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OBJECTIVE

Very young children with type 1 diabetes often struggle to achieve glycemic tar-
gets, putting them at risk for long-term complications and creating an immense
management burden for caregivers.We conducted the first evaluation of the Om-
nipod 5 Automated Insulin Delivery System in this population.

RESEARCH DESIGN AND METHODS

A total of 80 children aged 2.0–5.9 years used the investigational system in a single-
arm study for 13 weeks following 14 days of baseline data collection with their usual
therapy.

RESULTS

There were no episodes of severe hypoglycemia or diabetic ketoacidosis. By
study end, HbA1c decreased by 0.55% (6.0 mmol/mol) (P < 0.0001). Time with
sensor glucose levels in target range 70–180 mg/dL increased by 10.9%, or
2.6 h/day (P < 0.0001), while time with levels <70 mg/dL declined by median
0.27% (P5 0.0204).

CONCLUSIONS

Use of the automated insulin delivery system was safe, and participants experi-
enced improved glycemic measures and reduced hypoglycemia during the study
phase compared with baseline.

Very young children with type 1 diabetes are completely reliant on others for man-
agement of their diabetes and are often unable to communicate their needs by
self-identifying hypo- or hyperglycemia (1). Recent data highlight the struggle in
achieving glycemic targets in this group (1–3). A diagnosis of type 1 diabetes at
such a young age can have a profound and lasting impact, not only on the child’s
health (4,5), but also on the entire family (6).
Therapies with which practitioners aim to improve time in target range (TIR),

such as automated insulin delivery (AID) systems, may alleviate some of these chal-
lenges, with several options available for those aged >6 years. Findings from
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studies of AID systems have demon-
strated improvement in glycemia with-
out increased self-care burden (7–9);
however, exploration of this technology
in very young children has been sparse
(10,11). It is critical to study new thera-
pies that may allow more targeted gly-
cemia in this age-group.

The Omnipod 5 Automated Insulin
Delivery System (Insulet Corporation)
has previously been studied in those
with type 1 diabetes aged 6–70 years
(12). In this single-arm study, we as-
sessed the safety and glycemic out-
comes with this system in children aged
2.0–5.9 years with type 1 diabetes.

RESEARCH DESIGN AND METHODS

This single-arm, multicenter, prospective
outpatient clinical study was conducted
at 10 sites across the U.S. from August
2020 to January 2021. A 14-day stan-
dard therapy phase, wherein partici-
pants used their usual therapy for
baseline continuous glucose monitoring
(CGM) data collection, was followed by
a 13-week AID study phase (see Supp-
lementary Material for details).

Caregivers were trained on the use of
the investigational device (Supplementary
Fig. 1): a tubeless insulin pump (Pod)
with embedded proprietary AID algo-
rithm (Omnipod 5), interoperable CGM
(Dexcom G6), and mobile application
(Omnipod 5 app) on a locked-down An-
droid phone (13). During the AID phase,
the system delivered insulin microboluses
every 5 min using a target glucose value
(customizable between 110 and 150 mg/
dL in 10 mg/dL increments by time of
day). Follow-up visits were conducted ev-
ery 2 weeks (in person = 5%, virtual =
95%) (Supplementary Table 1).

The protocol (clinical trial reg. no.
NCT04476472, ClinicalTrials.gov) was ap-
proved by relevant local review boards
and a central institutional review board.
Oversight was provided by an indepen-
dent data and safety monitoring board.
Eligible participants were 2.0–5.9 years
of age and diagnosed with type 1 diabe-
tes, with HbA1c <10% (86 mmol/mol) at
screening. There was no minimum re-
quirement for body weight or total daily
dose (TDD) of insulin and no require-
ment of previous pump or CGM use. Key
exclusion criteria were history of diabetic
keto-acidosis (DKA) (unrelated to inter-
current illness, infusion set failure, or

initial diagnosis) or severe hypoglycemia
(SH) in the past 6 months (full criteria:
Supplementary Table 2). Each participant's
caregiver provided informed consent.

The primary safety end points were
incidence rates of SH and DKA. The pri-
mary glycemic end points were HbA1c
at the end of the AID phase compared
with baseline and TIR (70–180 mg/dL)
during the AID phase compared with
the standard therapy phase. Secondary
end points with prespecified hypotheses
were percent time with glucose level
<70 mg/dL and >180 mg/dL during
AID compared with standard therapy.

Glycemic end points were tested with
paired t tests or Wilcoxon signed rank
tests (the latter used for comparisons with
<10 participants or if Shapiro-Wilk tests
of normality were significant [P < 0.05]).
The primary glycemic end points were
tested independently with a two-sided
2.5% significance level. If at least one was
significant, the secondary end points with
prespecified hypotheses would be tested,
with use of the Holm method to maintain
a family-wise error rate at the two-sided
5.0% significance level. For additional end
points a two-sided 5.0% significance level
was used. Analyses were conducted with
SAS, version 9.4.

RESULTS

A total of 80 participants were enrolled
(Supplementary Table 3). All completed
the study (Supplementary Fig. 2) and con-
tinued in the optional extension phase.

There were no episodes of SH or DKA
during the AID phase. Prolonged hyper-
glycemia (blood glucose $300 mg/dL and
ketones >1.0 mmol/L) occurred 20 times
across 18.8% of participants (0.27 per
100 patient-days [Supplementary Table
4]). Of these events, 7 were deemed
“possibly related” and 12 “related” to the
study device, most likely due to infusion
site issues; each resolved without pro-
gression to DKA.

Mean ± SD HbA1c decreased from 7.4 ±
1.0% (57 ± 10.9 mmol/mol) at baseline to
6.9 ± 0.7% (52 ± 7.7 mmol/mol) at study
end (P < 0.0001 [Supplementary Fig. 3]),
and TIR increased from 57.2 ± 15.3% to
68.1 ± 9.0% (P < 0.0001), both meeting
prespecified significance criteria (Table 1).
Mean TIR was 61.3% and 67.8% for days
1–3 and 4–6 of AID. TIR increases were
observed both overnight (0000–0600 h),
from 58.2 to 81.0% (P < 0.0001), and

during daytime (0600–2400 h), from 56.9
to 63.7% (P < 0.0001) (Supplementary
Table 5). The percentage achieving HbA1c
<7.0% (53 mmol/mol) increased from 31
to 54%. The proportion achieving >70%
TIR increased from 18 to 44%, while
83% achieved >60% TIR (Supplementary
Table 6, Supplementary Fig. 4).

Time with glucose level >180 mg/dL
decreased by mean ± SD 9.9 ± 10.5%
(P < 0.0001) and time <70 mg/dL de-
clined by a median of 0.27% (interquartile
range �1.54, 0.46; P = 0.0204), both
meeting the prespecified significance cri-
teria. Additional outcomes are available in
Supplementary Material (Supplemen-
tary Fig. 5, glucose profile; Supple-
mentary Table 7, subgroup analyses;
Supplementary Table 8, total daily dose,
BMI).

Median time in automated mode dur-
ing the 13-week AID phase was 97.8%
(interquartile range 95.8, 98.5). The 110
mg/dL and 120 mg/dL target glucose set-
tings were used most often, representing
33% and 42% of total study time, respec-
tively (Supplementary Tables 9 and 10).
There were �0.5 device deficiencies per
person-month of system use.

CONCLUSIONS

This trial demonstrated the safety of the
tubeless AID system in a group of very
young children with type 1 diabetes. Par-
ticipants also experienced improved gly-
cemic outcomes and decreased time in
level 1 hypoglycemia during the study
phase compared with baseline. Children
spent 2.6 more hours per day in target
range. The proportion achieving the
>70% TIR consensus goal increased by
2.5-fold, while more than four in five
achieved the less stringent >60% TIR
goal (14). Importantly, increased TIR did
not come at the expense of additional
hypoglycemia; rather, time with glucose
level <70 mg/dL decreased by �4 min/
day, and there were no episodes of SH
or DKA, highlighting the safety of the
system. HbA1c decreased to 6.9% (52
mmol/mol), and the percentage achiev-
ing the American Diabetes Association–
recommended target of HbA1c <7.0%
(53 mmol/mol) increased 1.7-fold (15).

Exploration of AID systems in very
young children has been sparse. The
single system available for use in this
age-group in both the U.S. and Europe
resulted in mean ± SD HbA1c 7.5 ± 0.6%
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(58 ± 6.6 mmol/mol) and increase in TIR
to 63.8% (increase of 8.1%), while mean
time with glucose level <70 mg/dL was
unchanged at 3.2% (10). In a recent eval-
uation of the other system available in
this age-group (Europe only), TIR was
71.6 ± 5.9%, while median time <70
mg/dL was 4.9% (11).
Limitations of this study include the

single-arm design, which could result
in overestimation of improvement in gly-
cemic outcomes as it does not account
for potential improvements through study-
related interactions (every 2 weeks).
Despite broad eligibility criteria, some

characteristics of the study population,
such as exclusion of participants with re-
cent severe glycemic events (implemented
for safety reasons) and the relative homo-
geneity (77.5% White non-Hispanic, many
with near-target glycemia as measured by
HbA1c, and the majority had prior technol-
ogy experience), may make the findings
less generalizable, and additional data are
needed from more diverse groups of
young children. A strength of this study is
that prior pump experience was not re-
quired for inclusion.

With the goal of examining the use of a
tubeless on-body AID system in very young

children, the results of this trial indicated
safety of the system observed alongside
improvements in glycemia. AID systems
may provide the opportunity to attain
treatment goals, with benefits reaped be-
yond numbers, and the chance to reduce
the risk of acute and chronic complica-
tions, especially given the long duration of
diabetes these children will have.

Acknowledgments. The authors sincerely
thank the participants in this study and their
families. The authors thank Jodi Bernstein, of
Jodi Bernstein Medical Writing (Toronto, Can-
ada), who received payment from Insulet

Table 1—Primary and secondary glycemic outcomes (N = 80)

Baseline or standard therapy
phase‡

Follow-up or automated
insulin delivery phase‡ Change P value§

Overall (24 h)
Primary glycemic end

points:
HbA1c, % 7.4 ± 1.0, 7.4 (6.8, 8.1) 6.9 ± 0.7, 6.9 (6.5, 7.4) �0.55 ± 0.58, �0.40 (�0.85, �0.10) <0.0001
HbA1c, mmol/mol 57 ± 10.9, 57 (51, 65) 52 ± 7.7, 52 (48, 57) �6.0 ± 6.3, �4.4 (�9.3, �1.1) <0.0001
% TIR 70–180 mg/dL 57.2 ± 15.3, 59.1 (48.0, 67.5) 68.1 ± 9.0, 68.4 (61.4, 74.1) 10.9 ± 9.6, 8.9 (4.9, 13.8) <0.0001

Mean sensor glucose value,
mg/dL

171.1 ± 30.5, 164.1
(148.6, 189.0)

157.4 ± 16.8, 155.4
(147.1, 170.6)

�13.7 ± 19.9, �9.5 (�17.5, �1.4) <0.0001

SD of sensor glucose values,
mg/dL

64.9 ± 13.4, 64.0 (56.0, 73.1) 59.6 ± 10.3, 59.5 (53.0, 66.2) �5.3 ± 8.0, �4.6 (�9.3, �0.5) <0.0001

Coefficient of variation of
sensor glucose values,
%†

38.1 ± 5.5, 37.4 (35.1, 41.7) 37.7 ± 4.0, 37.7 (35.1, 40.5) �0.4 ± 4.2, �0.5 (�3.6, 2.3) 0.4232

% time in glucose range
<54 mg/dL 0.81 ± 1.68, 0.24 (0.05, 0.84) 0.47 ± 0.54, 0.26 (0.16, 0.60) �0.34 ± 1.33, 0.06 (�0.30, 0.16) 0.9394
<70 mg/dL 3.43 ± 3.87, 2.19 (0.89, 4.68) 2.46 ± 1.83, 1.94 (1.18, 3.43) �0.97 ± 2.75, �0.27 (�1.54, 0.46) 0.0204
>180 mg/dL 39.4 ± 16.7, 37.0 (27.4, 50.0) 29.5 ± 9.8, 29.3 (23.1, 37.2) �9.9 ± 10.5, �7.6 (�12.8, �3.5) <0.0001
$250 mg/dL 14.8 ± 12.1, 11.5 (5.4, 21.0) 9.2 ± 5.6, 8.4 (5.2, 13.0) �5.6 ± 8.9, �2.3 (�6.6, �0.1) <0.0001
$300 mg/dL 6.0 ± 7.3, 3.5 (1.1, 8.3) 3.2 ± 2.8, 2.4 (1.2, 4.6) �2.7 ± 6.1, �0.7 (�2.5, 0.2) <0.0001

Overnight (0000–0600 h)

Primary glycemic end point:
% TIR 70–180 mg/dL

58.2 ± 18.7, 60.6 (47.8, 70.1) 81.0 ± 10.0, 82.4 (76.8, 88.7) 22.8 ± 14.8, 19.5 (12.8, 32.2) <0.0001

Mean sensor glucose value,
mg/dL

168.1 ± 33.3, 163.5
(147.6, 189.3)

140.7 ± 16.4, 141.1
(128.7, 150.3)

�27.4 ± 25.4, �22.9 (�44.5, �9.0) <0.0001

SD of sensor glucose values,
mg/dL

58.0 ± 14.0, 57.8 (50.1, 64.1) 45.5 ± 10.8, 45.7 (36.9, 52.0) �12.5 ± 11.5, �11.0 (�20.5, �6.7) <0.0001

Coefficient of variation of
sensor glucose values,
%†

34.7 ± 6.6, 35.2 (30.9, 38.8) 32.1 ± 5.2, 31.6 (29.2, 35.3) �2.6 ± 6.7, �3.6 (�6.9, �0.3) 0.0002

% time in glucose range
<54 mg/dL 0.85 ± 1.94, 0.00 (0.00, 0.97) 0.39 ± 0.53, 0.18 (0.06, 0.53) �0.46 ± 1.78, 0.00 (�0.51, 0.13) 0.1128
<70 mg/dL 3.41 ± 4.79, 1.66 (0.40, 4.21) 2.13 ± 1.94, 1.58 (0.65, 2.89) �1.28 ± 4.17, �0.44 (�2.17, 0.63) 0.0185
>180 mg/dL 38.4 ± 20.1, 36.5 (24.8, 51.1) 16.9 ± 10.3, 15.5 (8.4, 21.8) �21.5 ± 16.0, �19.1 (�31.5, �11.3) <0.0001
$250 mg/dL 13.0 ± 13.2, 8.3 (3.4, 17.6) 3.9 ± 3.9, 3.1 (1.2, 5.0) �9.1 ± 11.4, �5.1 (�13.8, �1.0) <0.0001
$300 mg/dL 4.3 ± 6.7, 1.3 (0.0, 5.6) 1.2 ± 1.6, 0.6 (0.1, 1.9) �3.1 ± 6.1, �0.6 (�4.7, 0.0) <0.0001

Data are means ± SD, median (interquartile range). To convert the values for glucose to millimoles per liter, multiply by 0.05551. TIR, time in target
range. ‡Baseline and follow-up data were used for the primary glycemic end point of HbA1c; the remaining outcomes are described for the
standard therapy phase and the automated insulin delivery phase. §Unadjusted P value determined with two-sided paired t tests for overall
coefficient of variation of sensor glucose, overnight SD of sensor glucose, and overnight % time with glucose level >180 mg/dL. †Coefficient
of variation of sensor glucose is SD divided by the mean. Two-sided Wilcoxon signed rank tests were used for all other outcomes. Both prima-
ry glycemic end points (HbA1c and % TIR) were considered significant at the prespecified 2.5% cutoff. Thus, the secondary outcomes with pre-
specified hypotheses were tested. The first secondary glycemic end point with prespecified hypothesis (% time with glucose level >180 mg/
dL) was considered significant at the prespecified 2.5% cutoff and the second secondary end point with prespecified hypothesis (% time with
glucose <70 mg/dL) was considered significant at the prespecified 5.0% cutoff. All other end points were considered significant at the 5.0%
cutoff.
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