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ABSTRACT: A hybrid nanocarbon receptor consisting of a
calix[4]arene and a bent oligophenylene loop (“molecular
squid”), was obtained in an efficient, scalable synthesis. The
system contains an electron-rich cavity with an adaptable shape,
which can serve as a host for electron deficient guests, such as
diquat, 10-methylacridinium, and anthraquinone. The new
receptor forms inclusion complexes in the solid state and in
solution, showing a dependence of the observed binding strength
on the shape of the guest species and its charge. The interaction
with the methylacridinium cation in solution was interpreted in
terms of a 2:1 binding model, with K11 = 5.92(7) × 103 M−1. The
solid receptor is porous to gases and vapors, yielding an uptake of
ca. 4 mmol/g for methanol at 293 K. In solution, the receptor
shows cyan fluorescence (λmax

em = 485 nm, ΦF = 33%), which is partly quenched upon binding of guests. Methylacridinium and
anthraquinone adducts show red-shifted emission in the solid state, attributable to the charge-transfer character of these inclusion
complexes.

■ INTRODUCTION
Curved aromatic molecules have found diverse uses in
supramolecular and nanomaterials chemistry.1−3 In particular,
carbon-rich cavities of such systems have been used to develop
cylindrical,3−11 concave,12,13 and macrocyclic hosts14,15 for
spherical guest molecules and ions, self-assembling surfa-
ces,16,12,17 and porous organic materials.18,19 In these systems,
the receptor function can be precisely controlled by the type
and extent of curvature and by adjusting the cavity dimensions.
The curvature facilitates formation of interlocked structures,
i.e., rotaxanes,20,21 catenanes,22−25 and molecular knots.24

While the synthesis of curved aromatics is often challenging,26

they provide structural rigidity, variable curvature types,27−29

topologically nontrivial π conjugation,23,30−32,19 chirality,33 and
unusual chromophore properties.34−36 These features can be
leveraged to enhance supramolecular interactions and to
produce usable physical output upon self-assembly.37

Cycloparaphenylenes (CPPs) have played a major role in
these advances since the development of efficient synthetic
methods based on masked phenylene equivalents38,39 and
metallacycle eliminations.40 In particular, new supramolecular
functions have been produced by hybridization of oligophenyl-
ene nanohoops with other building blocks such as porphyr-
ins,10 perylenediimides,41,42 electron-rich arene substruc-
tures,43−45 perfluorinated rings,46,47 and N-donor hetero-
cycles.21,23 Here we report on a calixarene−CPP hybrid (1,
Chart 1), in which the calixarene and oligophenylene units are
directly linked via CC bonds. This squid-shaped molecule has
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Chart 1. Design of the Molecular Squida

aπ-Conjugation in 1 and its parent motifs is omitted for clarity.
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a flexible cavity and can bind neutral and cationic guests both
in solution and in the solid state.

■ RESULTS AND DISCUSSION
Synthesis. Compound 1 was prepared from the diagonally

functionalized dibromocalix[4]arene 2a, which can be obtained
stereoselectively as a cone-like structure (Scheme 1).48 2a was

borylated and coupled with Jasti’s masked phenylene building
block 3,38 and the resulting dibromo intermediate 4 was
cyclized using Yamamoto coupling, to furnish the basket-like
precursor 5. The molecular structure of 5, revealed by an X-ray
crystallographic analysis, is characterized by slight bending of
the lateral biphenyl sections of the loop, indicative of a small
degree of internal strain. The interplanar angles between the
diagonal pairs of benzene rings in the calixarene section of 5
are respectively θ1 = 33.8° and θ2 = 76.9° (Scheme 1). These
are angles different in the parent calix[4]arene49 (2 with X =
H, θ1 = −24.2° and θ2 = 68.6°), indicating that the observed
conformation of 5 is a compromise between the steric
requirements of the constituent subunits. Reductive aromatiza-
tion of the two masked p-phenylene units in 5 was performed
using a tin(II) reagent, as reported by Yamago et al.50 Under
these conditions, 5 cleanly produced the target 1, which was
isolated in an 86% yield as a yellow solid. Using the above
approach we were able to prepare up to 180 mg of 1 in a single
batch. The product was unambiguously identified using NMR
spectroscopy and mass spectrometry (Figures S48, S49, and

S54; Scheme S4 of the Supporting Information, SI), and was
further characterized crystallographically in the solid state (see
below).

Molecular Structure. 1 is a flexible molecule, balancing
the conformational preferences of the calixarene part with the
distortion of the oligophenylene loop. An automated
conformational search51−53 performed for the simplified
structure 1′ (R = ethyl), followed by a full DFT reoptimization
of the resulting ensemble, revealed a structural bistability of the
oligophenylene loop, which adopted either an elongated
(flattened) or circular (rounded) shape (Figure 1). The

change of the loop shape is made possible by the flexibility of
the calixarene unit, which can switch between two non-
equivalent flattened cone conformations. The calculations
predict the flattened geometry (1′-A) to be preferred in the gas
phase, but rounded conformers are nevertheless thermally
accessible with the lowest-energy structure (1′-B) with a
ΔGrel

298 of only 0.6 kcal/mol. Structures similar to 1′-B are
characterized by a more uniform curvature of the oligophenyl
substructure with POAV1 angles54 in the range of 4.3° to 7.0°.
The broader distribution of POAV1 angles found in the 1′-A
conformation is similar to those found in the [16]CPP
lemniscate (CPPL) and related systems.30,19 The internal
strain enthalpy of 1′-A was estimated as 43.9 kcal/mol in a
homodesmotic calculation (Scheme S3). This value is less than
half the enthalpy reported for CPPL (102.7 kcal/mol),30

suggesting that the octiphenyl substructure of 1′ is somewhat
less strained than each of the two lobes of CPPL.
The pliable internal cavity of our molecular squid is of

interest as a potential binding site for guest molecules and ions.
An initial indication of the receptor capabilities of 1 was

Scheme 1. Synthesis of 1a

aReagents and conditions: (a) Pd(dppf)Cl2 (0.05 equiv), [B(pin)]2
(2.4 equiv), CH3COOK (2.4 equiv), dioxane, 110 °C, 12 h; (b)
Pd(OAc)2 (0.12 equiv), dppf (0.135 equiv), Ag2O (4.5 equiv),
K2CO3 (2 equiv), toluene, water, 80 °C, 24 h; (c) Ni(cod)2 (2.5
equiv), 2,2′-bipyridyl (2.5 equiv), THF, DMF, 80 °C, 16 h; (d)
H2SnCl4 (8 equiv), THF, rt, overnight.

Figure 1. Top: Lowest-energy elongated (A) and rounded (B)
conformations of 1′ (R = Et) found in a gas-phase DFT calculation.
The initial ensemble of 113 conformers was generated using
CREST51 with an energy cutoff of 6 kcal/mol, and reoptimized at
the B3LYP-GD3BJ/6-31G(d,p) level of theory. Bottom: dependence
of loop width w as a function of Gibbs free energy. θ1 and θ2 angles
are defined in Scheme 1. POAV angles (blue, degrees) are given for
quaternary phenylene carbons. θ1 and θ2 angles are defined in Scheme
1.
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observed in its two crystalline solvates, 1·3.2CH2Cl2 and 1·
3C6H6 (Figure 2A,B). The former of these two structures

contains a benzene molecule bound in the calixarene end of
the cavity. The remaining solvent molecules are located
outside the loop, while the loop itself is penetrated by butyl
chains of a neighboring molecule. Although not isomorphous,
the dichloromethane solvate shows similar features, with an
aggregate of two solvent molecules residing in the calixarene
cavity, and extraneous alkyl substituents inside the oligo-
phenylene unit. The solvation pattern observed in these two
crystals resembles the reported solvates of nanotube end-
caps.55,56 In each solvate, 1 adopts a flattened conformation (w
= 9.0 to 9.2 Å), similar to the 1′-A structure predicted in the
gas phase. This particular conformer contains a larger free
volume inside the calixarene corner of the loop, offering more
space for inclusion of solvent molecules.
Host−Guest Chemistry in the Solid State. An initial

computational search showed that electron-deficient polycyclic
aromatics containing three or four fused rings may be suitable
as guests for the cavity of 1. In particular, the interior of the
molecular squid was expected to share some of the binding
characteristics of the parent CPP and calixarene motifs,
displaying an affinity for electron-deficient and positively
charged π-conjugated guests. The four guests used for further
study (Chart 1), namely anthraquinone (AQ),57−59 10-
methylacridinium (MA+),60−65 diquat (DQ2+),66−90 and its
phenanthroline-derived benzologue PQ2+,89−92 were selected
on the basis of their established utility in supramolecular
chemistry. As we found, crystals of an inclusion complex could
be successfully grown from a dichloromethane solution of 1
and 4 equiv of anthraquinone (AQ) by slow diffusion of

methanol vapors. X-ray crystallographic analysis (Figure 2E)
revealed the formation of a 1:1 adduct, 1⊃AQ, in which the
receptor cavity is filled completely with the anthraquinone
molecule. As a consequence of guest inclusion, the octiphenyl
loop of 1 becomes somewhat flatter than observed in the
solvates (w = 8.0 to 8.2 Å), presumably to better accommodate
the length of the AQ guest.
Analogous attempts to obtain solid-state adducts by

cocrystallization of 1 with organic salts were unsuccessful. In
an alternative approach, crystals of 1·3C6H6 were soaked93 in
an acetone−methanol solution of 6,7-dihydrodipyrido[1,2-
a:2′,1′-c]pyrazine-5,8-diium hexafluorophosphate (diquat,
[DQ2+][PF6

−]2). The dark brown crystals obtained using this
method were found to contain the desired complex,
[1⊃DQ2+][PF6

−]2 (Figure 2C). The extreme flattening of
the oligophenylene loop observed in the [1⊃DQ2+] adduct (w
= 7.6 Å) is likely caused by a combination of steric,
electrostatic, and crystal packing contributions. An analogous
crystal-to-crystal transformation could be effected when 1 was
similarly treated with 5,6-dihydropyrazino[1,2,3,4-lmn][1,10]-
phenanthroline-4,7-diium hexafluorophosphate ([PQ2+]-
[PF6

−]2). Interestingly, even though the PQ2+ cation is flatter
than DQ2+, the loop width w in the [1⊃PQ]2+ adduct (8.0 to
8.2 Å) is somewhat larger than in [1⊃PQ]2+.
The crystals formed by solvates and adducts of 1 are not

isomorphous, but they nevertheless reveal striking analogies of
their packing patterns (Figure 3). Structures of the benzene
and dichloromethane solvates consist of herringbone layers
characterized by partial penetration of butyl chains into
neighboring oligophenylene loops. Packing of these layers is
affected by the bulk of calixarene moieties and has no direct
relationship with the herringbone patterns observed in
unmodified cycloparaphenylenes.94 In each solvate, the
herringbone direction is antiparallel in consecutive layers.
The inclusion of molecules and ions in the adducts of 1 leads
to significant expansion of the crystal lattices. Importantly,
however, the antiparallel arrangement of layers is preserved in
all cases. Individual molecules are collinearly aligned within
each layer and the butyl chains no longer penetrate the cavities,
which are now filled with the guest species (DQ2+, PQ2+ and
AQ). In the salt adducts, the PF6 anions are sandwiched in
between the layers and retain close contacts with the edges of
the organic cations. The structural analogies between the solid-
state structures of solvates and those of the adducts indicate
that the incorporation of DQ2+ and PQ2+ salts in the lattice is
indeed feasible via a direct crystal-to-crystal transformation, as
it can occur without major reorientation of the molecules.

Guest Binding in Solution. When solutions of 1 in
acetone-d6 were titrated with hexafluorophosphate salts of
DQ2+, PQ2+, and MA+, significant changes of chemical shifts
were induced in the 1H NMR spectra, consistent with the
formation of host−guest complexes in fast exchange with the
free host (Figures 4, S5, S9, S13, and S17). These changes
were most pronounced in the aromatic region of the spectrum,
but systematic downfield relocations were also observed for all
aliphatic signals of 1. The broadening of guest signals, observed
in all three titrations, suggested that the chemical shifts of the
bound and free guest differ considerably. This assumption was
verified for a sample of 1 containing 1.5 equiv of DQ2+, for
which the slow-exchange limit was observed at 174 K in
acetone-d6 (Figure S19). Under these conditions, no free 1 was
present in solution, whereas the signals of the bound DQ2+

could be readily identified on the basis of the exchange

Figure 2. Inclusion complexes of 1 with neutral and cationic guests,
observed in the solid state. One of two symmetry-independent
complexes is shown for 1·3C6H6 and 1⊃AQ. Hydrogen atoms (on 1),
solvent molecules (outside cavities), counteranions (for cationic
guests), and minor disordered positions are omitted for clarity.
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correlations with the free DQ2+ observed in a ROESY
spectrum (Figure S22). The shifts of the bound DQ2+ were
consistently upfield relative to the free DQ2+, reflecting the
shielding induced by the aromatic surface of the oligophenyl-
ene loop. Interestingly, the spectral pattern of the bound DQ2+

is completely desymmetrized, with four signals corresponding
to the CH2CH2 unit. This low spectral symmetry indicated
that not only the “somersault” rotations of DQ2+ inside the

host cavity, but also the pseudoinversion of the twisted biaryl
backbone were slow on the NMR time scale at 174 K.
While the crystal structures and low temperature NMR

experiments provided unambiguous evidence for the formation
of binary complexes with cationic guests, binding isotherms
obtained from the 1H NMR titrations produced small but
systematic discrepancies when fitted using the simple 1:1
binding model. The fit could be considerably improved by

Figure 3. Packing diagrams of inclusion complexes of 1. Molecules of 1 in adjacent layers are colored in red and blue. Hydrogen atoms and butyl
substituents (on 1), solvent molecules (outside cavities), and minor disordered positions are omitted for clarity.

Figure 4. Formation of inclusion complexes of 1 in solution observed using 1H NMR spectroscopy (600 MHz, 300 K, acetone-d6 or CD2Cl2). For
complete titrations, see Figures S5, S9, S13, and S17. Signals of guests are indicated with red bullets.
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assuming initial formation of a relatively unstable ternary
complex [12⊃Xn+] (where Xn+ is the cationic guest),81 which
would be converted into the [1⊃Xn+] at higher guest
concentrations (Tables 1 and Table S1). Data obtained

using such a two-step binding model showed that the
formation of the ultimate 1:1 species is most efficient for
MA+ (K11 = 5.92(7) × 103 M−1), and becomes weaker for
PQ2+ and DQ2+ (K11 = 1.43(1)·103 and 6.03(2) × 102 M−1,
respectively). In all cases, the K21 binding constant is lower by
1 order of magnitude than the respective K11. The strong
binding of MA+ is likely supported by a favorable combination
of the cationic charge with the good geometric match of the
guest with the cavity of 1 (Figure 5A). The initial formation of

the ternary complex [12⊃MA+], inferred from the binding
isotherm, was probed computationally using a CREST
conformational search. Interestingly, the resulting ensemble
revealed preferential binding of the cation in a single receptor
cavity (rather than across two cavities). Furthermore, in the
lowest-energy conformers, the other molecule of 1 was
associated with the inclusion complex in an edge-to-edge
fashion (cf. Figure 5B). While encapsulation of hexafluoro-
phosphate in the other receptor cavity95 could in principle
occur to produce the hypothetical species [1⊃MA+][1⊃PF6−],
such a binding event was ruled out on the basis of a 19F NMR
titration (1 + [MA+][PF6

−], acetone-d6), which showed a
negligible effect of 1 on the 19F chemical shift of the PF6

−

anion.
A similar though weaker binding interaction was observed

between 1 and anthraquinone (AQ) in CD2Cl2. In this case,
the 1H NMR titration was fully consistent with the HG (1:1)
model (K ≈ 20 M−1). The formation of the 1:1 adduct was
proven using low-temperature 1H NMR spectroscopy (600
MHz, 160−270 K, CDCl2F, 4:1 molar ratio of AQ to 1). The
use of the latter solvent96 instead of CD2Cl2 was necessary for
direct observation of the host−guest complex in the limit of

slow exchange (Figures S20 and S21). Under these conditions,
no free 1 was present, whereas the AQ molecule bound in the
[1⊃AQ] complex showed four proton resonances, consistent
with an effectively C2v-symmetrical environment of the cavity.
Additionally, the EXSY pattern observed between the
resonances of free and bound AQ showed that chemical
exchange was significant even at 170 K (Figure S23). However,
no EXSY peaks were observed among the four resonances of
the bound AQ, indicating that the guest is effectively locked
inside the cavity of 1, and is not capable of “somersault”
rotations at the time scale of the ROESY experiment.

Vapor and Gas Sorption. Gas adsorption analyses
performed for a crystalline sample of 1 showed variable
porosity toward a range of different adsorbates (Figure 6).

While the N2 adsorption capacity was very low, significant
uptake of CO2 was observed at 195 K, reaching a maximum of
1.60 mmol/g. This value corresponds to a molar ratio of CO2
to 1 of ca. 1.8. The BET area, calculated on the basis of the
adsorption branch of the CO2 isotherm, is 63.7 m2/g (Figure
S25, Table S2), lower than reported for the larger [12]CPP
nanohoop.18 The isosteric heat of CO2 adsorption (Qst) was
determined for 1 from isotherms measured in the temperature
range of 273−293 K, using the single-site Langmuir−
Freundlich model and the Clausius−Clapeyron eq (Figures
S26 and S27, Table S3). The calculated Qst values reach 53.1
kJ/mol at zero coverage and then decrease to ca. 30 kJ/mol at
higher CO2 uptake. The initial Qst is higher than previously
reported for CO2-selective pillar[5]arene-based sorbents97 (up
to 44 kJ/mol), implying an energetically favorable interaction
between 1 and the initially adsorbed CO2. The binding
enthalpy ΔH298 calculated for the inclusion complex [1⊃CO2]
in the gas phase is −48.9 kJ/mol, indicating that the high initial
heat of adsorption may indeed correspond to a well-defined
supramolecular interaction between CO2 and 1.
At 293 K, vapor adsorption of H2O, cyclohexane, and

methanol, yielded maximum uptake values of 1.14, 1.64, and
4.12 mmol/g, respectively, corresponding to approximately 1.3,
1.8, and 4.5 adsorbate molecules per one molecule of 1. The
significant adsorption hysteresis observed for cyclohexane is
indicative of its stronger retention in the pores of 1. On the
basis of the MeOH isotherm, a pore volume of 0.167 cm3/g

Table 1. Association Constants for Host−Guest Complexes
of 1a

guest model K11 [M
−1] K21 [M

−1]

DQ2+b 2:1 6.03(2) × 102 3.36(3) × 101

PQ2+b 2:1 1.43(1) × 103 1.78(4) × 102

MA+b 2:1 5.92(7) × 103 4.3(1) × 102

AQc 1:1 1.968(2) × 101

aBased on 1H NMR titration data (300 K). bIn acetone-d6.
cIn

CD2Cl2.

Figure 5. (A) DFT-optimized lowest-energy conformer of [1′⊃MA+]
and (PCM(acetone)/BGD3BJ/B3LYP/6-31G(d,p), initial conformer
ensemble obtained using CREST). (B) Lowest-energy conformer of
[1′2⊃MA+] found in a CREST metadynamics search.

Figure 6. Experimental adsorption and desorption isotherms (solid
and empty circles, respectively) of N2 (77 K), CO2 (195 K),
cyclohexane (293 K), MeOH (293 K), and H2O (293 K) measured
on crystalline sample of 1.
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was estimated for 1. In comparison, when solvent molecules
are removed from the crystal structure model of 1·3C6H6, the
resulting virtual pores correspond to a helium volume98,99 of
0.322 cm3/g. The comparatively lower pore volumes attainable
via adsorption may indicate that either (a) only part of the
virtual porosity of the crystals is available for uptake or (b) a
structural reorganization of the material accompanies the
sorption process.
Optical Properties. The electronic spectrum of 1 in

dichloromethane (Figure 7) features two absorption bands

with λmax
abs = 327 and 377 nm, respectively, the latter being

responsible for the yellow color of the compound. 1 displays a
cyan emission with a maximum at 485 nm and a quantum yield
of 33% (in dichloromethane, τF = 1.82 ns). Similar absorption
and emission spectra were observed for amorphous thin films
of 1 obtained by drop casting of dichloromethane solutions.
Partial quenching of fluorescence was observed during
titrations of 1 with molecular and ionic guests, suggesting
that charge transfer (CT) may occur between the electron-rich
host cavity and the electron-deficient guest molecule. The
absorption spectrum of [1⊃AQ], measured for a thin film,
showed a red shift of the lower energy band (λmax

abs = 396 nm
vs 380 nm for free 1), and a weak tailing band above 500 nm,
not observed in the free 1, which was tentatively ascribed to a
CT transition. Remarkably, the film showed weak yellow-gold
fluorescence (λmax

em ≈ 580 nm), red-shifted relative to the
solid-state emission of the free host (λmax

em ≈ 500 nm). Similar
features were observed in a thin film of [1⊃MA+][PF6

−], in
which an even larger red shift was recorded for the low-energy
absorption band (λmax

abs = 411 nm). Again, a weak absorption

tail was observed, which was complemented by an even more
red-shifted emission band (λmax

em ≈ 700 nm), corresponding
to the red-orange fluorescence of the film. Good quality films
could not be obtained by drop-casting for complexes with
DQ2+ and PQ2+; however, when 1 was dissolved in acetone
containing a large excess of the corresponding guest, a weak
tailing band could be identified in the 450 to 700 nm range,
possibly corresponding to CT transitions of the host−guest
adducts. For these solutions, there were however no visual
indications of any red-shifted fluorescence.
The involvement of charge transfer in the optical spectra of

[1⊃DQ2+] and [1⊃MA+] was probed using time-dependent
(TD) DFT. The initial geometries were again derived from a
CREST metadynamics search and were reoptimized using the
PCM(acetone)/CAM-B3LYP-GD3BJ/6-31G(d,p) level of
theory, which was also used for the TD calculation. The
Coulomb-attenuating method100 (CAM) was chosen specifi-
cally to minimize the self-interaction error, which is known to
produce spurious results for CT systems.101 The HOMO and
LUMO of 1 are mostly localized on the oligophenylene loop,
with vanishing amplitudes on the calixarene subunit (Figure 8).

The adducts of 1 with AQ, MA+, DQ2+, and PQ2+ retain the
HOMO localization of the free host, whereas the LUMO level
is always localized on the electron-deficient guest (Figure 8).
In [1⊃DQ2+], the 10 highest occupied Kohn−Sham (KS)
MOs are nearly pure orbitals of the host 1. The three lowest
unoccupied MOs (LUMO through L+2) are derived from
DQ2+, whereas the L+3 level corresponds to the original
LUMO of the host. The calculated absorption profile obtained
for the complex is very similar to the experimental one, except
for the blue shift of ca. 0.6 eV, characteristic of the CAM
method (Figure S34, Table S6). The calculation predicts 18
weak transitions ( f < 0.02) below 3.75 eV, which may explain
the emergence of the tailing band above 450 nm in the
experimental spectrum. These transitions consist predom-
inantly of excitations from host occupied levels to guest virtual
levels, confirming the charge-transfer character of this band. A

Figure 7. Absorption and emission spectra (solid and dashed lines,
respectively) of (A) 1 in dichloromethane solution (red) and as a thin
film (black); (B) 1 (black), [1⊃AQ] (blue), and [1⊃MA+][PF6

−]
(orange) in thin films; (C) 1 in acetone solutions containing (a) no
additive (black trace), (b) 178 equiv of [DQ2+][PF6

−]2 (red trace),
and (c) 11 equiv of [PQ2+][PF6

−]2 (green trace). The latter two
spectra were recorded relative to an acetone solution containing the
same amount of the corresponding pure guest.

Figure 8. Frontier Kohn−Sham molecular orbitals for 1 and its
complexes, [1⊃DQ2+] and [1⊃MA+] (PCM(acetone)/CAM-B3LYP-
GD3BJ/6-31G(d,p)).
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more intense transition at 3.76 eV ( f = 0.29), which
corresponds to the experimental maximum at ca. 480 nm, is
dominated by the HOMO to L+3 excitation, which is
accompanied by smaller CT contributions. This transition is
red-shifted relative to its counterpart in the calculated
spectrum of free 1 (3.88 eV), as indeed observed in the
experiment. For [1⊃MA+], the majority of frontier KS orbitals
were also found to be either pure host levels (HOMO through
H−6, and L+1) or pure guest levels (LUMO and L+2). The
TD calculation again predicted a range of weak CT transitions
(below 3.70 eV), and an intense transition of the host at 3.71
eV ( f = 0.38), which is again red-shifted in comparison with
the guest-free 1 (Figure S33, Table S5).

■ CONCLUSIONS
The design of the molecular squid described in this work
capitalizes on structural and electronic characteristics of
calixarenes, linear oligophenyls, and cycloparaphenylenes, to
yield an electron-rich aromatic system that is simultaneously
strained and flexible. The conformational bistability of 1,
predicted in the gas phase, leads to two types of energetically
accessible geometries of the octiphenyl substructure. The
possibility of switching between two curvature distributions is
of general interest as a means of controlling supramolecular
and optical properties of such “spring-loaded” molecular
hybrids. The molecular squid shows promise both as a
versatile supramolecular receptor, capable of providing an
optical response upon binding of electron-deficient guests, and
as a structurally nontrivial molecular porous material. By
refining the present structural design, we are now trying to
develop receptors in which the conformation and electronic
structure of the curved π system of the host will be even more
strongly affected by guest binding, to produce a functionally
useful output.
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