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Background: Normal-appearing white matter (NAWM) refers to the normal, yet
diseased tissue around the white matter hyperintensities (WMH) on conventional MR
images. Radiomics is an emerging quantitative imaging technique that provides more
details than a traditional visual analysis. This study aims to explore whether WMH could
be predicted during the early stages of NAWM, using a textural analysis in the general
elderly population.

Methods: Imaging data were obtained from PACS between 2012 and 2017. The
subjects (≥60 years) received two or more MRI exams on the same scanner with
time intervals of more than 1 year. By comparing the baseline and follow-up images,
patients with noted progression of WMH were included as the case group (n = 51),
while age-matched subjects without WMH were included as the control group (n = 51).
Segmentations of the regions of interest (ROIs) were done with the ITK software. Two
ROIs of developing NAWM (dNAWM) and non-developing NAWM (non-dNAWM) were
drawn separately on the FLAIR images of each patient. dNAWM appeared normal on
the baseline images, yet evolved into WMH on the follow-up images. Non-dNAWM
appeared normal on both the baseline and follow-up images. A third ROI of normal
white matter (NWM) was extracted from the control group, which was normal on
both baseline and follow-up images. Textural features were dimensionally reduced with
ANOVA+MW, correlation analysis, and LASSO. Three models were built based on the
optimal parameters of dimensional reduction, including Model 1 (NWM vs. dNAWM),
Model 2 (non-dNAWM vs. dNAWM), and Model 3 (NWM vs. non-dNAWM). The ROC
curve was adopted to evaluate the classification validity of these models.

Results: Basic characteristics of the patients and controls showed no significant
differences. The AUC of Model 1 in training and test groups were 0.967 (95% CI:
0.831–0.999) and 0.954 (95% CI: 0.876–0.989), respectively. The AUC of Model 2 were
0.939 (95% CI: 0.856–0.982) and 0.846 (95% CI: 0.671–0.950). The AUC of Model 3
were 0.713 (95% CI: 0.593–0.814) and 0.667 (95% CI: 0.475–0.825).
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Conclusion: Radiomics textural analysis can distinguish dNAWM from non-dNAWM on
FLAIR images, which could be used for the early detection of NAWM lesions before they
develop into visible WHM.

Keywords: FLAIR, white matter hyperintensity, normal-appearing white matter (NAWM), MRI, radiomics, texture
analysis, longitudinal study

INTRODUCTION

White matter hyperintensities are commonly observed on MRI
in the periventricular and deep white matter in T2-weighted
images and FLAIR images (Debette and Markus, 2010). In
general, WMH are more common in older patients as the degree
of hyperintensity increases with age (Ertenlyons et al., 2013).
Besides age, WMH are associated with a decline in cognitive
function, generalized depression, Alzheimer’s disease, and an
increased risk of stroke in patients with large volumes of WMH
(Debette and Markus, 2010; Smith, 2010; Jacobs et al., 2014;
Yuan et al., 2017). Currently, there are few proven treatments
to prevent the progression of WMH, due to the relatively late
stage in the development of a pathological change of such visually
detectable changes (Takahashi et al., 2004).

Normal-appearing white matter refers to the areas around
the WMH that appear normal on conventional magnetic
resonance images, yet may already display low perfusion or
microstructural changes (Maillard et al., 2011; Fu et al., 2014;
Maillard et al., 2014; Pelletier et al., 2015; Zhong and Lou,
2016). A previous study found a stronger association between
the disruption of NAWM integrity and psychomotor dysfunction
when compared with WMH load (Hirsiger et al., 2017).
However, the pathophysiological changes of NAWM may be
more reversible than those of WMH (Maillard et al., 2014). In
the future, improved imaging protocols may allow physicians to
detect the early deterioration of NAWM to WMH, which would
provide more time for treatment.

Radiomics refers to the extraction of large amounts of
quantitative features from medical images in a cost-effective
and non-invasive manner. This process can reveal subtle
microstructural alterations in the tissues by incorporating
and analyzing the signal intensities of neighboring voxels
(Albuquerque et al., 2015; Yip and Aerts, 2016). As an emerging
quantitative imaging method, radiomics yield additional insights
into the disease, such as tumor heterogeneity, when compared
with traditional imaging techniques (Bae et al., 2016). In addition,
texture analysis has been applied in cross-sectional studies of
patients with small vessel diseases, which suggests that radiomics

Abbreviations: AUC, Area under the curve; CI, Confidence interval; dNAWM,
Developing normal-appearing white matter; DTI, Diffusion tensor imaging;
FLAIR, Fluid-attenuated inversion recovery; GLCM, Gray level co-occurrence
matrix; ICC, Interclass correlation coefficient; IDM, Inverse difference
moment; IR, Interquartile range; LASSO, Least absolute shrinkage and
selection operator; MRI, Magnetic resonance imaging; MS, Multiple sclerosis;
NAWM, Normal-appearing white matter; Non-dNAWM, Non-developing
normal-appearing white matter; NWM, Normal white matter; PACS, Picture
Archiving and Communication Systems; RLM, The run-length matrix; ROC, The
receiver operating characteristic; ROI, Region-of-interest; WMH, White matter
hyperintensity.

may be a feasible technique to investigate the microstructural
changes of NAWM (Tozer et al., 2018).

Through a longitudinal cohort study, we aim to prove the
existence of NAWM as it is not directly visible on conventional
MR images. In addition, we demonstrate that WMH can be
predicted during the early stages of NAWM with texture analyses
in the general elderly population.

MATERIALS AND METHODS

Patients
MRI data were retrospectively collected from PACS of the
Zhejiang Provincial People’s Hospital between February 2012
and April 2017. Ethical approval was obtained from the
Ethics Committee of Zhejiang Provincial People’s Hospital and
informed consent was waived. All patients were ≥60 years of
age and their primary clinical diagnoses were minor strokes or
transient ischemic attacks. Only patients who underwent two or
more MRI exams on the same 3.0T MRI unit with time intervals
of >12 months, were recruited in this study. The baseline and
follow-up MR images were compared and those patients with an
enlargement of WMH on the FLAIR images were included as the
case group for the final analysis (n = 51). Age-matched subjects
without WMH on both MRI exams were included as the control
group (n = 51), as shown in Figure 1.

Patients were excluded from this study if they had any of
the following conditions: (a) recurrent strokes, brain injuries, or
cerebral hemorrhages on the baseline or follow-up images; (b) the
presence of motion artifacts in the images; and (c) lack of the axial
FLAIR sequence in the MR protocol. Clinical data, such as age,
gender, and vascular risk factors were obtained by reviewing their
medical records.

MRI Protocol
All subjects underwent MRI of the brain on using a
3.0T Discovery MR 750 (GE Healthcare, Waukesha, WI,
United States). The MRI protocol included axial T1WI, T2WI,
DWI, and FLAIR sequences. The FLAIR parameters were: TR/TE
9,000 ms / 120 ms, 24 slices with a slice thickness of 5 and 1 mm
inter-slice gap, FOV 22× 22 cm, 288× 192 acquired matrix, and
a voxel size of 0.9× 0.9× 5.0 mm.

Region-of-Interest (ROI) Segmentation
for Image Processing
Manual segmentation of the ROI was performed by two
independent radiologists (readers A and B with 7 and 10 years of
experience in neuroradiology, respectively). Reader A segmented
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FIGURE 1 | Flowchart details the process of selecting the study subjects.

the ROIs twice with a 2-month interval. All ROIs were
segmented on the baseline FLAIR images with ITK-SNAP
Version 3.6.0 from UPenn1. The single most prominent lesion
was selected for segmentation in each patient. Two ROIs of
the developing NAWM (dNAWM) and non-developing NAWM
(non-dNAWM) were drawn separately on the FLAIR images
of each patient. dNAWM appeared normal at the baseline,
but developed into WMH by the time of the follow-up scan.
Non-dNAWM appeared normal in both the baseline and
follow-up images. A third ROI of NWM was extracted from the
normal controls.

Within each subject, the follow-up image was co-registered
to their corresponding baseline image by the MATLAB SPM
software2 to make sure that the images were in a common space
(Jiaerken et al., 2018). The ROIs of dNAWM were manually
delineated using three steps: (1) covering the entire region of the
WMH on the follow-up images; (2) covering the WMH regions
on the baseline images; and (3) subtracting the baseline WMH
map from the follow-up WMH map (Figure 2). The ROIs of
non-dNAWM were extracted at a symmetrical or adjacent region
on the baseline image. The NWM ROIs were located in similar
positions as those of the dNAWM on the baseline images of the
normal group (Figure 3). All ROIs were ≥100 pixels (Ardakani
et al., 2015).

Extraction of Features and Model
Establishment
Texture features of a total of 153 ROIs (51 dNAWM, 51
non-dNAWM, and 51 NWM) were extracted using the Artificial

1http://picsl.upenn.edu/software/itk-snap/
2https://www.fil.ion.ucl.ac.uk/spm/

FIGURE 2 | Segmentation of dNAWM in a 72-year old female patient. The
time interval between the two images is 658 days. The WMH significantly
progressed near the lateral ventricle forefoot. A and B tools from the ITK
software were used. Tool A automatically covering the pixelated regions with
similar gray levels and tool B being used to draw the outline of ROI and
overlaying to other images. This process consisted of three steps: (1) using
tools A and B to draw the outline of WMH on the follow-up images; (2) moving
the ROI outline to the corresponding position on the baseline image and using
tool A to cover the WMH on the baseline image; and (3) using tool B to modify
the ROI boundaries and assessing the ROI segmentation by subtracting the
baseline WMH from the follow-up WMH map.

Intelligence Kit Version 3.0.1.A (Life sciences), which is a
commercial software of GE Healthcare (Xue et al., 2018). There
were 384 textural features including histograms, form factor
parameters, GLCM, and RLM.

The extracted textural features were selected by
ANOVA+MW (The analysis of variance and Mann–Whitney
U-test), correlation analysis, Spearman’s correlation, and the
LASSO in sequence (Supplementary Figure S1). The patient
and control groups were divided into training (n = 72) and test
groups (n = 30) with a proportion of 7:3. Three models were built
by a multivariable logistic regression analysis, using the optimal
characteristic parameters of dimension reduction by LASSO with
Model 1 as NWM vs. dNAWM, Model 2 as non-dNAWM vs.
dNAWM, and Model 3 NWM vs. non-dNAWM.

Statistical Analysis
Statistical analysis was performed with R-project software
Version 3.0.13, MedCalc software Version 15.2.24, and SPSS
20.0 (IBM, Chicago, IL, United States). The R-project packages
included proc/rms/glmnet. Textural features were selected by the
R software and analyzed with Medcalc. Comparisons of the basic
clinical characteristics between patient and control groups were
made with the t-test, Chi-square test, or Mann–Whitney U-test.
A ROC curve was constructed to evaluate the classification
validity of the models. The AUC ranged from 0 to 1 and

3http://www.Rproject.org
4http://www.medcalc.org
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FIGURE 3 | Schematic diagram showing the research methods. dNAWM: appeared normal on FLAIR at the baseline, yet becomes WMH by the follow-up;
non-dNAWM: appeared normal on both baseline and follow-up images; (normal white matter) NWM: considered as the standard of NWM. These three ROIs were
segmented for feature extraction, dimensionality reduction, and model establishment.

was interpreted as the probability of the correct classification.
The Hosmer-Lemeshow test was used to judge the fitting
effect of the training model. Inter-observer ICC was assessed
by the first performance of reader A and the performance
of reader B, while intra-observer ICC was assessed by two
performances of reader A. Statistical significance was set at
p ≤ 0.05.

RESULTS

Basic Characteristics
In total, 51 patients (45.10% women) and 51 age-matched
controls (43.14% women) were enrolled in this study. The average
ages of the patients and controls were similar at 76.61 ± 7.72
and 74.82 ± 5.47 years, respectively (p = 0.181). The median
scan-time intervals were 615 days (IR 424–866) in the patient
group and 581 days (IR 471–838) in the control group, without
any significant difference (p = 0.556). There was no statistically
significant difference between the patients and controls in
terms of clinical risk factors, such as hypertension, diabetes
mellitus, hyperlipidemia, smoking, alcohol consumption, or
atrial fibrillation (p > 0.05). The median Fazekas score for the
WMH at the baseline of the patient group was grade 3 (IR 2–5),
which was significantly higher when compared with the grade 0 in
the control group (Fazekas et al., 1987). The basic characteristics
are shown in Table 1.

Textural Analysis
After reducing the dimension by LASSO, there were 6, 12, and 6
optimal textural parameters remaining for Model 1, Model 2, and
Model 3, respectively. The optimal textural parameters were from
three categories, including the histogram parameters, the GLCM,
and the RLM (Table 2).

Uniformity, which is a low-order textural feature, and
the IDM_alldirection_offset7, which is a high-order texture
feature, were consistent in all three models. There was a
monotonous trend between the two textural features described
above (Figures 4A,B). Texture values in the dNAWM were lower
than those of the NWM or non-dNAWM (p < 0.01). There was
no significant difference in uniformity between the NAWM and
non-dNAWM (p = 0.125). However, IDM_alldirection_offset7
showed a weak yet statistically significant difference between the
NAWM and non-dNAWM (p = 0.04).

Diagnostic Efficiency of the Three
Models
The AUC, sensitivity, and specificity of Model 1 for
distinguishing between NWM and dNAWM was 0.967 (95%
CI: 0.831–0.999), 93.33%, and 87.50% in the training group,
respectively. The Hosmer-Lemeshow test showed no overfitting
(p = 0.867). The AUC, sensitivity, and specificity was 0.954
(95% CI: 0.876–0.989), 88.89%, and 88.57% in the test group,
respectively (Figures 5A,B).
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TABLE 1 | Basic characteristics in study sample.

Characteristics Case group (n = 51) Control group (n = 51) U/T/X2 P

Female (%) 23 (45.10%) 22 (43.14%) 0.040 0.842

Age (mean ± SD) 76.61 ± 7.72 74.82 ± 5.47 1.347 0.181

Interval time (median, IQR) 615 (424, 866) 581 (471, 838) 1383.50a 0.556

Hypertension (%) 41 (80.39%) 33 (64.71%) 3.151 0.076

Diabetic (%) 25 (49.02%) 16 (31.37%) 3.303 0.069

Hyperlipidemia (%) 18 (35.29%) 12 (23.53%) 1.700 0.192

Smoking (%) 22 (43.14%) 17 (33.33%) 1.038 0.308

Drinking (%) 14 (27.45%) 16 (31.37%) 0.189 0.664

Atrial fibrillation (%) 13 (25.49%) 10 (19.61%) 0.505 0.477

Baseline Fazekas scores for WMH

0 0 51 (100%)

1 4 (7.84%) 0

2 12 (23.53%) 0

3 13 (25.49%) 0

4 7 (13.72%) 0

5 10 (19.61%) 0

6 5 (9.80%) 0

aMann–Whitney U; SD: standard deviation; IQR: interquartile range; WMH: white matter hyperintensity.

TABLE 2 | Texture parameters after the dimensionality reduction.

Textural parameters Weight

Model 1 (NWM vs. dNAWM)

Histogram Uniformity∗ −32.8859

GLCM InverseDifferenceMoment_AllDirection_offset7∗∗ −31.6043

Sum Entropy 4.2324

Difference Entropy 0.0871

RLM ShortRunLowGreyLevelEmphasis_AllDirection_offset1_SD 154.1717

ShortRunEmphasis_angle90_offset7 37.6504

Model 2 (Non-dNAWM vs. dNAWM)

Histogram Uniformity∗ 7.52e−02

std Deviation 2.85e−01

GLCM InverseDifferenceMoment_AllDirection_offset7∗∗ 9.88e+00

InverseDifferenceMoment_angle90_offset4 −1.79e+01

InverseDifferenceMoment_angle135_offset7 −2.71e+01

Correlation_AllDirection_offset4_SD 3.07e+04

RLM GreyLevelNonuniformity_angle90_offset1 −1.54e−01

ShortRunEmphasis_AllDirection_offset7 2.13e+01

LongRunHighGreyLevelEmphasis_AllDirection_offset7 7.18e−05

ShortRunEmphasis_angle135_offset4 −2.63e+01

ShortRunEmphasis_AllDirection_offset4_SD −1.96e+02

LongRunHighGreyLevelEmphasis_angle135_offset7 −2.71e−04

Model 3 (NWM vs. non-dNAWM)

Histogram Uniformity∗ −3.60e+01

GLCM InverseDifferenceMoment_AllDirection_offset7∗∗ −4.57e+00

RLM ShortRunHighGreyLevelEmphasis_AllDirection_offset4_SD −1.11e−03

ShortRunEmphasis_AllDirection_offset7 9.52e+01

LongRunHighGreyLevelEmphasis_AllDirection_offset7 −4.49e−04

LongRunHighGreyLevelEmphasis_angle0_offset7 2.76e−04

∗/∗∗Co-occurring in all three models. GLCM, gray level co-occurrence; RLM, run-length matrix.
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FIGURE 4 | The boxplots of co-occurring textural parameters among the
NAWM, Non-dNAWM, and dNAWM in the (A) Uniformity and
(B) IDM_AllDirection_offset7.

The AUC, sensitivity, and specificity of Model 2 for
distinguishing between non-dNAWM and dNAWM was 0.939
(95% CI: 0.856–0.982), 86.11%, and 88.57% in the training group,
respectively. The Hosmer-Lemeshow test showed no overfitting
(p = 0.399). The AUC, sensitivity, and specificity was 0.846
(95% CI: 0.671–0.950), 80.00%, and 81.25% in the test group,
respectively (Figures 6A,B).

The AUC, sensitivity, and specificity of Model 3 for
distinguishing between NWM and non-dNAWM was 0.713 (95%
CI: 0.593–0.814), 72.22%, and 71.43% in the training group,
respectively. The Hosmer-Lemeshow test showed no overfitting
(p = 0.141). The AUC, sensitivity, and specificity was 0.667
(95% CI: 0.475–0.825), 60.00%, and 81.25% in the test group,
respectively (Figures 7A,B).

Inter-Observer and Intra-Observer
Reproducibility of the Radiomics
Features
The intra-observer ICC, which was based on two measurements
from Reader A, ranged from 0.834 to 0.892. The inter-observer
ICC, which was between the first measurements of Reader A and
Reader B, ranged from 0.793 to 0.867, and indicated favorable
intra- and inter-observer feature extraction reproducibility.

FIGURE 5 | ROC curves were used to analyze the discriminatory power of
Model 1 between the NWM and dNAWM in the (A) training group and (B) test
group.

DISCUSSION

Previous MRI texture analysis of white matter lesions primarily
focused on the patients of MS. Zhang et al. (2008) showed
that texture analyses was less sensitive (58.33%) in classifying
the NAWM from NWM in MS. The low discrimination may
be due to the lack of further classification of NAWM into
developing and non-developing NAWM. In the general elderly
population, Takahashi et al. (2004) suggested that microstructural
changes in the NWM preferentially occur in the frontal region
with normal aging, and these changes are often associated with
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FIGURE 6 | ROC curves were used to analyze the discriminatory power of
Model 2 between the non-dNAWM and dNAWM in the (A) training group and
(B) test group.

declines in executive cognitive functions. However, little is known
about the correlations between radiomics and subsequent WMH
development in the aging brain through longitudinal studies.

In this study, a total of 24 textural parameters were extracted
between patient and control groups using radiomics, in which
six of the texture parameters were retained (Supplementary
Table S1). Uniformity and IDM (all direction and the offset 7) are
co-occurring in three models. Both uniformity and IDM reflect
the local homogeneity of the images (Doaa et al., 2008). There
was a decreasing tendency of texture values from NAWM to
non-dNAWM and then to dNAWM, which corroborated with
gradual histopathological changes (De et al., 2013; Zhang et al.,
2013). Textural values in the dNAWM were lower than those

FIGURE 7 | ROC curves were used to analyze the discriminatory power of
Model 3 between the NWM and non-dNAWM in the (A) training group and (B)
test group.

of the NWM and non-dNAWM. The decrease of textural values
suggested that the texture of dNAWM shows more heterogeneity
and complexity, which may result from less uniform MR signal
intensities, owing to the increased water content or reduced
myelin content (Barkovich, 2000; Zhang et al., 2013). Moreover,
we observed no significant differences in uniformity, yet obvious
differences in IDM between the NAWM and non-dNAWM.
A possible reason is that IDM, as a high-order textural feature,
could better reflect image heterogeneity than uniformity, which
is a low-order textural feature.

White matter fiber bundles are arranged in a specific
manner in normal tissues, while damaged myelin results in
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an irregular, thickened, or blurred arrangement (Yu et al., 2004).
RLM parameters also play an essential role in the diagnostic
differentiation of NAWM, non-dNAWM, and dNAWM. The
length of run refers to the number of pixels with the same
grayscale and continuous collinearity. It reflects both the
roughness and the direction of the texture within the tissues (Xu,
2004).

The current study shows that radiomics can be used to
effectively distinguish dNAWM from non-dNAWM and NWM
using Models 1 and 2 on conventional FLAIR images. This
suggests that microstructural changes may have occurred in the
dNAWM before the lesions could be visualized on the MR
images. Previous autopsy and DTI studies demonstrated that the
NAWM already possess the underlying pathological changes that
extend from the WMH (Bronge et al., 2002; Gons et al., 2010; Li
et al., 2012; De et al., 2013). This is the first study that further
subdivides NAWN into dNAWM and non-dNAWM according
to their progression within the period of observation. In addition,
our study shows that Model 3 could not accurately distinguish
between non-dNAWM and NWM, likely due to a small degree of
microstructural changes.

There are some limitations to this study. First, the sample
number of the model was small (n = 102) as the observation
time was not long enough to make the ROIs >100 pixels.
Secondly, the manual selection of two images could show some
bias, despite both images being from the same patient using
standardized imaging techniques. Third, ROI segmentation was
done using a single layer and not the whole-brain. In addition,
some parameters were not interpreted, as some of the textural
parameters likely appeared due to an accident, such as standard

deviation, sum entropy, and difference entropy. The specific
biological meaning and interpretation of these data are unclear
and interpretation should be done with caution.

CONCLUSION

In conclusion, radiomics textural analysis made it possible
to distinguish between developing NAWM lesions and
non-dNAWM validity on FLAIR images. This method could
be used to predict the presence of NAWM lesions before they
develop into visible WHM lesions in the future. In return,
physicians may have more time to treat patients who show early
signs of the disease.
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