tion function (VACF) of the vortex motion, C(t) = 〈V()V( + t)〉. 
Figure 2D shows that in the range of 0 ≤ t/tc ≲ 2, the VACF from 
both simulation and experiment is best described by an exponential 

function ​C(t ) = ​2D _ ​t​ c​​ ​ exp(− t / ​t​ c​​)​. We note that the hydrodynamic mem-

ory effect, which is often observed in the motion of Brownian particles, 
would lead to a power law decay in the VACF: C(t) ∼ t−3/2 (6, 35). Here, 
we observe that during the transition from ballistic to diffusive regime 

Simulation:
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9 × 10−6

8 × 10−6
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3.36 × 10−51.34 × 10−4
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Fig. 2. Ballistic to diffusive motion of convective vortices. (A) The MSD of the vortices as a function of time. (B) Normalized MSD as a function of t/tc. The solid line 
represents a fit of Eq. 4 to the data. In both (A) and (B), solid symbols denote numerical results at Ra = 1 × 108, and open symbols denote experimental results at Ra = 3 × 
107. (C) Diffusion coefficient D of vortices (open symbols) and the characteristic time scale tc for motion transition (solid symbols) as a function Ra/Rac. (D) Velocity auto-
correlation function (VACF) versus t/tc for different Ek. The dashed line represents ​C(t ) = ​2D _ ​t​ c​​ ​ exp(− t / ​t​ c​​)​. The solid line indicates a power law decay for the VACF (data for 
t ≳ 5tc have some scatter owing to insufficient statistics). Note that all the physical quantities are made dimensionless as described in the main text.
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(t ≃ tc), VACF follows exponential decay rather than power law de-
cay (shown even clearer in the Supplementary Materials by a semi-
log plot). This suggests that the transition of vortex motion is mainly 
governed by the stochastic driving force from the surrounding flow. 
Consequently, the vortex motion exhibits pure Brownian motion, 
and the transition from the ballistic to the diffusive regimes is sharp. 
This stochastic force is generally believed to originate from the tur-
bulent background fluctuations (36, 37). It is mainly contributed by 
the fluctuations from the bulk rather than from the boundary layers 
due to the fact that the fluctuations are generally larger in the bulk 
than in the boundaries and that the thickness of the boundary layers 
decreases with increasing rotation rates such that its “volume” be-
comes much less than that of the bulk. The VACF provides another 
evidence for the inertial property of the vortices. For inertial parti-
cles, the normalized VACF should remain nearly 1 in the ballistic 
regime (38). As shown in Fig.  2D, the value of our normalized 
VACF is close to 1 over a substantial period of time in the range of 
t < tc, which is a few tens of seconds in the experiment.

Vortex distribution
Despite the Brownian-like motion, the spatial distribution of the vor-
tices, however, is not random, rather, they exhibit patterned struc-
tures. We show in Fig. 3A horizontal slices of the instantaneous 
normalized Q field taken at the edge of thermal boundary layer for 
several rotation rates. As Ek varies from 4 × 10−5 to 7 × 10−6, several 
changes in vortex distribution can be identified. First, the number 
of vortices increases with the rotation rate such that the initially di-
lute and randomly distributed vortices become highly concentrated 
and clustered. Our observation of the increasing vortex number 

density with the rotation rate is in agreement with the previous studies 
(20, 25, 26, 28, 29). Second, when the rotation rate becomes sufficiently 
high, the vortices tend to form a vortex-grid structure. Zooming in 
to a local region for the case of highest rotation rate clearly reveals 
that there is a regular pattern for such vortex-grid structure: Vortices 
represented by reddish color form a square lattice, with bluish local-
ized areas in-between denoting regions of high strain according to 
the definition of Q. This suggests that the regions of strong normal 
strain may generate a pinning effect that helps to form the lattice-like 
pattern. The formation of lattice-like pattern had also been reported 
by Boubnov and Golitsyn (25) for rotating convection with free sur-
face. However, they observed a hexagonal pattern instead of the square 
pattern observed here, possibly due to different boundary settings and 
control parameters. Bajaj et al. (39) had observed the transition from 
hexagonal to square pattern with the increasing rotation rate.

The spatial structure of the vortices can be quantified by the ra-
dial distribution function g(r), which is defined as the ratio of the 
actual number of vortices lying within an annulus region of r and 
r + r to the expected number for uniform distribution, such that g(r) 
equals to one signifies randomly distributed vortices. Figure 3B shows 
g(r) versus the distance r between vortices normalized by the average 
radius a of the vortices (a is evaluated from the average area of vor-
tex, assuming a shape of a perfect circle). It is seen that the value of 
g(r) is close to zero when r becomes smaller than the diameter of a 
vortex, as it should be the case. This feature becomes more robust with 
decreasing Ek, since the convective Taylor columns become more 
rigid as rotation rate increases. As r increases and for not too rapid 
rotation (Ek > 10−5), g(r) will gradually saturate at the value of 1, im-
plying a random spatial distribution of the vortices. In contrast, for 
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B C
Rotation rate
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4 × 10−5

2 × 10−5

1 × 10−5

9 × 10−4

8 × 10−4
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4.47 × 10−5
2.68 × 10−4

3.36 × 10−5
1.34 × 10−4
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Fig. 3. Vortices forming lattice-like pattern with high enough rotation rate. (A) Snapshots of Q/Qstd taken horizontally at the edge of thermal boundary layer for, from 
left to right, Ek = 4 × 10−5, 1 × 10−5, and 7 × 10−6 at Ra = 108. (B) Radial distribution function g(r) as a function of r/a, where a is the average radius of vortices. (C) The max-
imum value gmax of the radial distribution function versus Ra/Rac (the case of Ra = 3 × 107 is from experiment, the others are from DNS).
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Ek ≤ 10−5, a sharp peak in g(r) appears at r ≈ 4a before eventually 
decaying to the value of one. This suggests the emergence of short-
range order, which corresponds well to the lattice-like structure shown 
in the magnified picture in Fig. 3A. Here, it is seen that the vortices 
are not closely packed but separated by a localized region of strong 
strain with the same size as that of a vortex. As a result, the distance 
between the center of vortices are approximately 4a, corresponding 
to the peak position of g(r).

For the smallest Ek = 7 × 10−6, g(r) even exhibits multiple peaks, 
which is an evidence for the existence of a vortex lattice with a size 
beyond the nearest neighbors. Figure 3C plots the maximum value 
of g(r) against the rescaled Ra, which shows that data points for differ-
ent Ra and Ek collapse onto a single curve. For Ra ≥ 10Rac, gmax is 
close to one, indicating the random distribution of vortices under the 
influence of strong turbulent fluctuations. In contrast, for Ra < 10Rac, 
gmax increases with decreasing Ra/Rac. We see that vortices exhibit 
certain spatial order, despite their motion in the temporal domain 
being random. How to reconcile this apparent contradiction?

Figure 4 (A and B) shows the trajectories of vortices for the cases 
of slow and fast rotation, respectively. It is seen that the vortex mo-
tion is actually very localized. This can be made more quantitative by 
comparing d75, which is the 75th percentile of the distance traveled 
by vortices, to the mean vortex separation dv, as shown in Fig. 4C. It 
is clear that most vortices during their lifetime do not travel far 
enough to “see” or interact with other vortices, as if they are tethered.

The spatial structure of vortices with short-range order may be 
understood from the competition between two dynamical pro-
cesses, as characterized by the vortex’s relaxation time scale and its 
Brownian time scale, respectively. Here, the relaxation time scale ts 
is defined as 1/〈∥S∥〉x, y, t, where 〈∥S∥〉x, y, t is the magnitude of nor-
mal strain averaging over time and over horizontal plane at the edge 
of thermal boundary layer. In addition, the Brownian time scale is 
defined as a2/D, where a is the vortex radius. The ratio of the two 
time scales  = 〈∥S∥〉x, y, ta2/D measures the tendency to form vor-
tex aggregation, and this ratio is somewhat similar to the Péclet 
number used in the study of Stokesian dynamics of colloidal disper-
sions (40). While both become larger for stronger rotation, their 
relative strength determines the spatial distribution of vortices. For 
 ≤ 1, vortex motion is dominated by the diffusion, and thus, any 
vortex structure induced by normal strain would be destroyed by 
the rapid diffusion (with large D); therefore, the distribution of vor-
tices appears to be random. On the other hand, for  > 1, diffusion 
loses out to strain and vortex aggregations form. In Fig. 4D, we plot 
the peak value of radial distribution function g(r) versus . gmax 
starts increasing from one when  becomes larger than unity.

DISCUSSION
We have shown that the motion of vortices in rotating thermal con-
vection resembles that of inertial particles performing Brownian 

A

C

B

D
Simulation:

107

108

109

Experiment:

3 × 107

Simulation:

Experiment:
d75 dv

d75 dv

Fig. 4. Localized motion of vortices. Trajectories of vortices: (A) Ek = 1 × 10−4 and (B) Ek = 7 × 10−6; in both cases, Ra = 1 × 108. The blue dots indicate the end of the 
trajectories. (C) The average separation (dv) between vortices (open symbols) and the 75th percentile of the distance (d75) traveled by vortices (solid symbols), as a func-
tion of Ra/Rac for Ra = 1 × 108 (simulation, red symbols) and Ra = 3 × 107 (experiment, blue symbols). (D) The maximum radial distribution function gmax versus  defined 
as the ratio between the Brownian time scale and the relaxation time scale.
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motion, with a sharp transition from ballistic to diffusive regimes with-
out first experiencing the intermediate hydrodynamic memory regime. 
This pure Brownian motion, as originally predicted by Langevin, 
has not been observed for inertial particles in liquid systems. This is 
despite the fact that the vortices exhibit a certain level of spatial orga-
nization, so that their overall behavior is tethered random motion. 
Here, we should also bring the attention to the classical theoretical 
work by Taylor (41), who found that passive tracers exhibit a transi-
tion from ballistic to diffusive behavior, similar to what is found 
here for inertial convective vortices, despite the two systems being 
different.

The pure Brownian motion of the vortices observed here indicates 
that the hydrodynamic memory effect is insignificant. To understand 
this phenomenon, we consider how the deformability of the vortices 
influences their motion. A previous work (42) has shown that the 
long-time tail associated with the hydrodynamic effect can be broken 
down in the case of the deformable particles. It can explain the re-
duction of the hydrodynamic effect for low rotation rate due to the 
flexible structure of the vortices. However, we should emphasize that 
for large enough rotation rate, the shape of the vortices is almost un-
changed, and we should regard the vortices as rigid. Here, we inter-
pret the pure Brownian motion at high rotation rate as follows: The 
moving vortices displace and entrain the surrounding fluid and un-
avoidably lead to reactions from the background fluid, which would 
normally generate the hydrodynamic memory effect. On the other, 
the vortex movement becomes very localized at high rotation rate. 
Therefore, they do not experience too much hydrodynamic interac-
tion from the surrounding fluid, which may be the reason for the 
absence of the hydrodynamic memory effect. Meanwhile, the forma-
tion of vortex-shield structure for convective vortices (27, 43) can also 
reduce the vortex-vortex interaction.

Last, the finding that the vortices have an apparent inertia, and 
therefore the existence of the ballistic motion before the transition to 
diffusive behavior, may have some astro- or geophysical implications 
if one assumes that the same universal vortex motion is still work-
ing in the astro- or geophysical parameters. One example is the pos-
sibility to predict the motion of vortices within the ballistic regime. 
Here, we estimate the corresponding transition time scale for sever-
al cases in astro- and geophysical systems using the buoyancy time 
scale ​​√ 
_

 ​H​​ 4​ / (Ra) ​​. For Earth’s liquid outer core, one can estimate tc 
is in the order of hour to year. This estimation is based on the ac-
cepted values of Ra ranging from 1022 to 1030 and Ek ≈ 10−15, and 
the physical parameters H ≈ 2 × 106 m,  ≈ 10−6 m2 s−1, and  ≈ 
10−5 m2 s−1 for the liquid core are used (44,  45). In astrophysics, 
there is a conventional thought that the short-term variation (time 
scale of years or less) of Earth’s magnetic field should be primarily 
caused by external sources, such as the solar wind (46). On the basis 
of our estimate (with the caveat that we have neglected the spherical 
geometry of Earth’s outer core and the radial gravity direction), we 
speculate that the inertia of a vortex could be another important fac-
tor for the columnar vortex movement in Earth’s core and thus may 
be an example of internal sources affecting the short-term variation 
in Earth’s magnetic field.

MATERIALS AND METHODS
Experimental setups
The experimental apparatus had been used for several previous in-
vestigations of turbulent rotating RB convection (30, 31). For the 

present study, we installed a new cylindrical cell that had a diameter 
L = 240.0 mm and a height H = 63.0 mm, yielding an aspect ratio 
 = 3.8. Its bottom plate, made of 35-mm thick oxygen-free copper, 
had a finely machined top surface that fit closely into a Plexiglas side 
wall and was heated from below by a uniformly distributed electric wire 
heater. The top plate of the cell was a 5-mm thick sapphire disc that 
was cooled from above through circulating temperature-controlled 
water. For flow visualization and velocity measurement, a particle 
image velocimetry (PIV) system was installed that consists of three 
main components: a solid-state laser with light-sheet optics, neutrally 
buoyant particles suspended in the flow, and a charge-coupled de-
vice camera. Both the convection apparatus and the PIV system are 
mounted on a rotating table that operates in a range of the rotating rate 
0 ≤≤ 2.5 rad s−1. The measuring region of the velocity field pre-
sented in this work was a central square area of 164 mm by 136 mm of 
the horizontal plane at a fluid height z = H/4. In each velocity map, 
103×86 velocity vectors were obtained with a spatial resolution of 
1.6 mm. For a given Ek number, we took image sequences consist-
ing of 18,000 velocity maps at time intervals of 0.5 s, corresponding 
to an acquisition time of 2.5 hours.

Numerical method
We consider the Navier-Stokes equation in Cartesian coordinate with 
Oberbeck-Boussinesq approximation

	​ ∇ ⋅ u  =  0​	 (5)

	​​  ∂ u ─ ∂ t ​ + u ⋅ ∇ u  =  − ∇ p +  ​∇​​ 2​ u − 2 × u +  ​e​ z​​​	 (6)

	​​  ∂  ─ ∂ t ​ + u ⋅ ∇   =   ​∇​​ 2​ ​	 (7)

where u, p, and  = [T − (Thot + Tcold)/2]/T are velocity, pressure, 
and reduced temperature, respectively, where T = Thot − Tcold. The 
governing equation is solved in nondimensional form. Physical quan-
tities in the governing equation are nondimensionalized by xref = H, 
uref = (gHT)1/2, and Tref = T, which are the system height, the 
free-fall velocity, and the global temperature difference. Then, the 
time is nondimensionalized by the free-fall time scale tref = xref/uref. 
Equation 7 is solved by the multiple-resolution version of the CUPS 
(47), which is a fully parallelized DNS code based on finite volume 
method with fourth-order precision. Temperature and velocity are 
discretized in a staggered grid. The grid spacing used in our simula-
tions resolves both the Batchelor and Kolmogorov length scales. The 
temporal integration of the governing equations is carried out by an 
explicit Euler-leapfrog scheme, i.e., the convective and diffusive terms 
are updated using the leapfrog and the Euler forward method, re-
spectively. We refer to (47, 48) for the details of the code.

Extraction of vortices
We extract vortices based on the Q-criterion (33) that considers the 
quantity Q defined by Q = 0.5( ∥ ∥2 − ∥ S∥2), where  is the vortic-
ity tensor and S is the rate-of-strain tensor, and ​∥  A  ∥  = ​√ 

_
 Tr(A ​A​​ T​) ​​. 

Here, a single vortex is defined by the connected region satisfying Q > 
Qstd, with Qstd being the SD of Q, which can discern the vortices from 
background fluctuations. The center of a vortex can be further iden-
tified by the location with maximum Q.
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SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/6/34/eaaz1110/DC1
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