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Abstract
The 2014 NINDS Benchmarks for Epilepsy Research included area I: Understand the causes of the epilepsies and epilepsy-related
neurologic, psychiatric, and somatic conditions. In preparation for the 2020 Curing Epilepsies Conference, where the Benchmarks
will be revised, this review will cover scientific progress toward that Benchmark, with emphasize on studies since 2016.
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Introductory Vignette by Lizbeth
Carmichael. Epilepsy, Depression, and
SUDEP—A Parent’s Perspective

My son John developed epilepsy in his late teens, and despite

medications, his seizures remained severe and uncontrolled.

John was a talented and creative musician and a caring and

thoughtful brother and son. He had many friends, and he des-

perately wanted an independent life. As John’s epilepsy pro-

gressed, he also experienced declining mental health. John,

who was normally a very peaceful individual, had periods of

severe irritability and rage. He also became very anxious at
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times, and this was a sign of an impending seizure. John heard

voices and developed paranoia, hallucinations, and depression.

Our family was told to see specialists, but we found that the

communication and coordination of care between epileptolo-

gists and mental health professionals was impossible, even

when he was hospitalized and referrals were made. Ultimately,

his mental health issues were not understood or addressed and

contributed significantly to his decline. John died of sudden

unexpected death in epilepsy (SUDEP) in 2012. Our family’s

wish is that those around John had been more attuned to the

mental health comorbidities that he was experiencing, and that

his medical issues were jointly managed as the outcome for him

might have been different.

Significant comorbidities often accompany epilepsy and can

be more debilitating than the seizures themselves. A better

understanding of the underlying mechanisms of epilepsy-

associated comorbidities and appropriate clinical care is critical

for increased quality of life for those impacted by epilepsy and

their families.

Lizbeth Carmichael. Forever John’s Mom. Citizens United

for Research in Epilepsy (CURE).

Introduction

In this review, we provide an update on preclinical and clin-

ical advances into our understanding of the many etiologies of

the epilepsies, as well as progress in assigning etiology to

epilepsy-related neuropsychiatric and somatic comorbidities.

Since the most recent summary in this area,1 expansion in our

knowledge of epilepsy genetics and autoimmune epilepsies

has continued to result in fewer individuals being labeled with

epilepsy of unknown etiology. With the advent of next-

generation sequencing technologies, the number of “epilepsy

genes” continues to expand. Assigning a causative role to

such genes requires verification in not only larger cohorts

with statistical rigor but also a number of criteria that take

into account normal variation, determination of how a genetic

change leads to altered molecular function, and the demon-

stration of an epilepsy or epilepsy-related phenotype in

genetically manipulated model organisms.2 Similar consid-

erations apply for autoimmune epilepsies, for which the rela-

tive epileptogenic effects of T-cell infiltration and circulating

antibodies continue to be clarified.

Preclinical models of genetic, autoimmune, and brain

injury-related epilepsies have been essential to advance our

knowledge into upstream and downstream cellular and neuro-

physiological perturbations that may promote hypersynchrony

and the transition to the ictal state. It is only with this type of

knowledge that we will be able to better inform treatment of

epilepsy related to these types of epilepsy. Incomplete pene-

trance and variable phenotypes in both humans and animal

models strongly implicate genetic modifiers of susceptibility,

which need to be identified and validated so as to appreciate

mechanisms by which epilepsy may be therapeutically

modulated.

In parallel with efforts to address the causes of epilepsy and

epileptogenesis, there has been an expansion in efforts

designed to unravel the genesis of epilepsy’s various psychia-

tric comorbidities. Generally, these are etiologically related to

broad network dysfunction that may be secondary to the under-

lying epileptogenic lesion (genetic, structural, or unknown) and

actively modulated by the burden of ongoing seizures (if pres-

ent) and antiseizure medications. Animal models of monogenic

epilepsies provide the most tractable route to assigning etiology

to epilepsy-associated comorbidities, albeit with some limita-

tions in the ability to assess psychiatric comorbidities in vari-

ous models. Incorporating optogenetic and chemogenetic

strategies in these models affords the ability to definitively test

whether specific network abnormalities affect seizure risk or

impact limbic function or cognitive function or both.

We conclude our review with a set of general recommenda-

tions for future research into the causes of epilepsy spectrum

disorders that will guide our understanding into epilepsy pre-

vention (area II), treatment options (area III), and the adverse

consequences of seizures themselves (area IV).

Key Advances in Area I

Epilepsy Genetics

Advances in our understanding of the genetics of the epilepsies

have continued to accrue since the last Benchmarks update and

have been reviewed in several excellent publications.3-6 Many

new variants associated with epilepsy are identified as “de

novo dominant,” meaning that they are present in the hetero-

zygous state in sporadically affected individuals. At a cellular

level, these genes encode proteins that display a broad range of

functions that extend well beyond ion channels, including cell

adhesion (eg, PCDH19), DNA binding and chromatin remodel-

ing (eg, CHD2), and neurotransmitter release (eg, STXBP1).7

The importance of genetic etiologies in focal epilepsy in par-

ticular has become even more clear, with the involvement of

DEPDC5 and associated GATOR1-complex mTOR repressors

in epileptogenic cortical malformations being notable

examples.8

De novo postzygotic (somatic) mutation has been increas-

ingly recognized to play a role in focal epilepsy, largely involv-

ing the mTOR pathway in the pathogenesis of lesional epilepsies

such as focal cortical dysplasia and hemimegalencephaly, with a

majority of cases explained by this mechanism.9-11 Extending

the discovery of somatic mutation to a new pathway and,

interestingly, to both focal cortical dysplasia (type I) and non-

lesional focal epilepsy was a report on mosaic variants in the

gene SLC35A2, which encodes an UDP-galactose transporter

previously associated in nonmosaic form with developmental

and epileptic encephalopathy.12 The discovery of these 2 dis-

tinct pathways may point to very different targeted therapies

after further study, which is promising but also demands

attention to precision in classifying individuals with focal

epilepsy and establishing a molecular diagnosis before pursu-

ing experimental therapy.
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Although most newly discovered pathogenic variants each

seem to be causative in only a small number of individuals,

taken together their combined impact is substantial. From the

perspective of practicing epileptologists, we now benefit from

a relatively high rate of identifiable genetic causes in neonatal

and early childhood epilepsies, particularly in those individuals

with comorbid intellectual disability, so that more routine

usage of next-generation sequencing methods in this popula-

tion may be warranted.13,14 Much more research is needed,

however, to separate out the effects of seizures, genetic

changes, and treatments on the intellectual impairments that

are found in the epileptic encephalopathies.15

Animal models have permitted important insights into the

specific mechanisms by which genetic aberrations may pro-

mote hyperexcitability. In additional to conventional

“knockout” mice, mutants with conditional gene deletions (per-

mitted via Cre-LoxP technology) have helped dissect the indi-

vidual contributions of specific neuronal populations to seizure

generation. For example, mice with a conditional deletion of

Lgi1 in parvalbumin-positive interneurons alone are devoid of

spontaneous seizures, while conditional deletions of Lgi1 in

forebrain glutamatergic neurons result in frequent early-life

seizures and premature death,16 just as in Lgi1 knockout

mice.17 These results not only provide guidance to future gene

replacement strategies but also show that while Lgi1 is an

extracellularly secreted protein that is expressed in both

GABAergic and glutamatergic neurons, restoring Lgi1 expres-

sion in glutamatergic neurons may be more likely to ameliorate

seizures. The lack of spontaneous seizures in mice with hetero-

zygous deletions of Lgi1 (recapitulating the haploinsufficiency

of LGI1 mutation-related lateral temporal lobe epilepsy [TLE])

illustrates an important point with regard to gene dosage in

animal models. Similar findings exist with other epilepsy

genes, including KCNQ2,18 CDKL5,19 and DEPDC5.20 Hetero-

zygous DEPDC5 variants are found in cases of familial focal

epilepsy as well as focal cortical dysplasia–associated epi-

lepsy.20,21 Mice or rats with homozygous germ line deletions

of Depdc5 had embryonic lethality,22-24 which is itself etiolo-

gically nonspecific and may even reflect placental pathology.25

In contrast, rats with heterozygous deletions of Depdc5 do not

display spontaneous seizures.24 Mice with a conditional brain-

specific homozygous deletion of Depdc5 display extremely

rare seizures, together with macrocephaly, impaired survival,

and biochemical evidence of mTOR1 complex activation.22

Thus, it appears that for certain genetic variants strongly asso-

ciated with epilepsy in humans, mice with corresponding gene

deletions or transgenic “knock-ins” of variants seen in individ-

uals with the specific epilepsy syndrome may not display spon-

taneous seizures or even reflex audiogenic seizures, a common

expression of epilepsy in mice. This phenomenon may reflect

the influences of variations in genetic background or funda-

mental differences in mechanisms of genetic epileptogenesis

between mice and humans.

Confirming the epilepsy-inducing or epilepsy-modifying

effects of specific variants may be greatly aided through the

use of other vertebrate models, such as zebrafish (Danio rerio).

Classically employed as a model to study embryology and

development, zebrafish has now been adopted to study a vari-

ety of neurological disorders, including epilepsy. This species

is amenable to exon deletion via homologous recombination,

and specific single-nucleotide variants can be introduced via

CRISPR-Cas9 technology.26-28 As with mice, stereotyped

spontaneous or induced seizures can be identified by video

tracking and/or electroencephalography. The small size and

rapid development of zebrafish also permit high-throughput

drug screening29 that may be individualized to identify a treat-

ment for a specific variant.30

Despite the impressive array of genetic advances, the trans-

lation of these findings into gene-related or pathway-based

clinical treatments has had mixed results.31 There are genetic

diagnoses for which specific antiepileptic therapies are either

indicated or relatively contraindicated (eg, GLUT1 deficiency,

pyridoxine dependency, SCN1A-related epilepsy), and mTOR

inhibitors are now known to be at least partially effective for

tuberous sclerosis complex–associated epilepsy.32 By contrast,

the use of quinidine for KCNT1-related epilepsy, initially

thought to be promising following the report of a single case,33

has not been shown to reduce seizure frequency in subsequent

studies.34 Overall, these and other findings suggest that simply

modulating a causative pathway featuring a rational drug target

can lead to variable responses. More work is clearly necessary

to bring genetic discoveries from the bench successfully to

therapeutic application at the bedside.

Interneuronopathy-Related Epilepsies

Interneuronopathies can be broadly defined as those conditions

in which epilepsy or neuropsychiatric comorbidities arise as a

consequence of either developmental or functional changes in

interneurons. Alterations in interneuron migration or numbers

have been identified in multiple epilepsy mouse models,

including mice with deletions of Cntnap2,35 Wwox,36 and Syn-

gap1,37 as well as in certain models of acquired epilepsy,38,39

and after traumatic brain injury.40,41 Epilepsy that occurs in

Dravet syndrome associated with pathogenic variants in

SCN1A may also be classified in this category based on evi-

dence that interneurons in Scn1a heterozygous mice display a

selective decrease in excitability, and selective deletions of

Scn1a in interneurons are sufficient to recapitulate the spec-

trum of Dravet-related phenotypes.42-44 The term

“interneuronopathy” was first used in the setting of a very

severe genetic epilepsy syndrome (X-linked lissencephaly with

ambiguous genitalia, XLAG) caused by pathogenic variants in

ARX, with significant reductions in interneuron density in hip-

pocampal and cortical regions observed in this condition.45-47

A more detailed understanding of interneuron development

and migration patterns will be critical for developing novel

treatments for these specific genetic epilepsy syndromes and

will guide our explorations into the therapeutic potential of

either transplantation48,49 and/or optogenetic/chemogenetic

manipulations of interneurons.
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Tumor-Related Epilepsies

The incidence of epilepsy in individuals with brain tumors

ranges from 70% to 80% in glioneuronal tumors (including

gangliogliomas and dysembryoplastic neuroepithelial tumors)

to 20% to 35% in individuals with brain metastases.50 Epilep-

togenesis associated with gliomas, the most common malignant

primary brain tumor, has been a focus of intense research, with

2 nonmutually exclusive mechanisms explored extensively.

For some neurodevelopmental tumors such as ganglio-

glioma, a genetic profile has become apparent in the form of

a BRAF V600E variant, suggesting the possibility of treatment

with BRAF inhibitors.51 Furthermore, in some tumors, malig-

nant glial cells release excessive amounts of glutamate through

the cystine/glutamate transporter (SLC7A11), a gene whose

expression is upregulated in at least half of all glial tumors.52

SLC7A11-mediated glutamate release results in hyperexcit-

ability that spreads to adjacent tissues,53 and in preclinical

studies, a currently available SLC7A11 inhibitor (sulfasala-

zine, utilized in the treatment of Crohn disease) resulted in

improved seizure frequency and prolonged survival.54 Muta-

tions in isocitrate dehydrogenase (IDH1) are a strong predictor

of epilepsy in patients with low-grade glial tumors.55 Mutant

IDH1 converts isocitrate to 2-hydroxyglutarate (instead of a-

ketoglutarate), which is structurally similar to glutamate and

sufficient to lengthen burst duration in cultured rat cortical

neurons in an NMDA-receptor-dependent fashion.55

A second potential mechanism involves the dysregulation of

chloride homeostasis in peritumoral cortical neurons through

the aberrant downregulation of KCC2 (potassium chloride

cotransporter) and upregulation of NKCC1 (sodium potassium

chloride cotransporter) within these cells.56 Under these con-

ditions, g-aminobutyric acid (GABA) binding to ionotropic

receptors results in depolarization, and inhibitors of NKCC1

(which reverse altered chloride gradients) in preclinical glioma

models improve seizure susceptibility.57 It remains to be seen

whether similar mechanisms of epileptogenesis may be

involved in epilepsies related to meningiomas or metastatic

lesions, for which preclinical models are less well developed.

Clearly, cortically based or invading tumors seem to possess

the greatest risk of epilepsy.50

Autoimmune Epilepsies

As of 2019, antibodies to at least 11 different antigens have

been associated with epilepsy occurring in the context of

encephalitis. Antibodies against extracellular antigens raise

neuronal excitability and impose synaptic dysfunction either

by disrupting specific protein interactions (eg, LGI1,

NMDAR), enhancing receptor internalization (AMPAR), or

by functioning as an antagonist (GABA-BR).58 In contrast,

antibodies against intracellular antigens are thought to produce

epilepsy as a consequence of direct cytotoxic T-cell infiltration

(eg, amphiphysin, GAD-65). The clinical presentation of auto-

immune encephalitides is highly variable (signs and symptoms

of limbic or motor dysfunction may or may not be present), and

seizures may be the presenting symptom, a late symptom, or

absent entirely.59

Establishing a direct causative link between individual anti-

bodies and their specific mechanisms of epileptogenesis has

been possible through experiments in which patient-derived

antibodies are infused into mouse or rat models. For example,

hippocampal specimens from mice that received intracerebro-

ventricularly infused LGI1 antibodies over 14 days displayed

reduced synaptic expression of the voltage-gated potassium

channel KV1.1 (KCNA1) together with increases in

presynaptic-release probability and postsynaptic current ampli-

tudes, as well as diminished long-term potentiation and impair-

ments in learning and memory.60 These mice did not develop

spontaneous seizures, suggesting that at least in mice, either

longer durations of anti-LGI1 antibody exposure or higher anti-

body titers may be necessary for seizure generation. In contrast,

similar infusions of anti-NMDAR antibodies in mice produced

spontaneous seizures without impairments in memory or motor

function.61

Recent genome-wide association studies have revealed that

particular human leukocyte antigen (HLA) haplotypes may

increase the risk of specific antibody-mediated encephali-

tides,59,62,63 just as with other autoimmune conditions such as

type I diabetes mellitus or ankylosing spondylitis; these HLA

associations provide pathophysiological insights into the gen-

esis of these antibodies. Fortunately, only a minority of patients

who display acute symptomatic seizures during active ence-

phalitis go on to develop epilepsy.58 Early immunomodulatory

therapy appears to be critical to avoid future drug resistance,

while other factors, such as medical complications or hypoxia,

may also contribute to long-term seizure risk.58,59

Epilepsy-Related Conditions

Adults have a median of 2 chronic medical conditions, but this

number rises to 6 in individuals older than 65 years.64 Thus,

“comorbidities” are a central aspect of all chronic medical

conditions, and epilepsy is no exception. In epilepsy, comor-

bidities can be broadly divided into those which affect mental

health (including sleep), general physical health (including

trauma), and reproductive health.65,66 Together, these comor-

bidities contribute tremendously to overall disability, impair-

ments in quality of life, and premature mortality.67,68 Outside

of chance or artifactual comorbidities that may reflect various

forms of bias,64 4 main mechanisms of comorbidity have been

proposed69: (1) independent comorbidity (etiologically unre-

lated to epilepsy), (2) consequent comorbidity (a direct conse-

quence of epilepsy), (3) iatrogenic comorbidity (treatment

related), and (4) shared risk factor (in which epilepsy and its

comorbidity independently arise from a single etiology).

Importantly, shared risk factors may epidemiologically resem-

ble a bidirectional association (in which each condition causes

the other).

Psychiatric comorbidities in epilepsy have received the

greatest emphasis. Epilepsy is associated with significantly

higher rates of mood and anxiety disorders,70,71 psychosis,72
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fatigue,73 and autism spectrum disorder.74 These entities are

each independently associated with varying degrees of intel-

lectual disability. Cross-sectional and/or prospective human

data provide a framework for mechanistic hypotheses into their

etiology; ultimately, these hypotheses require verification in

animal models. Unfortunately, this schema is inherently lim-

ited since many psychiatric endophenotypes are either absent

entirely (eg, suicidality) or difficult to measure (eg, depressed

mood, psychosis) in animal models.

Depression, or major depressive disorder, has and will con-

tinue to be a major focus of comorbidity research. Individuals

with epilepsy are twice as likely to develop depression over

their lifetime,70 and either entity can occur first.75 The severity

of depression is associated with the risk of epilepsy.76 Depres-

sion and suicidality tend to be more prominent in individuals

with TLE compared with those who have genetic generalized

epilepsies,77,78 and within TLE, depression severity correlates

with pharmacoresistance but does not correlate with the side57

or the extent of hippocampal atrophy,79 if present. Improve-

ments in depression that follow temporal lobectomy are

strongly associated with improvements in seizure control.80

To date, there has been no high-quality evidence to suggest

that antidepressants (in conjunction with standard anticonvul-

sant therapy) are sufficient to either impact epilepsy risk or

reduce seizure frequency.81 On the other hand, behavioral

interventions such as cognitive behavioral therapy or mindful-

ness training have been shown to improve both seizure control

and quality of life.82 Overall, this body of evidence argues

strongly for the presence of shared noniatrogenic neurobiolo-

gical risk factors that simultaneously raise the risk of depres-

sion and epilepsy.

What are these risk factors? Genetic or epigenetic factors

may play only a modulatory role since major depression and

epilepsy display little to no evidence of genetic overlap (unlike

autism and epilepsy).78 The roots of epilepsy–depression

comorbidity may be related to changes in network functional

connectivity. In major depression, such functional rearrange-

ments are broad, bilateral, and vary by depression subtype.83,84

At least within TLE circuits,85 hyperexcitability within the

anterior hippocampus (corresponding to the ventral hippocam-

pus in rodents) may be one such anatomical substrate for

comorbidity. In mice, ventral hippocampal injections of kainic

acid produce epileptic seizures together with memory impair-

ments and anhedonic behavior; these behavioral comorbidities

were not observed in mice that received dorsal kainic acid

injections.86 Hypersynchrony in the anterior/ventral hippocam-

pus region may contribute to depressive symptoms by compro-

mising functional connectivity to ipsilateral frontal regions.87

Testing these hypotheses in preclinical models is now pos-

sible with optogenetics, in which an anatomically or molecu-

larly defined neuronal population is genetically or virally

transduced to express an excitatory or inhibitory ion channel

that is activated by light of a specific wavelength. Bilateral

optogenetic activations of ventral hippocampal afferent path-

ways in nonepileptic mice are sufficient to produce depression

and anxiety-like symptoms.88,89 Similarly, the optogenetic

inhibition of mossy cells within the dentate gyrus (simulating

mossy fiber loss) is sufficient to produce impairments in object

memory in mice.90 Aside from these focal network derange-

ments, aberrations in a variety of other neuromolecular axes

have been proposed as substrates that may raise seizure risk and

compromise mood, including disturbances in neurotransmitter

signaling (glutamate, GABA, serotonin), dysfunctional

hypothalamo–pituitary–adrenal axis signaling, and a host of

cellular and secreted mediators of neuroinflammation.57,91

Looking Forward: Opportunities and
Challenges

Given the progress over the past several years and the remain-

ing gaps in knowledge in the field, we have identified some

ambitious but feasible future priorities in epilepsy research that

we believe should guide our scientific efforts in this area over

the next decade. First, it is notable that a large portion of this

update has been devoted to genetic advances, given the sub-

stantial work in this area. We also recognize that many patients

worldwide have epilepsy primarily caused by infection, head

injury, birth trauma, hypoxic–ischemic insult, or any of a num-

ber of other perturbations of nervous system function. We sup-

port an increased focus on investigating the underlying causes

and mechanisms of all forms of epilepsy, including these

acquired forms of epilepsy, in order to improve our ability to

prevent and treat these conditions successfully.

We also support further work on the cognitive and beha-

vioral deficits that accompany epilepsy through experimental

animal models, including further use of chemogenetic and

optogenetic strategies to study specific cellular populations in

the pathogenesis of epilepsy and related conditions. An impor-

tant question with direct clinical relevance centers on the tran-

sition to the ictal state: Since seizures occur only in discrete

episodes in most instances, we need a better understanding of

what allows them to arise at any particular time and what limits

transition to an ictal state at other times.92

We support continued attention on interneuron pathology,

central neuronal signaling pathways, and autoimmune factors

as underlying mechanistic factors in both genetic and acquired

epilepsy syndromes. Further, invoking another less well-

studied cell type in the nervous system, we support evaluation

of the role of glia in epileptogenesis and seizure propagation.

The pathogenesis of infection-related epilepsy, including virus-

induced epilepsy and parasite-induced epilepsy, the latter of

which is a leading cause of epilepsy worldwide but lacks a

relevant animal model, needs further exploration. In general,

the links between the brain and immune system and the rela-

tionship between inflammation and neural excitability should

be critical targets of investigation. Despite the large volume of

new advances in epilepsy genetics, we believe there needs to be

further characterization of genes associated with the most pre-

valent early-life syndromes and further research on the use of

“rational” therapy design to modulate known pathogenic

pathways.
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Although some work has been devoted to understanding the

causality behind some of the most common epilepsy-related

comorbidities, much more is required. We would support fur-

ther research aimed at disentangling the effects of seizures,

genetic changes, and antiseizure medication in contributing

to the intellectual impairments that are present in patients with

epileptic encephalopathies. In addition, we believe that further

timely study of epilepsy etiologies in elderly individuals, who

represent a second peak of epilepsy incidence after early child-

hood, could be highly impactful. Recent findings related to

hippocampal hyperexcitability in individuals with Alzheimer

disease93 and the discovery of associations between lifestyle

risk factors and late-onset epilepsy94 provide tantalizing sug-

gestions of important etiological connections in older adults

who had multiple medical conditions.

“Doctor, what is causing my seizures?” At the current time,

in a significant majority of individuals, including those without

a definite brain lesion, an encephalitic prodrome, evidence for a

familial epilepsy syndrome, or a comorbid neurodevelopmental

syndrome, the answer to this question remains unknown. For-

tunately, 65% of individuals will experience seizure freedom

with 1 or more currently available antiseizure medications.95

To improve the lives of all individuals affected by epilepsy,

however, we must address the fundamental causes of epilepsy

and its associated conditions. As demonstrated in the introduc-

tory vignette, we also have a responsibility to translate our

scientific advances toward the treatment of epilepsy and fcog-

nitive and psychiatric comorbidities in a coordinated fashion.
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